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ABSTRACT. A new approach to data analysis in mixture experiments is proposed using the simplex 

regression, that is in the class of dispersion models family. The advantages of this approach are illustrated 

in an experiment studying the mixture effect of fat, carbohydrate, and fiber on tumors’ proportion in 

mammary glands of rats. Model was evaluated by goodness of fit criteria, simulated envelope charts for 

residuals of adjusted models, odds ratios graphics and their respective confidence intervals. The simplex 

regression model showed better quality of fit and smaller odds ratio confidence intervals. 
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Introduction 

A mixture experiment consists in optimizing a response variable (y) with the constraint that Equation 1: 

   
 
       (1) 

where: 

   (      ) is the proportion of i - th component (         ), with q is the number of components (Dal 

Bello & Vieira, 2011). Sometimes,    can be referred as compositional data (Pawlowsky-Glahn, Egozcue, & 

Tolosana-Delgado, 2015), but often this term refers to the response y. We will restrict our discussion to 

design variables. In this case, E[y] is a function of x's, explanatory variables in a regression approach. The 

space spanned by design variables takes the form of a (q-1) regular simplex size. In the q = 3 case, the 

simplex is a triangular region. Additional restrictions (for economical, physical or practical reasons) are 

sometimes imposed on individual components,                         being    and   , 

respectively, are the upper and lower limits for x1. In this sense a restricted region as given in Equation 1 

arises. 

Statistical modeling is done using polynomial models assuming normality for the response variable (Leão, 

Vieira, & Dal Bello, 2015). If response variables follows other known distributions, one can use generalized 

linear (mixed) models. Especially when the response variable is binary or binomial, the binomial regression 

model (logistic) has been widely used, but this model does not accommodate the effect of under or over-

dispersion, which often occurs on grouped data. For such situations, Zhang and Qiu (2014) proposed the use 

of a simplex regression model which is a model that belongs to the family of dispersion models, that can also 

account for under or over-dispersion from binomial distribution. 

The (under or) over-dispersion arises when the observed variance is (lower or) higher than expected from 

binomial model. This directly influences model fitting, predicted response and confidence limits (Zeviani, 

Ribeiro, Bonat, Shimakura, & Muniz, 2014; Liska, Silveira, Reis, Cirillo, & Gonzalez, 2015). 

When response variable is binary or binomial, odds ratios are of great practical interest. 

Conventional methods of analysis and interpretation of the parameters of the mixture model are not 

suitable, since restrictions implies complex interactions in the mixture from Equation 1 (Akay, 2007). 

Analysis of mixture components’ effects can use Cox directions, a concept that allows one to obtain 

precision and confidence intervals for the odds ratios in mixture experiments affected by collinearity of 

main effects. 
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Designs for mixture experiments are highly affected by collinearities, which is caused by the constraint 

in Equation 1. Several alternatives have been proposed in the literature to overcome this problem, such as 

the use of pseudo-components, inverse terms or ratio variables (Akay & Tez, 2011). 

In this paper we used a simplex regression model in evaluating mixture experiment instead of logistic 

regression. The advantages of our approach are illustrated in an actual experiment, which studied the effect 

of different diets consisting of fat, carbohydrate and fiber on tumors’ expression in mammary glands of 

female rats. Odds ratios and their respective confidence intervals for the effect of diets on promotion of 

tumors in rats were evaluated. Goodness of fit criteria were worked out to compare results. 

Material and methods 

Experiment description 

Data from Akay and Tez (2011) were used. Authors present a mixture experiment to study effects of diets 

(levels of fat, carbohydrate and fiber) on the expression of mammary gland tumors induced by Dimethyl-

benzathracene (DMBA) in female rats. Experiment spanned 26 weeks. Figure 1 contains the number of 

tumor responses observed in nine diet groups (with 30 rats per group) with different caloric proportions of 

fat (  ), carbohydrate (  ) and fiber (  ). 

Regression models applied to mixture experiments 

Purpose of experiment is to model response as a function of mixture components           . In this 

case, to model tumor rate (y) as a function of diet (x's). The functional form of the response  

                     is not known, but first and second order polynomial approximation models are 

widelly used (McCulloch, Searle, & Neuhaus, 2009). 

Common mixture models are presented in Table 1. The models Equation 2 and 3 are the Scheffé’s 

canonical polynomials of first and second degree, respectively (Cruz-Salgado, 2016). However, when 

response variable shows extreme responses to one (or more) component in the formula, this limits 

usefulness of the simplex. For these situations, the Scheffé’s models do not accommodate possible 

curvilinear effects from the extreme response behavior (Brown, Donev, & Bissett, 2015). To solve this 

problem, inverse terms can be included, producing better fitting, however, this brings a nonlinear impact in 

Equation 1. Other approaches in literature have been succesfully attemted, as the inclusion of ratio 

variables, like     
  

  
  in the models Equation 4 and 5 of Table 1, where   

  corresponds to the mixture 

component that causes the border effect (Akay & Tez, 2011). 

 

Figure 1. Realized number (labelled in red) of DMBA-induced tumors in mammary glands of rats treated with different caloric 

proportions of fiber, fat and carbohydrate on simplex restricted region with reference points. 
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Table 1. Classifications of the most common mixture models. 

Model      

Scheffé’s linear       
 
     (2) 

Scheffé’s quadratic       
 
              

 
   

 
     (3) 

Linear with ratio variables           
   
     (4) 

Quadratic with ratio variables           
   
              

   
   

   
     (5) 

 

Analysing mixture experiments using Dispersion models 

Let n independent realizations from a binomial distribution with parameters    and   . Assuming that 

the transformed value of the probability of response to the i-th observation is related to a linear 

combination of q mixture of components, that is,         
  , where   is a the link function and   

   is any 

of the models in Table 1. We adopt   as the logistic transformation. In this case, we have logit       
  , 

which results in the logistic regression model Equation 6: 

   
      

   

        
   

 (6) 

The usual method to estimate    is through Maximum Likelihood. Logistic regression can be used in 

situations where the response is a Bernoulli event or arises as the proportion of events Y = 1 in n trials 

and it belongs to the exponential family (Hosmer Jr., Lemeshow, & Sturdivant, 2013) A distribution 

that can be used to study a variable continuous response restricted to the (0,1) interval is a  

simplex distribution (Zhang and Qiu, 2014). The simplex distribution is included among dispersion 

models, which extend the generalized linear models (Barndorff-Nielsen & Jørgensen, 1991; Jørgensen, 

1997b; López, 2013; Quintero & Contreras-Reyes, 2018). A random variable y following a simplex 

distribution with mean         and dispersion parameter      has density function given by 

Equation 7. 

          
 

              
    

  

   
                (7) 

where: 

       
      

               
. The distribution of y is denoted by        . For a random sample        , each 

        
  ,          , the simplex regression model is defined by the density of the Equation 7 and the 

averages    modeled by         
  , where  and   are as previously defined. 

One desirable feature of simplex regression is fitting for heterocaedastic variances. Unlike beta 

regression model, expected variances are not a function of   . The extra dispersion parameter provides 

greater flexibility for modeling (Jørgensen, 1997a; Zhang and Qiu, 2014). 

The procedure for estimation of the simplex regression model parameters is similar to the logistic 

regression, with the difference that the additional parameter    should be estimated. The log-likelihood 

function for n independent observations is given by Equation 8. 

         
  

 
       

 

 
       

 

 
             

 

   
        

 

   

 (8) 

The maximum likelihood estimators of parameters   and   are obtained through the solution of the ho-

mogeneous equations. However, for    it results in closed form. The estimation of   requires the use of a 

numerical maximization, usually any method for this works, like Newton-Raphson or Fisher's scoring and 

its variations (McCulloch et al., 2009). 

Selecting models and goodness of fit criterion 

Akaike information criterion (AIC) is a relative measure of goodness of fit, defined by               

  , where         is the (neperian) logarithm of the model likelihood function evaluated at the point esti-

mates    and p is the number of model parameters. Alternatively, a slight modification of AIC, known as 

Bayesian Information Criterion (BIC), weights the parameters by      , where n is sample size (Menezes, 

Liska, Cirillo, & Vivanco, 2017). 
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Bozdogan (2010) proposed the information complexity index (ICOMP), which uses the Fisher’s 

information matrix evaluate model complexity, as this accounts for correlation of parameters’s 

estimates (Silhavy, Senkerik, Oplatkova, Prokopova, & Silhavy, 2017). The ICOMP is defined as 

Equation 9. 

                            (9) 

where: 

           
 

 
      

       

 
   

 

 
              ,    are the parameters estimated,                  the inverse 

of the Fisher information matrix, and                . Diagonal elements of         are estimated variances 

of model parameters and off-diagonal elements are their covariances. This is a measure of collinearity 

between columns of         and the degree of independence of parameters (or their estimates). According to 

this criterion, the best model within a set of models is the one which minimizes the ICOMP (Bozdogan, 

2010). 

Goodness of fit can be also checked by a normal probability plot for residuals, a graphical indication 

that distributional assumptions are violated. This plot, also called envelope simulated chart, contains 

resampling confidence bands, and it is judged that suitable adjustment has occurred if all  

model residuals (or at least most of them) are contained within these bands (Moral, Hinde, & Demétrio, 

2017). 

Interpreting parameters and measuring the effect of the components in mixture experiments 

For mixture experiments with logistic transformation, model coefficients estimates are not directly 

interpreted as odds ratios, as the restrictions limit interpretation and unexpected interactions may be 

present. In other words, if the estimate for    increases, then estimates for other components should 

decrease, but their ratio to one another remains constant. To better understand this concept, we should use 

the Cox direction, as explained by Cornell (1998). 

Cox direction for trace response plot 

The component i of Cox direction is an imaginary line projected from the reference mixture to the vertex 

    . The proportions of the q components in the reference mixture are               , where  

   
 
     . The reference point c default is generally adopted as the centroid of the experiment. When the 

proportion    of the component i is changed by an amount    toward the Cox direction, then the new ratio 

becomes Equation 10. 

         (10) 

The proportions of the q-1 remaining components resulting from    in the i-th component is Equation 11. 

     
    

    

               (11) 

In the case of a restricted experimental region to be a regular simplex, an alternative representation of 

the Cox direction may be formulated, considering the fact that  
  

  
 

  

  
. In a mixture system with q=3, along 

the component axis    passing through the reference point, the components    and    such that          
, 

are given by    
   

      

   
  

     
    

   
  

  with,    
 shows the ratio of the components except    in the reference 

point. Thus, the value of the predicted response for the first grade linear predictor, along the Cox direction 

for the i-th component is given by Equation 12: 

logit    
            

   
      

   
  

    
    

   
  

 (12) 

In Equation 12, exponentiating logit    
  , gives predicted values of    

  for each mixture component 

  . A plot that relates the increments of    to the values of    
 and this graph is called ‘trace plot’. These 

lines represent the effect of changing each blend component while all other components remain at con-

stant rates. Model given by equation Equation 12 can be expanded to different linear predictors (Akay, 

2007). 
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Odds ratio plots for mixture components 

Odds ratio are used for easy interpretation of parameter’s coefficient estimates in logistic regression 

(Chen, Cohen, & Chen, 2010). For mixture experiments, techniques based upon trace response graphics can 

be used for such comparisons. Considering any point              taken as a control group on the 

experimental region, the odds ratio is given along the    axis by Equation 13. 

        
Odds  

Odds control
 

             
   

      

   
  

    
    

   
  

 

                      
 

(13) 

In the simplest way,                            , with        ,   
   

      

   
  

    and   
    

   
  

   . 

The precision of the odds ratio can be determined by the confidence interval and its range reflects its variability 

(Hosmer Jr. et al., 2013). Using methods for calculating the variance of a sum, we can obtain estimated variance 

of the logarithm of the odds ratio. The           confidence interval is given by Equation 14. 

                                       
 
 
 
 
                   (14) 

where: 

                   is the neperian logarithm standard error for the odds ratio and   
 

 
  is the  

 

 
 -th 

standard normal quantile with   significance level. 

Lower and upper limits for odds ratios can be back transformed exponentiating the limits in Equation 14. 

Narrow confidence intervals are also a criteria for selecting better models or estimation methods. Thus, 

plotting confidence regions for odds ratios can be also used to compare models. 

We used the statistical packages, bbmle (Bolker, 2017) and mixexp (Lawson & Willden, 2016) of R 

Statistical Computing System (R Core Team, 2018). 

Results and discussion 

Model selection 

Logistic regression results described in Table 2 are identical to Akay and Tez (2011), which presented the 

model with ratio variables as a better alternative than the logistic regression model with variables in pseu-

do-components on polynomial models of Scheffé and Backer. Thus, compared to the results obtained by 

these authors, this indicates that simplex regression model performs better. For models with ratio variables, 

the lowest values of ICOMP, AIC and BIC criteria were obtained. Therefore, the simplex regression model 

with ratio variables was the best of the models used and the model provided lower standard errors of the 

model parameter estimates, indicating more precision. 

Table 2. Parameter estimates for the adjusted models and results of adjustment quality indicators. 

Model Type Parameter* Estimate Standard Error ICOMP AIC BIC 

Logistic Regression 

M1 Scheffé 

   -1.2397 1.4044 

46.4 44.14 44.93 
   -0.9678 0.6436 

   -6.4352 8.3783 

   10.4474 4.3393 

M2 Ratio 

   0.2895 0.2655 

44.23 44.41 45    0.1808 0.0542 

   -0.0767 0.0402 

Simplex Regression 

M3 Scheffé 

   -0.8241 0.9422 

-16.16 -18.49 -22.09 
   -0.8896 0.501 

   -7.9549 6.4595 

   9.5299 2.8266 

M4 Ratio 

   0.2959 0.2006 

-18.56 -18.81 -21.51    0.1779 0.0361 

   -0.0754 0.033 

*Parameters related to Scheffé quadratic model, with linear predictor given by                        , and Ratio linear, with linear predictor given by         
  

  
    

  

  
. 



Page 6 of 10  Liska et al. 

Acta Scientiarum. Technology, v. 42, e44068, 2020 

Parameter estimates for the component    is larger than the other parameters. Menard (2010) warns that 

the reason for this discrepancy between the estimates of the model parameters is due to collinearity. This 

can be seen studying covariance matrices     and     of the models M1 and M3. Diagonal elements of     

indicate more precise estimates for models M2 and M4. 

The covariances between parameters in the M2 and M4 models are smaller than those of models M1 and 

M3, as can be seen in the     and     matrices, which provides an explanation for the difference between 

the ICOMP values. As Bozdogan (2010) mentioned, systems whose covariance between its components are 

more evident tend to have higher values for ICOMP and, on the other hand, smaller covariance results in 

lower values for ICOMP. In addition, the M4 model has more information about the parameters, since the 

variances thereof are smaller than those of other models. Some care is always needed interpreting those 

models as some coefficients are for ratios of design variables (Equation 15 to 18). 

     

                          
                          

                           
                           

  (15) 

     
                    

                    
                    

  (16) 

     

                          
                          

                           
                          

  (17) 

     
                    

                    
                    

  (18) 

Akay and Tez (2011) addressed the presence of the under or over-dispersion effect on pooled data, such as the 

data presented in Figure 1 and the authors mentioned that this fact must be taken into account when selecting 

the model. The estimated dispersion parameters of the M1 and M2 models are    
         and    

        , 

respectively. In this case, it can be said that the under-dispersion effect in model M1 is present and therefore is 

missspecified. When using the model with ratio variables (M2), the dispersion parameter estimate is close to the 

unit value, which is the default value for the usual logistic regression model. Thus, it can be said that the model 

M2 controlled the under-dispersion effect. In the case of the M3 and M4 models, the simplex regression model 

naturally models the dispersion and the estimates are given by    
         and    

        . 

Given the above, it can be concluded that the simplex regression model showed better adjustment of 

quality indicators for the proportion of breast tumors in female rats (Table 2). For comparison purposes, the 

M2 and M4 models have been discussed, since the M2 was the best among the ones proposed by Akay and 

Tez (2011) and M4 considered the best among simplex distribution. Thus, the normal probability plot of the 

residual deviation component for the M2 and M4 models supports the claim that the assumption of 

binomial (Figure 2a) and/or simplex (Figure 2b) response for the analyzed response is adequate and the 

adjustment of the models were satisfactory (Figure 2). 

 

Figure 2. Simulated envelope for goodness of fit diagnostic of the M2 (a) and M4 (b) models. 
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Models discussion about the mixture component effect plots 

In what follows we describe graphic interpretation of M2 and M4 models. Trace plots for the 

reference point in Cox direction was given to the centroid                         , as can be seen in 

Figure 1. 

In Figure 3a, M2 model, the    (fat) and    (carbohydrate) components have opposite effect on the 

response. As the proportion of fat increases, the expected tumor incidence increases. On the other hand, 

as the proportion of carbohydrate increases the expected tumor incidence decreases. The    (fiber) 

component has more effect on the response than other components, since successive increments of 

dietary fiber lead to a higher expected decrease in tumors. Similarly, the same conclusions can be ma de 

for the M4 model. 

Figure 4 and 5 present the odds ratios for different reference points in relation to the control group for 

each evaluated model. To this end, we considered three different reference points (0.7, 0.275, 0.025), (0.275, 

0.7, 0.025) and (0.332, 0.466, 0.202). The first two points of reference are contained in the region where the 

sample points lie. The third reference point is the centroid of the constrained experimental region (Figure 1). 

The control group was given by the centroid of sampling points                         . This work is not 

adhered to the biological reasons for the choice of these points, but the fact that such choice was made 

strictly by inspection of the experimental region and applicability in mixture experiments. 

Odds are that mammary tumors occurrence increase with larger values in the    component. The 

respective M2 model 95% confidence interval contains the value 1, used to compare the odds ratios in 

amounts from 0.4 to 0.6 approximately. Therefore although the chance increases to the amounts 0.4 to 0.6, 

approximately, of   , it is not significant in the sense that the component in the population    (fat) does not 

significantly influence the occurrence of mammary tumors in rats (Figure 4A). 

For point estimates, the same conclusions apply for the   component in the M4 model. However, we 

note that the 95% confidence interval for the odds ratio does not contain the value 1 for some values of    

(Figure 5A), indicating that this component significantly influences the occurrence of mammary tumors in 

different quantities than those explained by model M2 (Figure 5). This fact is evidenced by the width of the 

confidence interval for the odds ratio of this component, which is narrower in the M4 model than in the M2 

model. Therefore, the M4 model provides estimates of the    component more precise than model M2  

(Figure 5). 

M4 model provided more precise estimates of the odds ratio than the M2 model in all adopted reference 

points (Figure 4A-C). This fact can be explained by inspection of the covariance between the parameters of 

the models evaluated. Therefore, we concluded that considering the proportion of mammary tumors 

incidence in rats as a random variable with simplex distribution, the use of ratio variables to study the 

relationship between fat, carbohydrate, and fiber mixture components is a viable alternative to the model 

proposed by Akay and Tez (2011). 

Other information that can be provided by the model is the particular mixture that provide the maximum 

(or minimum) tumor incidence, respecting the constraints of each component. Minimum expected tumor 

incidence in the model that showed the best fit quality indicators (M4) is 55.08% and the mixture providing 

this value is formulated as 13.36 fat, 86.34% carbohydrate and 0.30% fiber (Table 3). Major difference on 

components that maximize or minimize response was achieved varying proportion of fat and carbohydrate 

in the mixture. 

 

Figure 3. Trace plots for the M2 (a) and M4 (b) models considering the point                         , the centroid data, as 

reference point. 
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Figure 4. Odds ratio and their respective 95% confidence interval for the M2 model where (A) the reference point is (0.7, 0.275, 0.025) 

and control group (0.4108, 0.5671, 0.0221), (B) the reference point is (0.275, 0.7, 0.025) and control group (0.4108, 0.5671, 0.0221) and 

(C) the reference point is (0.332, 0.466, 0.202) and control group (0.4108, 0.5671, 0.0221). 
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Figure 5. Odds ratio and their respective 95% confidence interval for the M4 model where (A) the reference point is (0.7, 0.275, 0.025) 

and control group (0.4108, 0.5671, 0.0221), (B) the reference point is (0.275, 0.7, 0.025) and control group (0.4108, 0.5671, 0.0221) and 

(C) the reference point is (0.332, 0.466, 0.202) and control group (0.4108, 0.5671, 0.0221). 

Table 3. Mixture of components    (fat),    (carbohydrate) and    (fiber) that provides the maximum and minimum expected incidence 

of tumor (  ). 

Model* 
Maximum Minimum 

                        

M4 0.7244 0.2726 0.0030 0.9116 0.1336 0.8634 0.0030 0.5508 

*M4 (Simplex Regression ratio type). 

Conclusion 

Simplex regression model showed good fit to the analysis of a mixture experiment that evaluated the in-

cidence of mammary tumors in female rats, being a viable option in the analysis of situations where the 

outcome is limited to the (0,1) interval. The use of this model also accounts for the under or over-dispersion 

present in grouped data. 

Confidence intervals for the odds ratio were severely affected by choices of reference points. The simplex 

regression model provided more precise estimates for the odds ratio (narrower confidence limits). The mod-

el gave more stable estimates for odds ratios in different reference points in the experimental region, com-

pensating for border effect. 
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