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ABSTRACT. The present study presents binary data modeling regarding 1.6% of neonatal deaths in 3,448 

newborns from an epidemiological and observational study with a cross-sectional design, involving the 

retrospective analysis of 4,293 medical records of high-risk pregnant women followed in a gestational outpatient 

clinic from September 2012 to September 2017. Different symmetric and asymmetric link functions were 

considered by means of Bayesian inference. The support of more accurate inferences regarding the parameters 

of the model will provide biological interpretations that are more reliable and consistent with the reality. The 

model that presented, significantly, the lowest value for the deviance information criterion (DIC = 398.8), was 

the binomial with power logit (PL) link function, whose median posterior value estimated and significant for the 

parameter asymmetry was  = 0.25 (0.14;1.17). This significance is observed in all other models of the power 

family, however with very different values and significantly higher DIC values, indicating less parsimonious 

models. The Bayesian methodology proved to be flexible. Additionally, the results show that such model shows 

an accuracy = 97.4% and area under the ROC curve AUC = 89.4% in the prediction of neonatal deaths based on 

the weight of children at birth. Specifically, for 2.500g, a value predicted in the medical literature for low weight, 

the model predicts a probability of 1.43%.  
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Introduction 

Mathematical models that seek to relate variables from biological events are commonly used in different 

areas of knowledge for the adjustment of observed data. In particular, regression models with linear or 

nonlinear predictors, whose parameters provide biological explanations, are of greater interest. 

The regression models are associated to probabilistic models, in general, focused on the response variable 

(dependent). Among the situations of data analysis in which the answers, being dichotomic (success '1' and 

failure '0'), besides the presence of explanatory (co)variable(s), a binomial regression model is the proper 

choice. However, the uncritical choice of an appropriate link function may cause differences in the model 

settings, as well as in decision-making related to the research objective. The method of estimation of the 

parameters is also an important point to be considered, since each one has its assumptions that allow or not 

a greater flexibility in the modeling in the data analysis.  

In cases where there are differences in the frequencies of 1's and 0's in the response variable, Chen, Dey 

and Shao (1999) mention that an asymmetric link function is more adequate. 

Bazán, Romeo and Rodrigues (2014) present a simulation study considering different sample sizes for 

dichotomous responses in a regression model whose binding functions were probit and probit asymmetric. 

The results obtained under the Bayesian approach, evidence the second as the most parsimonious model. 

Additionally, they present new generalized link functions of these classes considering as probability density 

function probit (normal/gaussian) power and its reverse probit power. They report in the discussions that they 

found difficulties in obtaining the parameter estimates by means of frequentist procedures, which justified 

the use of the Bayesian model. 

Achcar, Coelho-Barros and Cordeiro (2013) have already presented generalizations of these distributions 

in other powers, that is, as special cases of a distribution called beta-normal (Eugene & Famoye, 2002). 

Bazán et al. (2014) mention that it is possible to unify these models through the distribution of 

Kumaraswamy (Cordeiro & Castro, 2011), but do not address the details. 
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Other authors also present simulations and applications on the subject, including Gupta and Gupta (2008), 

Bolfarine and Bazán (2010), Kindu and Gupta (2013), Abanto-Valle, Dey and Jiang (2015), Bazán, Torres-

Avilés, Suzuki and Louzada (2016), Anyosa (2017), Huayanay, Bazán, Cancho and Dey (2019) and conclude in 

favor of models with asymmetric link functions for simulations and applications when there is 

decompensation between 1's and 0's in the response variable. 

It is worth mentioning that neonatal deaths are those that occurred from zero to 28 days after birth, the 

majority considered preventable (Brasil, 2014). 

In 2015, in a global context, of the 5.9 million deaths in children under five, 2.7 million (46%) occurred in 

the neonatal period, causing a great impact on infant mortality (Liu et al, 2016). In the present study, the 

neonatal mortality rate was 16.2 deaths/1,000 live births (LB), totaling 1.6% of neonatal deaths, which is lower 

than the overall stillbirth rates in the year considered (19 deaths/1,000 LB) (Pan American Health 

Organization [PAHO/OMS], 2017). 

The objective of the present study was to model data on neonatal deaths in neonates from high-risk 

gestation, considering different attachment link functions under the Bayesian approach due to their flexibility 

and, therefore, to promote more accurate inferences regarding the parameters of the model, providing 

biological interpretations that are more solid and consistent with reality. 

Material and methods 

In situations of data analysis in which the response Y = (Y1, Y2,..., Yn)', a vector 𝑛 × 1 of independent 

random variables binary (dichotomous), in addition to the presence of explanatory (co)variable(s) represented 

by a vector of covariates, xi = (xi1, xi2,..., xik)' a 𝑘 × 1, a model of binomial regression can be used, such that Yi, 

is the observed value of the event of interest to the individual i, where i = 1, 2,..., n. Therefore, X will denote 

a 𝑛 × (𝑘 + 1) design matrix with rows x'i, and 𝜷 = (𝛽0, 𝛽1, . . . , 𝛽𝑘)′ a k+1 vector of regression coefficients. 

Response Y will assume '1' if the event occurred and '0' otherwise, thus the distribution of Y is Bernoulli, 

in a way that  𝑃(𝑌𝑖 = 1) = 𝑝𝑖  (probability of occurrence), 𝑌𝑖 ∼
𝑖𝑖𝑑

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖), 𝑝𝑖 = 𝐸(𝑌𝑖|𝑥𝑖) = 𝑓(𝜂𝑖) = 𝑓(𝑥𝑖
′𝛽), 

indicating a model with link function 𝜂𝑖 = 𝑥𝑖
′𝛽 (corresponding linear predictor) which represents the probability of 

occurrence of the event to the individual i, such that 𝑥𝑖
′𝛽 represents the effects component of the regression 

model𝑓(𝜂𝑖) = 𝑓(𝑥𝑖
′𝛽) + 𝜀𝑖, : vector (k+1) of effects of random errors associated with each observation. 

We often want to add covariates to the model by implying estimates of one or more additional parameters. 

By adding these covariates to the model and 'linking' them to the parameters, a monotonous link function is 

used, 𝑔(𝜃) which will relate the parameter  to a linear (predicted linear) function. In the literature it is 

possible to find several traditional (basic) binding functions, however among the most used for 𝑔(𝜃) = 𝜂 and 

their inverse, in which 𝜃 = 𝑔−1(𝜂), we have the logit symmetric of the logistic distribution, normal probit 

(gaussian), cauchy of Cauchy, t-student and double exponential (Albert & Chib, 1993) and the asymmetric 

ones – Gumbel loglog (cloglog) of minimum value and Gumbel loglog of maximum value. These functions are 

suitable for the parameters belonging to the interval (0,1). Some of the following are presented below: 

logit (L): g(θ) = ln (
θ

1-θ
) and g-1(η) =

eη

1+eη
; 

probit (P): g(θ) = Φ-1(θ) and g-1(η) = Φ(η), where Φ is the distribution function of the standard normal, 

N(0,1); 

cauchy (C): g(θ) = F-1(θ) and g-1(η) =
1

2
+

arctg(η)

π
, where F is the distribution function of Cauchy(0,1) ~ t-

student(1) and arctg: tangent arc; 

cloglog (CLL): g(θ) = ln(- ln( 1-θ)) and g-1(η) = 1- exp( - exp( η)); 

loglog (LL): g(θ) = - ln(- ln( θ)) and 𝑔−1(𝜂) = 𝑒𝑥𝑝( − 𝑒𝑥𝑝( − 𝜂)). 

Some link functions have been studied and are presented in the recent literature as more parsimonious 

alternatives in some practical situations (Bazán et al., 2014) and are called power and power reverse family. 

If Y follows a power distribution, 𝑌 ∼ 𝑃(𝜃), θ = (μ,σ2, λ), μ ∈ R (location parameter), σ2 > 0 (scale 

parameter) and λ > 0 (shape parameter or asymmetry). The distribution Y has the following probability 

density function: 𝑓(𝑦) =
𝜆

𝜎
[𝛷 (

𝑦−𝜇

𝜎
)]

𝜆−1

𝜑 (
𝑦−𝜇

𝜎
), Φ(. ): cumulative distribution function (c.d.f. ) named base 

distribution which can be any symmetric or asymmetric c.d.f.; φ(. ): unimodal probability density function 

(p.d.f.) function, log concave of real support (Anyosa, 2017). 
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In the case when it 𝜇 = 0 e 𝜎 = 1, so Y ∼ P(λ) represents the standard power p.d.f. with c.d.f. F1(y) =

[Φ(y)]λ and therefore, with power link function g-1(η) = [Φ(η)]λ. 

As for the reverse power function, it will have c.d.f. given by F2(y) = 1-[Φ(-y)]λand therefore, with reverse 

power link function g-1(η) = 1-[Φ(-η)]λ. 

All basic functions have their power and reverse power forms and are also interesting alternatives of this 

family (Bazán et al., 2016). 

For Bayesian modeling we considered: 

𝑌𝑖|𝛽, 𝛿 ∼
𝑖𝑖𝑑

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖); 

𝑝𝑖 = 𝐹𝛿(𝜂𝑖),  

𝜂𝑖 = 𝑥𝑖
′𝛽 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2+. . . +𝛽𝑘𝑥𝑖𝑘; 

with prior (noninformative) distributions for the parameters – OpenBUGS (Thomas, 2005) – a normal at mean 

0 and precision 𝜏 =
1

𝜎2 = 10−6 for 𝛽𝑗 and a Uniform in interval (-2,+2) for 𝛿: 

𝛽𝑗 ∼ 𝑁(0,10−6), j = 0, 1, 2, ... , k; 

𝛿 ∼ 𝑈(−2, +2) and 𝛿 = 𝑙𝑜𝑔( 𝜆) (Bazán et al., 2014). 

Table 1 summarizes all the functions presented here that will be used in the application of the present 

work. 

Table 1. Link functions for dichotomous data, considering families: basic, power and reverse power. 

Family Name 1Notation Reverse link function 

 Logit L 
𝑝𝑖 =

𝑒𝜂𝑖

1 + 𝑒𝜂𝑖
 

 Probit P 𝑝𝑖 = Φ(𝜂𝑖) 

Basic cauchy C 
𝑝𝑖 =

1

2
+

𝑎𝑟𝑐𝑡𝑔(𝜂𝑖)

3.1415
 

 cloglog CLL 𝑝𝑖 = 1 − 𝑒𝑥𝑝( − 𝑒𝑥𝑝( 𝜂𝑖)) 

 loglog LL 𝑝𝑖 = 𝑒𝑥𝑝( − 𝑒𝑥𝑝( − 𝜂𝑖)) 

 Power logit PL 
𝑝𝑖 = [

𝑒𝜂𝑖

1 + 𝑒𝜂𝑖
]

𝜆

 

 Power probit PP 𝑝𝑖 = [Φ(𝜂𝑖)]𝜆 

Power Power cauchy PC 
𝑝𝑖 = [

1

2
+

𝑎𝑟𝑐𝑡𝑔(𝜂𝑖)

3.1415
]

𝜆

 

 Power cloglog PCLL 𝑝𝑖 = [1 − 𝑒−𝑒𝜂𝑖 ]
𝜆
 

 Power loglog PLL 𝑝𝑖 = [𝑒−𝑒−𝜂𝑖 ]
𝜆
 

 Reverse power logit RPL 
𝑝𝑖 = 1 − [

𝑒−𝜂𝑖

1 + 𝑒−𝜂𝑖
]

𝜆

 

 Reverse power probit RPP 𝑝𝑖 = 1 − [Φ(−𝜂𝑖)]𝜆 

    

Reverse 

Power 

Reverse power cauchy RPC 
𝑝𝑖 = 1 − [

1

2
+

𝑎𝑟𝑐𝑡𝑔(−𝜂𝑖)

3.1415
]

𝜆

 

 Reverse power cloglog RPCLL 𝑝𝑖 = 1 − [1 − 𝑒−𝑒−𝜂𝑖 ]
𝜆
 

 Reverse power loglog RPLL 𝑝𝑖 = 1 − [𝑒−𝑒𝜂𝑖 ]
𝜆
 

1Associated distributions - L: logit, P: probit, C: Cauchy, CLL: Gumbel of minimum value, LL: Gumbel of maximum value, PL: Power logit, PP: Power 

probit, PC: Power Cauchy, PCLL: Power Gumbel minimum value, PLL: Power Gumbel maximum value, RPL: Reverse power logit, RPP: Reverse power 

probit, RPC: Reverse power Cauchy, RPCLL: Reverse power Gumbel minimum value, RPLL: Reverse power Gumbel maximum value (Adapted from Bazán 

et al., 2016). 

For the application of the presented models, a database from an epidemiological, observational study with a cross-

sectional design was used, involving the retrospective analysis of 4,293 pregnant women followed by the high-risk 

prenatal outpatient clinic linked to a philanthropic hospital and accredited by the Unified Health System (SUS) of the 

South of Brazil, from September 2012 to September 2017 in the maternity of the referred hospital. A number of 3,448 

pregnant women were eligible and composed the population of this study with their respective newborns.  

Data collection was performed by a group of researchers from the State University of Maringá (UEM) 

between November 2016 and October 2017, through analysis of pregnant women's records, maternity birth 

records and SISREG (Consultation Regulation System of the Ministry of Health) to complement the data of 

the medical record. 

In the modeling, neonatal death information (Y = 1) was considered as a response to a single explanatory 

variable, the weight (g) of newborns from high-risk pregnancies. 
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The research complied with the Directives and Norms Regulating Research Involving Humans of the 

National Health Council (Resolution CNS 466/2012) and was approved with the exemption of the signed Free 

Informed Consent Term (TCLE), justified by the fact of the use of data under opinion Nº. 2.287.476. 

The subsequent posterior marginal distributions for the parameters were obtained through the BRugs 

package (Thomas, 2005) program R (R Development Core Team, 2020). For each parameter, initial 

frequentist values (models with basic link functions) were generated and 1,100,000 simulations were 

generated in an MCMC process (Monte Carlo Markov Chain), with a sample discard of 100,000 initial values. 

The final sample, taken with jumps of 100, contains 10,000 values generated. The convergence of the chains 

was verified through the coda package of program R, by the criterion of Heidelberger and Welch (1983). 

Bayesian estimates of the parameters in the considered models, such as mean and median (used when 

asymmetry was observed in the distributions), standard deviation and 95% high probability density (HPD) intervals 

were obtained. 

All computational procedures were performed on a machine with a 3.4 GHz Intel Core i7-3777 processor 

and 8GB of RAM and the processing time (PT), in minutes, was recorded. 

As criteria for the selection of models, the Deviance Information Criterion (DIC – Spiegelhalter, Best, 

Carlin & Linde (2002)) was used. Lower DIC values indicate more parsimonious models and, for two models 

considered, A and B, so that 𝐷 = |𝐷𝐼𝐶𝐴 − 𝐷𝐼𝐶𝐵|, if D <5, it concludes by the equivalence of parsimonies. 

Although the DIC is a questioned measure in situations where the posterior distribution estimated is 

asymmetric in the parameters, since it uses the posterior average in its calculations, it was used for the 

selection of models even when the distribution of some parameters was asymmetric (Table 2), due to the 

easiness to obtain the DIC directly through the package used in R. 

In addition, the test of adherence to the binomial distribution of Hosmer and Lemeshow (1989) was carried 

out through the ResourceSelection package of the R program and, for comparison of adjusted models, an 

evaluation was carried out under the data observed through their respective measures of predictive evaluation 

(Powers, 2011). For this purpose, the sensitivity, specificity, accuracy, positive predictive value (VPP) and 

negative predictive value (VPN) were calculated considering the observed prevalence (Huayanay et al., 2019; 

Lemonte & Bazán, 2018) and, finally, the area under the curve (AUC) ROC (Receiver Operating Characteristic) 

by means of the Epi package (Carstensen, Plummer, Laara, & Hills, 2020) of program R.  

Results and discussion 

The results of the Bayesian inferences under the parameters of the models with the linkage functions 

considered in Table 1, when applied to the neonatal death data as a function of the weight (g) of newborns 

from gestation of high risk, are presented in Table 2. 

After analysis of convergence in the chains and tests of adherence to the binomial distribution of Hosmer-

Lemeshow (H-L), we observed in all the models analyzed negative and significant values (0 ⊄ HPD95%) for 

𝛽1, parameter that influences the rate of increase/decrease in probability of occurrence of the event of 

interest, death as a function of the weight (g) of newborns. 

The PL and PCLL models presented significantly the lowest DIC's (398.8 and 400.7, respectively), however with 

processing times 48.5 and 75.9 minutes, respectively, leading to the choice of the model with a power logit link 

function (p-value H-L = 0.998 and therefore a good fit), whose estimated value (median posterior) for the 

asymmetry parameter was  = 0.25 (0.14;1.17) and therefore significant, since the zero value is not contained in its 

respective HPD95% range. This characteristic is observed in all other models of the power family, however with 

very distinct values and higher DIC's values, significantly, in addition to higher processing time (PT). 

Bazán et al. (2014) present an application in data from the literature on the occurrence of menarche as a 

function of age in 3,918 girls. They conclude based on Bayesian models and in the previously mentioned 

criteria, that the RPP model is the best to represent such association. In addition, the link functions commonly 

used in the literature are analyzed in addition to the Power logit and its reverse versions, as well as the 

generalized extreme value (Wang & Dey, 2010). 

Bazán et al. (2016) using a sample of 4,000 car insurers, conclude by means of different selection criteria, 

including the DIC, that a model based on the Cauchy distribution with reverse power Cauchy link function 

(RPC) was the most parsimonious to predict if a customer hires a complete insurance plan for his or her 

automobile, depending on the gender, driving area, vehicle use, marital status, age and seniority in the 

company. According to the authors, such modeling aims to select potential customers of this plan. 
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Table 2. Parameter estimates (mean (sd = standard deviation), median and high probability density (HPD95%) interval posterior), processing 

time (PT) and Bayesian deviance information criterion (DIC) of the adjusted binary regression models considering different link functions. 

1Notation Mean (sd) Median (HPD95%) 2PT DIC 

L 0 = 0.3426 (0.3056) 

1 = -0.0019 (0.0002) 

0.3418 (-0.2634;0.9318) 

-0.0022 (-0.0022;-0.0016) 

48.4 411.1 

P 0 = -0.1152 (0.1559) 

1 = -0.0008 (0.0001) 

-0.1124 (-0.4305;0.1534) 

-0.0008 (-0.0001;-0.0007) 

38.8 413.6 

C 0 = 4.9401 (0.9087) 

1 = -0.0106 (0.0016) 

4.8823 (3.4874;6.7030) 

-0.0105 (-0.0139;-0.0079) 

40.2 459.0 

CLL 0 = 0.1025 (0.2588) 

1 = -0.0018 (0.0002) 

0.1099 (-0.4012;0.6095) 

-0.0018 (-0.0021;-0.0015) 

37.3 411.4 

LL 0 = -0.1099 (0.1212) 

1 = -0.0005 (0.0001) 

-0.1114 (-0.3341;0.1319) 

-0.0005 (-0.0006;-0.0004) 

39.3 419.9 

PL 0 = -0.5269 (1.055) 

1 = -0.0063 (0.0027) 

 = 0.4041 (0.4473) 

-0.3565 (-2.7064;1.3387) 

-0.0067 (-0.0104;-0.0014) 

0.2482 (0.1419;1.1677) 

48.5 398.8 

PP 0 = -0.8488 (0.7486) 

1 = -0.0011 (0.0003) 

 = 0.7107 (0.0788) 

-0.9387 (-2.0059;0.7757) 

-0.0012 (-0.0016;-0.0005) 

0.4164 (0.1931;2.4098) 

69.1 407.8 

PC 0 = 1.3072 (0.1995) 

1 = -0.0010 (0.0002) 

 = 3.3150 (0.6819) 

1.3015 (0.9186;1.6987) 

-0.0009 (-0.0014;-0.0006) 

3.2137 (2.1105;4.6347) 

69.0 410.5 

PCLL 0 = -0.4804 (0.8663) 

1 = -0.0055 (0.0023) 

 = 0.4564 (0.5003) 

-0.3392 (-2.3382;0.9692) 

-0.0057 (-0.0089;-0.0012) 

0.2892 (0.1708;1.3108) 

75.9 400.7 

PLL 0 = -0.1774 (1.1416) 

1 = -0.0005 (0.0001) 

 = 1.6859 (1.8205) 

-0.2287 (-2.0568;1.7448) 

-0.0005 (-0.0006;-0.0004) 

0.8725 (0.1355;5.8835) 

67.4 420.0 

RPL 0 = 0.8400 (1.5365) 

1 = -0.0019 (0.0003) 

 = 1.4338 (1.6849) 

0.8444 (-1.8618;3.4631) 

-0.0019 (-0.0024;-0.0015) 

0.6578 (0.1354;5.4619) 

65.7 411.1 

RPP 0 = -0.2664 (0.7878) 

1 = -0.0008 (0.0002) 

 = 2.2532 (1.9993) 

-0.4073 (-1.4181;1.2952) 

-0.0008 (-0.0011;-0.0006) 

1.50438 (0.1354;6.4905) 

56.9 413.6 

RPC 0 = 8.5180 (1.9178) 

1 = -0.0055 (0.0011) 

 = 0.1469 (0.0112) 

8.3203 (5.1314;12.4307) 

-0.0054 (-0.0078;-0.0036) 

0.1437 (0.1353;0.1682) 

80.7 413.0 

RPCLL 0 = -0.5842 (0.3515) 

1 = -0.0004 (0.0001) 

 = 3.4929 (1.9337) 

-0.6740 (-1.0807;0.1410) 

-0.0004 (-0.0006;-0.0003) 

3.1927 (0.5181;7.1045) 

86.1 417.4 

RPLL 0 = 0.1307 (1.1834) 

1 = -0.0018 (0.0001) 

 =1.7735 (1.8636) 

0.1536 (-1.8571;2.1176) 

-0.0018 (-0.0021;-0.0015) 

0.9568 (0.1355;6.0054) 

73.2 411.4 

1Associated distributions – L: logit, P: probit, C: Cauchy, CLL: Gumbel of minimum value, LL: Gumbel of maximum value, PL: Power logit, PP: Power 

probit, PC: Power Cauchy, PCLL: Power Gumbel minimum value, PLL: Power Gumbel maximum value, RPL: Reverse power logit, RPP: Reverse power 

probit, RPC: Reverse power Cauchy, RPCLL: Reverse power Gumbel minimum value, RPLL: Reverse power Gumbel maximum value; 2PT: Processing time 

(minutes). 

Anyosa (2017), in intensive simulation studies developed to study the accuracy and efficiency in the 

estimated parameters, reports that the binary regression models with power and reverse power link functions 

are better than those traditionally used, and illustrates them of an application to the educational data on the 

adequate performance of the spanish language and mathematics students regarding the evaluations of the 

sixth year of primary education (equivalent to the sixth grade of elementary education in Brazil) of the Peru 

educational system in 2014. The probabilistic sample contained 13,259 students between 11 and 13 years old. 

It concludes that the model chosen was the binary regression model RPL and that factors such as school 

management, school zone, gender and spanish language performance are all important in the analysis of the 

performance level in mathematics. 

All adjusted models show values of accuracy equal to or greater than 97% and, with the exception of the 

Cauchy model (C), have AUC higher than 83% (Table 3). Specifically, the binomial model with the power logit 

(PL) with probability estimated given by can 𝑝̂ = [
𝑒−0.3565−0.0067𝑤𝑒𝑖𝑔ℎ𝑡

1+𝑒−0.3565−0.0067𝑤𝑒𝑖𝑔ℎ𝑡]
0.2482

 be used to predict if a child born 

with low birth weight would come to neonatal death with accuracy = 97.3% and area under the ROC curve 

AUC = 84.5%. 
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Table 3. Predictive values (%) of binary regression models adjusted for different link functions. 

1Notation Sensitivity Specificity Accuracy 2VPP VPN AUC 

L 18.2 98.7 97.4 18.9 98.7 84.7 

P 14.5 98.5 97.2 13.6 98.6 90.5 

C 12.7 98.7 97.3 13.5 98.6 71.9 

CLL 9.1 98.9 97.5 12.2 98.5 93.3 

LL 14.5 98.6 97.3 14.5 98.6 88.5 

PL 10.9 98.7 97.3 12.0 98.6 84.5 

PP 10.9 98.9 97.4 13.3 98.6 89.4 

PC 7.3 98.4 96.9 6.8 98.5 88.4 

PCLL 16.4 98.7 97.4 17.3 98.6 83.2 

PLL 10.9 98.9 97.5 13.6 98.6 89.4 

RPL 10.9 98.9 97.5 13.9 98.6 87.3 

RPP 25.5 98.7 97.6 24.6 98.8 90.3 

RPC 18.2 98.2 97.0 14.3 98.7 86.4 

RPCLL 12.7 98.7 97.3 13.7 98.3 89.3 

RPLL 5.5 98.9 97.4 22.9 98.5 90.4 
1Associated distributions - L: logit, P: probit, C: Cauchy, CLL: Gumbel of minimum value, LL: Gumbel of maximum value, PL: Power logit, PP: Power 

probit, PC: Power Cauchy, PCLL: Power Gumbel minimum value, PLL: Power Gumbel maximum value, RPL: Reverse power logit, RPP: Reverse power 

probit, RPC: Reverse power Cauchy, RPCLL: Reverse power Gumbel minimum value, RPLL: Reverse power Gumbel maximum value; 2VPP and VPN: 

positive and negative predictive values, respectively, considering the prevalence observed; AUC: area under the ROC curve. 

The adjustments (Figure 1) present, respectively, the adjusted curves of the models with basic link power, 

power and reverse power functions considered. It is easy to observe that from the cut-off point recommended 

in the medical literature, that is, weight of 2,500g, the probability of neonatal death is practically zero, when 

Pr(Y = 1|Weight = 2,500g) = 0.0143 (Table 4) which represents 1.43% of neonatal deaths for babies weighing 

2,500g. This prevalence in the observed data is 1.60%. 

 
Basic Power 

 
Reverse Power 

Figure 1. Adjusted curves considering, respectively, models with link functions in the basic, power and reverse power families. 
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It should be noted that the newborn (NB) is considered to have low birth weight (LBW) when it weighs less 

than 2,500g and can also be classified as very low birth weight (VLBW), which includes NB's with less than 

1,500g, infants with extremely low birth weight (ELBW), which are NB's less than 1,000g (Glass et al., 2015). 

Table 4. Predicted probabilities for neonatal death as a function of the newborn's weight considering the binary regression model with 

power logit (PL) adjusted. 

Weight (g) 500 1,000 1,500 2,000 2,500 

Pr(Y = 1|Weight) 0.3966 0.1737 0.0756 0.0329 10.0143 
1Prevalence sample considering cut-off point 2,500g of 1.60%. 

Therefore, the findings of this study show that the lower the weight of the newborn, the greater the 

probability of neonatal death. Corroborating, a review study between 1986 and 2004, with several large 

population-based cohort studies, including approximately 14,700 ELBW infants from North America, Western 

Europe, the United Kingdom, Australia, and Japan, found that ELBW infants present high risk of mortality 

(30-50%) (Glass et al., 2015). 

In In another cohort study on neonatal mortality in the "Birth in Brazil" survey, with interview and 

evaluation of charts of 23,940 puerperae between 2011 and 2012, it was identified 24,061 LB and 268 neonatal 

deaths, resulting in a neonatal mortality rate of 11.1 death/1,000 LB and confirming that MBPN represented 

59.6% of deaths (Lansky et al., 2014). Based on these findings, a survey of 732 live births and a neonatal 

mortality rate of 17.7 deaths/1,000 LB, identified in both bivariate analysis and logistic regression, the 

neonatal death associated with VLBW (36%; OR: 34.1, CI95%: 8.9-475.9, p-value < 0.001) and in LBW (6.7%, 

OR: 4.5, CI95%: 0.9-18.7, p-value = 0.04) (Demitto, Gravena, Castro, Antunes, & Pelloso, 2017). 

It is known that LBW is the most important predictor of neonatal mortality, and is considered the main 

predictor of neonatal mortality with evidence of greater severity the lesser the newborn weight (Lansky et al., 

2014; Demitto et al., 2017). It emphasizes the importance of more effective statistical models in research and 

possible interventions of health professionals and public policies to minimize neonatal mortality. 

Conclusion 

The Bayesian methodology proved to be flexible when applying to binary data considering different link 

functions in the linear predictor. The best (more parsimonious) adjustment to neonatal death data as a 

function of the weight of children at birth was the binomial model with the power logit link function. 

The use of more accurate statistical models can provide professionals in the area with the basis for better 

decision-making to minimize the occurrence of neonatal deaths. 
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