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ABSTRACT. In this paper, we study the two-parameter exponentiated generalized standardized Gumbel 
distribution, which consists of a simple generalization of the Gumbel distribution. We investigate the 
power of fit of the proposed distribution to real data and study via Monte Carlo simulation the behavior of 
the MLEs for the model parameters. We provide a comprehensive mathematical treatment and prove that 
the formulas related to the new model are simple and manageable. 
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Introduction 

The statistical literature is replete with illustrations in which the Gumbel model is used effectively to 
explain real phenomena. In the area of climate modeling, for example, some applications of the Gumbel 
model include global warming problems, offshore modeling, and rainfall and wind speed modeling 
(Nadarajah, 2006). Here, it is worth mentioning some recent works that consider the Gumbel distribution in 
different contexts: Nadarajah (2006), Cordeiro, Ortega, and Cunha (2013) and Andrade, Rodrigues, 
Bourguignon, and Cordeiro (2015). The cumulative distribution function (cdf) of the Gumbel (Gu) 
distribution is given by Equation 1: 

1( ; , ) exp exp ,t
G t

μμ σ
σ

 − = − −    
 (1) 

for t ∈ IR, μ ∈ IR and σ>0. In a recent paper, Cordeiro et al. (2013) proposed a generalization for the Gumbel 
model using the so-called exponentiated generalized (EG) class of distributions defined by the cdf expressed 
as Equation 2: 

( ) {1 [1 ( )] } ,a bF x G x= − −  (2) 

where 0 and 0a b> > .  
The probability density function (pdf) corresponding to Equation 2 is given by Equation 3: 

1 1( ) [1 ( )] {1 [1 ( )] } ( ),a a bf x ab G x G x g x− −= − − −  (3) 

where g(x) = dG(x)/dx is the baseline pdf. Thus, Cordeiro et al. (2013) studied the so-called exponentiated 
generalized Gumbel (EGGu, for short) distribution by inserting Equation 1 into Equation 2. Later, Andrade  
et al. (2015) investigated in detail several mathematical properties for the EGGu model. In this paper, we 
will follow the methodology used by Cordeiro et al. (2013) and Andrade et al. (2015), but we will consider a 
standardized version of the Gumbel distribution, the so-called standardized Gumbel (SGu) model. Let T be a 
random variable having cdf Equation 1. The SGu distribution is defined by a linear transformation 

( ) /X T μ σ= − , where μ ∈ IR and σ>0. Without loss of generality, we can work with the SGu model, since T = 
μ + σX, where μ ∈ IR and σ>0. The G(x) and pdf g(x) of the SGu distribution are given by Equation 4 and 5: 

( ) exp[ exp( )]G x x= − −  (4) 
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( ) exp[ exp( )]g x x x= − − −  (5) 

respectively, for x ∈ IR . The goal is to show that our simplified version of the EGGu model has great power 
of fit to real data and good simulation properties, with the advantage of having only two parameters. 
Therefore, we define the exponentiated generalized standardized Gumbel (EGSGu) distribution by inserting 
Equation 4 into Equation 2. The cdf F(x) and pdf f(x) of the EGSGu distribution are given by  
Equation 6 and 7: 

( )( ) (1 {1 exp[ exp ] )}a bF x x= − − − −  (6) 

( ){ } ( ){ } 11
( ) exp[ exp( )] 1 exp exp 1 1 exp exp ,

ba a
f x ab x x x x

−−
    = − − − − − − − − − −    

 (7) 

where a > 0 and b > 0. The two extra parameters a and b in the density Equation 7 can control both tail 
weights, enabling the generation of flexible distributions, with heavier or lighter tails, as appropriate. There 
is also an attractive physical interpretation of the model Equation 7 when a and b are positive integers: 
Suppose initially that a certain device is composed of b components in a parallel system. Consider also that, 
for each component b, there exists a series of subcomponents a independent and distributed according to 
the SGu model. Suppose also that each component b fails if some a subcomponent fails. Let Xj1, …, Xja 
denote the lifetimes of the subcomponents within the jth component, j = 1, …, b with common cdf SGu. Let 
Xj denote the lifetime of the j component and let X denote the lifetime of the device. Hence: 

1 1 1

11 1 11

11

( ) ( , , ) ( ) [1 ( )]

[1 ( , , )] [1 ( ) ]

[1 {1 ( )} .]

b b
b

b a b
a

a b

P X x P X x X x P X x P X x

P X x X x P X x

P X x

≤ = ≤ … ≤ = ≤ = − >

= − > … > = − >

= − − ≤

 

Thus, the lifetime of the device obeys the EGSGu family of distributions. Besides this introduction, the 
paper is organized as follows. In the Material and Methods section, we investigated the quantile function 
and its applications. Next, several mathematical properties of the new model are derived and numerical 
studies are detailed. In the Results and Discussion section, we used a real dataset to empirically show the 
power of fit of the EGSGu model and presented the Monte Carlo simulation study. 

Material and methods 

Quantile function 

As an additional characterization of X, we define in this section the quantile function (qf) of the EGSGu 
model. This function comes directly from the inversion of the cdf Equation 6. Thus, the qf of X is given by 
Equation 8: 

{ }1/ 1/( ) log log 1 (1 ) ,b aQ u u = − − − −   (8) 

where u ∈ (0,1). There are many important practical applications for Equation 8. For example, occurrences 
of the random variable X can be easily obtained from a uniform random variable U by X = Q(U). Next, we use 
Equation 8 to simulate 200 EGSGu (3, 2) occurrences. Figure 1 gives the EGSGu (3, 2) pdf, histogram, exact 
and empirical cdfs for these simulated data. 

In addition, to illustrate the practical utility of Equation 8, it should be mentioned that it can be used to 
determine the median of X as Med = Q(1/2). Table 1 below presents a small simulation study, whose 
objective is to compare the empirical medians (Med) generated for different parameter values and random 
samples of size n = 50, 100, 150, with their corresponding theoretical medians (Med) obtained by Q(1/2). The 
simulation process is performed in the software R and, to ensure the reproducibility of the experiment, we 
use the seed for the random number generator: set.seed (103). As expected, the difference between EMed 
and Med decreases when n increases. 

Finally, we present a third application for qf Equation 8, which consists in obtaining in the classical measures 
of asymmetry and kurtosis of X the Bowley skewness (Kenney & Keeping, 1962) (B) and Moors kurtosis (Moors, 
1988) (M). In Figure 2 and 3, we present 3D plots of the M and B measures for selected parameter values, 
respectively. These plots are obtained using the software ‘Wolfram Mathematica’. Based on these plots, it is 
possible to conclude that changes in the additional parameters a and b have a considerable impact on the 
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skewness and kurtosis of the EGSGu model, thus corroborating its greater flexibility. Hence, theses plots 
reinforce the importance of the additional parameters. 

Properties of the EGSGu distribution 

In this section, we study the structural properties of the EGSGu model. 

Linear representations 

For an arbitrary baseline cdf G(x), a random variable Yc has the exp-G distribution with power parameter c > 0 
say Yc ∼ exp-G if its cdf and pdf are given by Hc(x) = G(x)c and hc(x) = cg(x)G(x)c-1 respectively. For a comprehensive 
discussion about the exponentiated distributions, see a recent paper by Tahir and Nadarajah (2015). Based on 
some results in Cordeiro and Lemonte (2014), we can express the EG cdf Equation 2 as Equation 9. 

1 1
0

( ) ( ),j j
j

F x w H x
∞

+ +
=

=  (9) 

where 1
1

1
( 1)

1
j m

j
m

b ma
w

m j

∞
+ +

+
=

  
  
  +

= −


 and Hj+1(x) = G(x)j+1 is the exp-G cdf with power parameter j+1. By 

differentiating Equation 9, we obtain a similar linear representation for f(x) as Equation 10. 

 
Figure 1. Plots of the EGSGu (3, 2) pdf, histogram, exact and empirical cdfs for simulated data with n = 200. 

Table 1. Theoretical and empirical medians (for n = 50, 100, 150) of X for some parameter values. 

a b Med ↓  EMed → n = 50 n = 100 n = 150 

1.5 3.0 0.8452 0.7252 0.8830 0.8620 
3.0 3.0 0.1123 0.0342 0.1367 0.1232 
3.0 1.5 -0.2355 -0.3218 -0.2087 -0.2236 

 

 
Figure 2. Plots of the Moors kurtosis for the EGSGu distribution. 

 
Figure 3. Plots of the Bowley skewness for the EGSGu distribution. 
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1 1
0

( ) ( ),j j
j

f x w h x
∞

+ +
=

=  (10) 

where hj+1(x) = dHj+1 (x)/ dx. The expSGu pdf with power parameter j+1, hj+1(x), (for j ≥ 0) becomes  
Equation 11:  

1( ) ( 1)exp[ ( 1) exp( )].jh x j x j x+ = + − − + −  (11) 

Combining Equation 10 and 11, we have an important result: The EGSGu density function is a linear 
combination of expSGu densities. This result can be used to derive some mathematical properties of X. 

Moments and probability weighted moments 

We provide below two ways to compute the n-th moments of X with density Equation 7. Moreover, 
we go beyond and also present alternative ways to calculate the probability weighted moments, say 
PWM and denoted by τs,r, for EGSGu model. The first formula for the n-th moments of X become by 
using Equation 7, follow Equation 12:  

( ) ( )d .n nE X x f x x
∞

−∞
=   (12) 

Alternatively, combining Equation 10 and 11, we can express E(Xn) in terms of expSGu moments. We 
write Equation 13: 

1 1
0

( ) ( )d .n n
j j

j

E X w x h x x
∞ ∞

+ +−∞
=

=   (13) 

It is very simple to calculate the n-th moment of X computationally, using the expressions Equation 12 
and 13. To illustrate it, we provide next a small numerical study, comparing E(Xn) from both formulas. We 
consider several parameter values and n = 1, 2, 3, 4, 5, 6. The results are shown in Table 2. This table shows 
that the results agree at five decimal digits of precision for both methods. All computations are obtained 
using the ‘Wolfram Mathematica’ platform. The (s, r)th PWM of X is defined by δs,r = E[Xs f(x)r]. Clearly, the 
ordinary moments follow as 

,0 ( ).s
s E Xδ =  Next, we derive simple expressions for the PWMs of X defined by 

Equation 14: 

, ( ) ( )d .s r
s r x F x f x xδ

∞

−∞
=   (14) 

Inserting Equation 6 and 7 into Equation 14, the PWMs of X can be expressed in a simple form  
Equation 15: 

( ){ }
( ){ }

1

,

( 1) 1

exp[ exp( )] 1 exp exp

1 1 exp exp d .

as
s r

b ra

ab x x x x

x x

δ
∞ −

−∞

+ −

= − − − − − −  

 × − − − −   

  (15) 

Under simple algebraic manipulation, we can write ,s rδ  as Equation 16: 

, 1
, 0

( 1) 1 ( 1) 1( 1) ( )d ,
1

k
s

s r
k

b r a k

k
ab x h x xδ

+∞ ∞

+−∞=

+ − + −  
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 

=
+ 

−


 



 

 (16) 

where hl+1(x) is the expSGu density with parameter (l+1). Equation 16 reveals that the PWMs of X can be 
expressed in terms of the ordinary moments of X ∼  expSGu(l+1).  

Table 3 gives from Equation 15 the values of δs,r for X ∼ EGSGu(a, b) and some values of s and r. All 
computations are performed using the ‘Wolfram Mathematica Software’. Based on the values in Table 3, we 
conclude that, for fixed r, the PWMs increase when s increases. The opposite happens when we fix 
parameter s and r increases. 

Stochastic comparisons of sample maximum 

In this section, we compare the maximum of two independent and heterogeneous samples each following EG 
class with the same baseline distributions. Let X1:n < X2:n < ... < Xn:n be the order statistics to the random variables 
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X1, X2, …, Xn with X1:n and Xn:n the sample minimum and sample maximum, respectively. The study of Parallel 
systems plays a prominent role in reliability theory and is equivalent to the study of the largest order statistics. 
The following two definitions and notation will be needed to prove our main result. 

Definition 1: (Shaked & Shanthikumar, 2007): Let Y and Z be two random variables with, respectively, 
absolutely continuous distribution functions M(·) and H(·) densities m(·) and h(·), and reversed hazard rate 
functions ( )r ⋅  and ( ).s ⋅  Hence, Y is said to be smaller than Z in (i) ‘usual stochastic order’, denoted by Y<st Z, 
if M(t) ≥ H(t), ∀t; (ii) ‘reversed hazard rate order’, denoted by Y <rhr Z, if ( ) ( ), .r t s t t≤ ∀      

We consider in our main result stochastic comparison in terms of the reversed hazard rate order. Note that 
reversed hazard rate order implies usual stochastic order. Let In be an n-dimensional Euclidean space with I ⊆ IR. 

Definition 2: (Marshall, Olkin, & Arnold, 2011): Let x = (x1, x2, …, xn) and y = (y1, y2, …, yn) be two vectors 
in In. The vector x is said:    

(i) to majorize the vector y (say, x  y) if 
: 1 : 1 : :

1 1 1 1
, 1,2, , 1, and ;

j j n n

i n i n i n i n
i i i i

x y j n x y− −
= = = =

≤ = … − =     

(ii) to weakly supermajorize the vector y (say, 
w
x y± ) if 

: :
1 1

, for 1, 2, , ;
j j

i n i n
i i

x y j n
= =

≤ = …   

(iii)  to weakly submajorize the vector y (say, wx y± ) if 
: : , for 1, 2, , .

n n

i n i n
i j i j

x y j n
= =

≥ = …   

Notation: Let us include the following notations. 
(i) 1 2 1 2{( , , , ) : };n

n nx x x IR x x x= … ∈ ≥ ≥ ≥D  
(ii) 1 2 1 2{( , , , ) : };n

n nx x x IR x x x= … ∈ ≤ ≤ ≤E  
(iii) 1 1{( , , ) : 0};n

n nx x IR x x+ = … ∈ ≥ ≥ >D  

(iv) 1 2 1{( , , ) : 0 }.n
n nx x IR x xx+ = … ∈ < ≤ ≤E  

Table 2. First sixth moments of X for several a and b values. 

a b E(X) E(X2) E(X3) E(X4) E(X5) E(X6) 

1 

1 0.57722 1.97811 5.44487 23.5615 117.839 715.067 
2 1.27036 3.25876 10.7232 45.3600 233.071 1418.73 
3 1.67583 4.45333 15.3804 66.3318 345.015 2113.31 
4 1.96351 5.50031 19.6637 86.4083 454.276 2798.98 

2 

1 -0.11593 0.69747 0.16651 1.76299 2.60769 11.4045 
2 0.34165 0.72200 1.03513 2.52093 6.50153 20.6720 
3 0.59545 0.92435 1.59047 3.63454 9.74663 30.7523 
4 0.77030 1.14191 2.07825 4.75215 12.8901 40.7867 

3 

1 -0.40361 0.61140 -0.45472 0.93635 -0.68052 2.31902 
2 0.02993 0.37204 0.10596 0.51195 0.57386 1.68848 
3 0.17170 0.36710 0.31147 0.60373 1.02392 2.32992 
4 0.30846 0.41307 0.45178 0.75980 1.38992 3.06458 

4 

1 -0.57351 0.67294 -0.70212 1.00506 -1.28616 2.13690 
2 -0.24490 0.33249 -0.14312 0.29771 -0.09027 0.46581 
3 -0.07069 0.24739 0.01646 0.20673 0.12820 0.38704 
4 0.04630 0.22709 0.09714 0.20835 0.23144 0.45403 

 

Table 3. The PWM of X for fixed r = 1 and several values of a, b and s. 

a b 1,1δ  
2,1δ  

3,1δ 4,1δ 5,1δ  
6,1δ

1 

1 0.63518 1.62938 5.36162 22.6800 116.536 709.365 
2 0.98176 2.75015 9.83185 43.2041 227.138 1399.49 
3 1.18449 3.62849 13.6947 62.1381 332.862 2072.90 
4 1.32833 4.35138 17.1322 79.8149 434.481 2731.50 

2 

1 0.17082 0.36100 0.51756 1.26046 3.25077 10.3360 
2 0.38515 0.57095 1.03912 2.37608 6.44506 20.3933 
3 0.50519 0.77208 1.48086 3.45325 9.50317 30.2954 
4 0.58839 0.94653 1.88113 4.47512 12.4662 40.0248 

3 

1 -0.01497 0.18602 0.05298 0.25598 0.28693 0.84429 
2 0.15423 0.20654 0.22589 0.37990 0.69496 1.53229 
3 0.24681 0.26923 0.33986 0.54915 1.03731 2.27785 
4 0.31014 0.33295 0.44066 0.71657 1.36863 3.01745 

4 

1 -0.12245 0.16625 -0.07156 0.14885 -0.04514 0.23290 
2 0.02315 0.11354 0.04857 0.10418 0.11572 0.22702 
3 0.10163 0.12300 0.09790 0.13451 0.18804 0.32561 
4 0.15486 0.14437 0.13469 0.17284 0.25175 0.43164 
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Consider X a random variable with continuous distribution function G(x) and pdf g(x). For I = 1, 2, …, n, 
consider also Xi ∼ EG(ai, bi, G) and Yi ∼ EG(ci, di, G) two sets of n independent random variables where the 
baseline G(x) is homogenous and common to both sets of random variables. Suppose that Fn:n(.) and Hn:n(.) 
are the cdfs of Xn:n and Yn:n, respectively. Hence, 

[ ]{ } [ ]{ }: :
1 1

( ) 1 1 ( ) and ( ) 1 1 ( ) .
i i

i i
n nb ba c

n n n n
i i

F x G x H x G x
= =

= − − = − −∏ ∏  

We can also notice that if :r ( )n n ⋅  and :s ( )n n ⋅  are, respectively, reversed hazard rate functions of Xn:n and 

Yn:n, then 
1 1

: :
1 1

( )[1 ( )] ( )[1 ( )]r ( ) and s ( ) .
1 [1 ( )] 1 [1 ( )]

i i

i i

a cn n
i i i i

n n n na c
i i

a b g x G x c d g x G x
x x

G x G x

− −

= =

− −= =
− − − −     

The following lemmas will be needed to prove our main result.  
Lemma 1 (Marshall et al., 2011, p. 86): Let ϕ:I→IR. Then, (a1, a2, …, an) w±  (b1, b2, …, bn) implies ϕ(a1, 

a2, …, an) ≥ ϕ (b1, b2, …, bn) if, and only if, ϕ is decreasing and Schur-convex on In. 

Lemma 2 (Kundu, Chowdhury, Nanda, & Hazra, 2016): Let 
1

( ) g( )
n

i i
i

u xϕ
=

=x  with x ∈ D and let I ⊆ IR be 

an interval. Consider a function g:I→IR. If u=(u1, u2, …, un) ∈ E+ and g(.) is decreasing and convex then ϕ(x) is 
Schur-convex on D.  

Consider the following vectors belonging to In: a = (a1, a2, …, an), b = (b1, b2, …, bn), and c = (c1, c2, …, cn).   
Theorem (Main result of the section): Suppose Xi ∼ EG(ai, bi, G) and Yi ∼ EG(ci, di, G) with Xi and Yi two 

sets of mutually independent random variables and I = 1, 2, …, n. Also suppose that a,c ∈ D+ and b ∈ E+ 

Then, 
w
a c±  implies Xn:n ≥rhr Yn:n. 

Proof. Let ( ) 1 ( ).G x G x= −  Differentiating 
1( ) ( )( )

1 ( )

i

i

a
i

i a

a g x G x
v a

G x

−

=
−

 partially with respect to ai, we have 

( )
{ }

( )

1

2

1

2

( ) ( ) 1 ( ) log ( )
( )

1 ( )

( ) ( )( 1) ( ) 1 log ( )
.

1 ( )

[ ]

i i i

i

i i i

i

a a a

i
a

a a a

a

g x G x G x G x
v a

G x

g x G x G x G x

G x

−

−

 − + ′ =
−

− − −
=

−

  

We note that log ( ) ( ) 1i ia aG x G x≤ −  since log 1,x x≤ −  for all x > 0. Hence, ( ) 0iv a′ ≤  and v(ai) is decreasing 

in ai. By differentiating again v’(ai) with respect to ai, we obtain 
( )

1

13
( ) ( )log ( )( ) ( ),

1 ( )

i i

i

a a

i i
a

g x G x G x
v a v a

G x

−

′′ =
−

 with 

1( ) 2 2 ( ) log ( ) ( )log ( ).i i ia a a
i iv a G x G x a G x G x= − + +  Taking the derivative of v1(ai) with respect to ai, we obtain 

1 2( ) ( )log ( ),i iv a v a G x′ =  where 2 ( ) 1 ( ) ( )log ( ).i ia a
i iv a G x a G x G x= − +  Finally, by differentiating v2(ai), also with 

respect to ai, we have 2
2 ( ) ( )[log ( )] 0.ia

i iv a a G x G x′ = >   

It is easy to see, for ai > 0, the following chain of implications, 
2 2 2 1 1

1 1

( ) 0 ( ) (0) 0 ( ) 0 ( )  
( ) (0) 0 ( ) 0 ( )  .
i i i i i

i i i i

v a v a v v a v a decreasing in a

v a v v a v a convex in a

′ ′>  > =  < 
′′ < =  > 

 

Thus, by Lemma 1 and Lemma 2, the proof is obvious. 
Considering that the theorem holds for any continuous baseline G we naturally have the following 

corollary. 
Corollary (Result applied to EGSGu distribution): Suppose Xi ∼ EGSGu(ai, bi) and Yi ∼ EGSGu(ci, bi) with Xi 

and Yi two sets of mutually independent random variables and i = 1, 2, …, n. Also suppose that a,c ∈ D+ and 

b ∈ E+ and Then, 
w
a c±  implies Xn:n ≥rhr Yn:n. 

Dual generalized order statistics 

The dual generalized order statistics (dgos) were introduced in Burkschat, Cramer, and Kamps (2003) as a 
model for descending ordered random variables and admits as special cases reversed ordered order 
statistics, lower k-records and lower Pfeifer records (Arnold, Balakrishnan, & Nagaraja, 1998). In this 
section, we present general expressions for dgos from the EG class. Next, we present results for the EGSGu 
distribution. We derive an explicit expression for the density of the mth (1 m n≤ ≤ ) dual generalized order 
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statistic X* (m, n, v, k), say fx*(m,n,v,k) (x), in a random sample of size n from the EG class. By definition we have 
Equation 17: 

*
1 11

( , , , )
( ) ( ) ( ( )) ( )

( 1)!
m mm

vX m n v k

C
f x F x g F x f x

m
γ − −−=

−
 (17) 

where 
1

1
1

, ( )( 1) 1, ( ) ( ) (1), [0,1) 
m

m i m v v v
i

C k n m v g u t u t uγ γ
−

−
=

= = + − + ≥ = − ∈∏  and 11 , if 1
( ) 1

log , if 1

v

v

u v
t u v

u v

+− ≠ −= +
− = −

 with 1,k ≥  

.v IR∈  According to Equation 17, we can rewrite it in two cases, follow Equation 18: 
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 (18) 

Case I: For 1v ≠ − . 
Using the binomial expansion in the first sentence of Equation 18 and inserting cdf Equation 2 and pdf  

Equation 3, we readily obtain Equation 19: 

{ }
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1 1
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For any real non-integer ,β  ( | | 1z < ), Equation 20:  

1

0

( 1) ( )(1 ) .
( ) !

q
q

q

z z
q q

β β
β

∞
−

=

− Γ− =
Γ −  (20) 

By applying the last equation twice in Equation 19 and after simple algebraic manipulation, we write 
fx*(m,n,v,k) (x) as Equation 21: 

* 1( , , , )
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where  
1 1
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Case II: For v = -1. 
By expanding the logarithm function in power series and then using an equation for a power series raised 

to a positive integer given in Gradshteyn and Ryzhik (2007) (Section 0.314), we have Equation 22, 
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where ( ) 1 ( )F x F x= −  and the coefficients cm-1,p (for p = 1, 2, …) are determined from the recurrence equation 

1
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Analogously, inserting Equation 2 and 3 in the previous equation and applying Equation 20 twice, the pdf 
* ( , , , )

( )
X m n v k
f x  can be expressed as Equation 23, 
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where 
1

1 1,
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Hence, cases I (Equation 21) and II (Equation 23) can be summarized as (for baseline G distribution)  
Equation 24: 
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Based on the previous equation, we can easily obtain the dgos of EGSGu distribution since it depends on 
exp-G densities. Furthermore, several mathematical quantities of the EG dgos can be obtained from those 
quantities of exp-G distributions. We provide an example for the dgos moments from EGSGu distribution. 
Before that, an additional comment on the moments of the expSGu is in order. Inspired by Andrade et al. 
(2015), we can find a formula for the tth moment of ~expSGucZ  with power parameter c > 0. By setting w = 

exp{-z}, and using Andrade et al. (2015)'s Equation 14, the tth moment of ~expSGucZ  can be written as 

Equation 25: 
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Thus, the tth moment dgos of the EGSGu distribution can be expressed from Equation 24 and 25 as: 
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It is well known that if v = 0, k = 1 then X* (m, n, v, k) reduces to the (n-m+1)th order statistics Xn-m+1 : n 
from the sample X1, …, Xn, and when v = -1, then X* (m, n, v, k) reduces to the mth lower k-record value. The 
main result of this section is given by Equation 24.   

Results and discussion 

Real data illustration 

We adjusted the EGSGu model given in Equation 7, which contains just two parameters, and compared 
the results with other important models in the literature. We considered the EGSGu distribution and two 
Gumbel Lehmann's alternatives sub-models, denoted by EISGu and EIISGu, respectively. In addition, we 
have adjusted the models proposed by Mahmoudi (2011) (BGP distribution), Nadarajah and Eljabri (2013) 
(KwGP distribution), and Silva, Ortega, and Cordeiro (2010) (BMW distribution).  Their respective densities 
are given by  

1
1

( , )
( ) (1 )b a

BGP u
B a b

f x uξσ −
+ −= − , 1 1 1 1( ) (1 ) [1 (1 ) ]a a b

KwGPf x ab u u uξσ − + − −= − − −  

and
1

1exp( ) [1 ex( )( )
(

p{ ex
,

p( )}] exp{ ex }
)

p( )a
BMW

x x x
xf x x b x

a
x

bB

γ
γ γα γ λ λ α λ α λ

−
−+ − −= −  , 

where 
1

)[1 ]( /xu t ξξ σ
−

−= +  and 1 1 1

0
( , ) (1 )a ba t tbB − −= −  is the beta function. 

The data set was obtained from Murthy, Xie, and Jiang (2004), and consists of the times between 
failures for repairable items. In Table 4 we provide the MLEs (and their standard errors in parentheses) 
for all fitted models. 

Table 4 also lists the values of the Akaike information criterion (AIC), Bayesian information criterion 
(BIC) and corrected Akaike information criterion (Caic) statistics. In general, it is considered that lower 
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values of these criteria indicate better fit to the data. With the exception of the Caic of the EISGu model, the 
figures in Table 4 reveal that the EGSGu model has the lowest AIC, BIC and Caic values among all fitted 
models. Thus, the proposed EGSGu distribution is the best model to explain these data. Plots of the 
estimated pdf and cdf of the EGSGu distribution and the histogram of the data are displayed in Figure 4. 
These plots clearly reveal that the EGSGu model fits the data adequately and then it can be chosen for 
modeling these data. 

Simulated data illustration  

We investigated, by means of a simulation study, the behavior of the MLEs for the parameters of the 
EGSGu model by generating from qf Equation 8 with samples sizes n = 50, 100, 150, 200 and selected 
values for a and b. The simulation process is based on 10,000 Monte Carlo replications, performed in 
the software R using the simulated-annealing (SANN) maximization method in the maxLik script. The 
results of these new simulations are presented in Table 5 and 6, which contain the estimates and their 
estimated asymptotic variances in parentheses. These results reveal that, for all estimates, in general, 
the biases and variances decrease as the sample size increases. 

Table 4. MLEs (and the corresponding standard errors in parentheses), AIC, BIC and CAIC statistics for number of successive failures 
for the air conditioning system. 

Distributions â  b̂     AIC BIC CAIC 
EGSGu 1.340/ (0.247) 4.800/ (1.670)    86.181 88.983 86.826 
EISGu 1/ (----) 3.118/ (0.569)    86.334 87.735 86.477 
EIISGu 0.589/ (0.108) 1/ (----)    103.73 105.13 103.87 

 â  b̂  ξ̂  σ̂      

KwGP 1.970/ (0.837) 14.432/ (12.687) 1.119/ (2.371) 4.972/ (4.870)  87.283 92.888 88.883 
BGP 1.979/ (0.460) 13.850/ (1.983) 0.156/ (1.960) 11.061/ (3.852)  87.257 92.862 88.857 

 â  b̂  â  γ̂  λ̂     
BMW 2.901/ (1.903) 0.344/ (0.168) 2.374/ (0.164) 0.854/ (0.210) 0.093/ (0.109) 89.239 96.245 91.739 

 

 
Figure 4. Estimated pdf and cdf of the EGSGu model for the times between failures for repairable items. 

Table 5. MLEs for several a and b parameter values (variances in parentheses). 

a b n = 50 n = 100 n = 150 n = 200 
â  b̂  â  b̂  â b̂  â  b̂  

1 1 
1.0521 1.0601 1.0262 1.0287 1.0170 1.0192 1.0131 1.0145 
(0.040) (0.0447) (0.0185) (0.0189) (0.0121) (0.0122) (0.0089) (0.0091) 

1 2 
1.0416 2.1546 1.0210 2.0733 1.0135 2.0487 1.0105 2.0368 

(0.0280) (0.2526) (0.0131) (0.1029) (0.0087) (0.0661) (0.0064) (0.0484) 

1 3 
1.0380 3.2710 1.0191 3.1277 1.0123 3.0845 1.0096 3.0640 

(0.0240) (0.7163) (0.0113) (0.2837) (0.0075) (0.1811) (0.0055) (0.1314) 

1 4 
1.0361 4.4045 1.0182 4.1898 1.0117 4.1254 1.0091 4.0947 

(0.0219) (1.5130) (0.0103) (0.5873) (0.0068) (0.3728) (0.0050) (0.2687) 

1 5 
1.0350 5.5516 1.0176 5.2585 1.0114 5.1705 1.0088 5.1284 

(0.0206) (2.6931) (0.0097) (1.0349) (0.0064) (0.6539) (0.0047) (0.4695) 

2 1 
2.1041 1.0601 2.0524 1.0287 2.0340 1.0193 2.0262 1.0146 

(0.1599) (0.0446) (0.0739) (0.0189) (0.0485) (0.0122) (0.0355) (0.0091) 

2 2 
2.0832 2.1545 2.0419 2.0732 2.0271 2.0488 2.0210 2.0368 

(0.1122) (0.2526) (0.0526) (0.1028) (0.0348) (0.0661) (0.0255) (0.0484) 

2 3 
2.0760 3.2711 2.0382 3.1277 2.0247 3.0847 2.0192 3.0640 

(0.0960) (0.7158) (0.0451) (0.2837) (0.0299) (0.1812) (0.0219) (0.1314) 
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2 4 
2.0723 4.4044 2.0363 4.1900 2.0234 4.1254 2.0182 4.0947 

(0.0875) (1.5131) (0.0412) (0.5872) (0.0273) (0.3726) (0.0200) (0.2685) 

2 5 
2.0699 5.5510 2.0352 5.2581 2.0227 5.1702 2.0176 5.1282 

(0.0821) (2.6869) (0.0387) (1.0351) (0.0257) (0.6539) (0.0189) (0.4691) 

3 1 
3.1562 1.0601 3.0786 1.0287 3.0509 1.0192 3.0392 1.0145 

(0.3598) (0.0447) (0.1663) (0.0189) (0.1093) (0.0122) (0.0799) (0.0091) 

3 2 
3.1248 2.1546 3.0628 2.0732 3.0405 2.0487 3.0315 2.0369 

(0.2525) (0.2527) (0.1182) (0.1028) (0.0782) (0.0661) (0.0573) (0.0484) 

3 3 
3.1141 3.2710 3.0573 3.1277 3.0371 3.0847 3.0287 3.0639 

(0.2159) (0.7162) (0.1014) (0.2837) (0.0673) (0.1811) (0.0493) (0.1314) 

3 4 
3.1085 4.4044 3.0545 4.1898 3.0352 4.1255 3.0273 4.0947 

(0.1968) (1.5079) (0.0927) (0.5872) (0.0615) (0.3726) (0.0450) (0.2686) 

3 5 
3.1047 5.5492 3.0527 5.2580 3.0341 5.1702 3.0265 5.1285 

(0.1846) (2.6673) (0.0871) (1.0340) (0.0579) (0.6537) (0.0424) (0.4689) 

4 1 
4.2082 1.0601 4.1048 1.0287 4.0679 1.0192 4.0523 1.0146 

(0.6396) (0.0446) (0.2956) (0.0189) (0.1945) (0.0122) (0.1421) (0.0091) 

4 2 
4.1663 2.1544 4.0838 2.0732 4.0541 2.0487 4.0419 2.0368 

(0.0487) (0.2527) (0.2101) (0.1028) (0.1390) (0.0661) (0.1019) (0.0484) 

4 3 
4.1521 3.2711 4.0765 3.1277 4.0495 3.0848 4.0383 3.0640 

(0.3839) (0.7160) (0.1804) (0.2838) (0.1195) (0.1811) (0.0876) (0.1314) 

4 4 
4.1447 4.4046 4.0727 4.1899 4.0470 4.1255 4.0365 4.0946 

(0.3502) (1.5122) (0.1647) (0.5872) (0.1092) (0.3724) (0.0801) (0.2686) 

4 5 
4.1398 5.5499 4.0703 5.2581 4.0455 5.1704 4.0353 5.1284 

(0.3283) (2.6737) (0.1549) (1.0347) (0.1028) (0.6539) (0.0754) (0.4691) 

Table 6. MLEs for several a and b parameter values (variances in parentheses). 

a b n = 10 n = 20 n = 30 n = 40 
â  b̂  â  b̂  â b̂  â  b̂  

1 1 
1.2922 1.4124 1.1364 1.1665 1.0893 1.1032 1.0679 1.0780 

(0.3835) (0.8753) (0.1291) (0.1816) (0.0763) (0.0876) (0.0533) (0.0608) 

1 2 
1.2207 3.0650 1.1079 2.4438 1.0709 2.2699 1.0542 2.2022 

(0.2182) (4.5985) (0.0861) (1.1979) (0.0521) (0.5299) (0.0369) (0.3524) 

1 3 
1.1844 4.6307 1.0975 3.7774 1.0646 3.4785 1.0495 3.3564 

(0.1543) (8.5029) (0.0714) (3.2781) (0.0443) (1.5574) (0.0315) (1.0175) 

1 4 
1.1540 6.0016 1.0901 5.1139 1.0611 4.7132 1.0471 4.5328 

(0.1154) (11.2756) (0.0617) (6.0177) (0.0399) (3.2699) (0.0286) (2.1581) 

1 5 
1.1261 7.1680 1.0825 6.3945 1.0581 5.9510 1.0453 5.7225 

(0.0895) (12.9804) (0.0535) (8.6183) (0.0365) (5.4658) (0.0267) (3.7875) 

2 1 
2.5842 1.4121 2.2728 1.1665 2.1786 1.1032 2.1358 1.0780 

(1.5318) (0.8739) (0.5161) (0.1815) (0.3052) (0.0876) (0.2130) (0.0608) 

2 2 
2.4408 3.0571 2.2158 2.4432 2.1418 2.2701 2.1083 2.2021 

(0.8700) (4.4186) (0.3442) (1.1851) (0.2087) (0.5337) (0.1476) (0.3523) 

2 3 
2.3679 4.6131 2.1946 3.7732 2.1290 3.4772 2.0989 3.3562 

(0.6192) (8.1938) (0.2844) (3.2076) (0.1768) (1.5407) (0.1259) (1.0163) 

2 4 
2.3042 5.9499 2.1784 5.0913 2.1220 4.7113 2.0940 4.5316 

(0.4616) (10.6918) (0.2433) (5.6459) (0.1592) (3.2351) (0.1143) (2.1459) 

2 5 
2.2427 7.0540 2.1610 6.3515 2.1161 5.9501 2.0905 5.7206 

(0.3550) (11.9683) (0.2085) (8.1286) (0.1459) (5.5010) (0.1066) (3.7591) 

3 1 
2.1358 1.0780 3.4091 1.1665 3.2680 1.1032 3.2037 1.0780 

(0.2130) (0.0608) (1.1614) (0.1816) (0.6863) (0.0875) (0.4793) (0.0608) 

3 2 
3.6590 3.0530 3.3236 2.4429 3.2126 2.2701 3.1626 2.2023 

(1.9302) (4.3600) (0.7739) (1.1783) (0.4694) (0.5335) (0.3322) (0.3523) 

3 3 
3.5521 4.6151 3.2920 3.7749 3.1937 3.4778 3.1484 3.3562 

(1.3818) (8.1101) (0.6405) (3.2347) (0.3982) (1.5472) (0.2832) (1.0168) 

3 4 
3.4579 5.9566 3.2681 5.0951 3.1830 4.7108 3.1411 4.5327 

(1.0376) (10.5722) (0.5486) (5.6934) (0.3587) (3.2458) (0.2575) (2.1610) 

3 5 
3.3682 7.0695 3.2416 6.3449 4.2310 5.9381 3.1355 5.7184 

(0.7999) (11.7716) (0.4708) (7.9364) (0.5797) (5.2623) (0.2393) (3.7228) 

4 1 
5.1642 1.4101 4.5455 1.1665 4.3571 1.1032 4.2715 1.0780 

(6.0063) (0.8514) (2.0640) (0.1815) (1.2202) (0.0876) (0.8520) (0.0607) 
4 2 4.8702 3.0296 4.4313 2.4427 4.2836 2.2699 4.2168 2.2024 
4 2 (3.3608) (4.0290) (1.3750) (1.1782) (0.8342) (0.5277) (0.5907) (0.3527) 

4 3 
4.7246 4.5771 4.3891 3.7720 4.2584 3.4784 4.1979 3.3560 

(2.3826) (7.7049) (1.1352) (3.1640) (0.7086) (1.5609) (0.5032) (1.0154) 

4 4 
4.6035 5.9348 4.3588 5.1031 4.2443 4.7129 4.1880 4.5314 

(1.7977) (10.3640) (0.9799) (5.7925) (0.6392) (3.2742) (0.4573) (2.1404) 

4 5 
4.4874 7.0556 4.3254 6.3667 4.3254 6.3667 4.1805 5.7169 

(1.3902) (11.5550) (0.8448) (8.2116) (0.8448) (8.2116) (0.4245) (3.7004) 

Conclusion 

In this article, we propose and study a new two-parameter distribution with real support called the 
exponentiated generalized standardized Gumbel distribution (EGSGu). Our proposal includes both 
Lehmann’s type I and II transformations as special cases. We study some mathematical properties of the 
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new model. The model’s parameters are estimated by the maximum likelihood method. A simulation study 
reveals that the estimators have desirable properties. We empirically prove that the new distribution 
provides a better fit to a real dataset than other competitive models. 
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