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ABSTRACT. The propagation of soliton waves is simulated through splices in quadratic optical media, in 

which fluctuations of dielectric parameters occur. A new numerical scheme was developed to solve the 

complex system of partial differential equations (PDE) that describes the problem. Our numerical 

approach to solve the complex problem was based on the mathematical theory of Taylor series of complex 

functions. In this context, we adapted the Finite Difference Method (FDM) to approximate derivatives of 

complex functions and resolve the algebraic system, which results from the discretization, implicitly, by 

means of the relaxation Gauss-Seidel method. The mathematical modeling of local fluctuations of 

dielectric properties of optical media was performed by Gaussian functions. By simulating soliton wave 

propagation in optical fibers with Gaussian fluctuations in their dielectric properties, it was observed that 

the perturbed soliton numerical solution presented higher sensitivity to fluctuations in the dielectric 

parameter β, a measure of the nonlinearity intensity in the fiber. In order to verify whether the 

fluctuations of β parameter in the splices of the optical media generate unstable solitons, the propagation 

of a soliton wave, subject to this perturbation, was simulated for large time intervals. Considering various 

geometric configurations and intensities of the fluctuations of parameter β, it was found that the 

perturbed soliton wave stabilizes, i.e., the amplitude of the wave oscillations decreases as the values of 

propagation distance increases. Therefore, the propagation of perturbed soliton wave presents numerical 

stability when subjected to local Gaussian fluctuations (perturbations) of the dielectric parameters of the 

optical media. 
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Introduction 

In context of optical communication via solitons, the experiments performed in the late nineties 

generated encouraging results. In 1998, Thierry Georges and his team at France Telecom, when combining 

optical solitons of different wavelengths, demonstrated data transmission of 1 terabit per second. In 2000, 

Algety Telecom, located then in Lannion, France, developed undersea telecommunication equipment for the 

transmission of optical solitons. However, these promising results were not translated into actual 

commercial soliton system deployments, in either terrestrial or submarine systems, chiefly due to the 

Gordon-Haus (GH) jitter effect (Okamawari, Maruta, & Kodama, 1998). GH jitter requires a sophisticated 

and expensive compensatory solution that ultimately makes the Dense Wavelength Division Multiplexing 

(DWDM) soliton transmission unattractive. Consequently, in the last decade, the long-haul soliton 

transmission has remained as a subject of laboratory research. On the other hand, several solutions have 

been proposed to minimize the jitter effect, such as Raman fiber amplifiers (Luo et al., 2017), tapering 

dispersion fiber spans (Eftekhar et al., 2019), sliding frequency guiding filters (He, Luo, Zhu, & Wang, 2009), 

in-line synchronous modulation (Liu et al., 2011), among others.   

In recent years, there was an increase in the number of theoretical and experimental works on soliton 

communications, that aim to overcome the many well-known problems and improve the methods already 

proposed. Such studies approach themes related to the new soliton generation processes (Amiri, Nikoukar, 

& Ali, 2014; Diebel, Bokić, Timotijević, Savić, & Denz, 2015), soliton propagation processes (Turitsyn, 
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Bednyakova, Fedoruk, Papernyi, & Clements, 2015; Chemnitz et al., 2017) and soliton stabilization 

processes (Yamai, Galléas, Natti, & Natti, 2004; Zajnulina et al., 2017; Dall’Agnol, Natti, Cirilo, Romeiro, & 

Takano Natti, 2019) in optical media.  

This study is about propagation and stability of solitons in optical media. The propagation of these waves 

in optical media is affected by several disturbing processes. Usually, the most important ones are group 

velocity dispersion (chromatic dispersion) and optical Kerr effect (intensity dependence of the refractive 

index). Under certain circumstances, however, the effects of Kerr nonlinearity and dispersion can just cancel 

each other, so that the temporal and spectral shapes of the pulses are preserved even over long propagation 

distances. Taking only these disturbances into account, the pulse propagation is a soliton described by a 

system of coupled nonlinear Schrödinger differential equations (Menyuk, Schiek, & Torner, 1994). The most 

remarkable fact about soliton waves is, actually, not the possibility of dispersion and nonlinearity balance, 

but rather the fact that soliton solutions of nonlinear wave equation are very stable: even for substantial 

deviations of the initial pulse from the exact soliton solution, the pulse automatically finds the correct 

soliton shape. 

On the other hand, to describe real-world fiber-optic systems, it is more realistic to include further 
disturbing effects such as influence of fusion splice (Wang, Zhou, Xu, Yang, & Zhang, 2019), Rayleigh 
scattering (Palmieri & Schenato, 2013), high-order dispersion and high-order nonlinearities (Triki, 
Biswas, Milović, & Belić, 2016), soliton self-steepening, Raman effect and self-frequency shift (Wen, 
Deng, Shi, & Fu, 2018), polarization-mode dispersion (Kumar & Rao, 2012), nonlinear phase noise 
(Yushko, Redyuk, Fedoruk, & Turitsyn, 2014), among others (Ashraf, Ahmad, Younis, Ali, & Rizvi, 
2017).  

It should be observed that the perturbed coupled nonlinear Schrödinger differential equations systems, 

which describe wave propagation in real optical media, do not present analytical solution (Korpinar, 2019). 

In literature there are several numerical approaches, whose objective is to describe the propagation of 

perturbed solitons in dielectric environments, most of them using the finite difference method (Cirilo, Natti, 

Romeiro, Natti, & Oliveira, 2010; Mahboub & Bekhti, 2014; Li, Li, Cao, & Li, 2017) or the finite element 

method (Queiroz, Natti, Romeiro, & Natti, 2006; Saka, 2012; Karczewska, Rozmej, Szczecinski, & 

Boguniewicz, 2016). On the other hand, to solve numerically the system of generated equations, authors use 

various methods like Newton's method (Syafwan, Susanto, Coix, & Malomed, 2012), Crank-Nicolson 

method (Liang, Khaliq, & Sheng, 2014), Runge-Kutta Method (Shirazi, Solaimani, Farnam, Ghalandari, & 

Aleomraninejad, 2017), among others (Dehghan & Taleei, 2010; Gupta, Dalal, & Mishra, 2014; Gupta, Dalal, 

& Mishra, 2015; Choudlhary, Jha, Mishra, & Vandana, 2018).  

In a previous study (Cirilo et al., 2010), we described the propagation of soliton waves in ideal quadratic 

optical media through a procedure based on the Complex Finite Difference method (CFDM) and relaxation 

Gauss-Seidel method. By comparing the obtained numerical results with the known analytical results, the 

validation of the developed numerical procedure has been verified.  

In this work, aiming to study the propagation and the stability of perturbed soliton waves, through 

splices in           optical media, the general numerical procedure developed in (Cirilo et al., 2010) was 

used. In Section 2 we present the soliton analytical solutions of the coupled nonlinear differential equations 

system that described the propagation of soliton waves in materials with a cascaded           nonlinearity. 

In Section 3, the numerical procedure to study the propagation of the perturbed solitons in optical media is 

also described. In Section 4, the propagation of perturbed soliton waves is simulated through splices in 

optical media, where fluctuations of the dielectric parameters occur. The mathematical modeling of these 

local fluctuations of the dielectric properties was performed by Gaussian functions with various geometric 

configurations and intensities. At the end, section 5 presents the main results of this study. 

Material and methods   

Solitons in ideal dielectric planar waveguide 

This section studies the coupled non-linear complex PDE system, obtained from Maxwell’s 

equations, which describe the longitudinal propagation of two coupled electromagnetic waves 

(fundamental and second harmonic modes) in ideal      dielectric planar waveguide. The detailed 

mathematical modeling of this PDE system can be found in (Menyuk et al., 1994). This complex PDE 

system is given by Equation 1 



Splices in optical media Page 3 of 11 

Acta Scientiarum. Technology, v. 42, e46881, 2020 

  
 

  
        

 

 
 

  

             
                          

                                                                          (1) 

 
 

  
          

 

  
        

 

 
 
  

   
          

                         

where: 

      is the imaginary unit,         and         are complex variables that represent the normalized 

amplitudes of the electrical fields of the fundamental and second harmonic waves, respectively, with   
       

and   
       as their complex conjugates.  

The real parameters  , ,   and  , in Equation 1, are related with the dielectric properties of the optical 

media (Galléas, Ymai, Natti, & Natti, 2003). The   quantity is a measure of the intensity of nonlinearity in 

the optical fiber, or a measure of the generation rate of the second harmonic. The   quantity measures the 

relative dispersion of the group velocity dispersion (GVD) of fundamental and second harmonic waves in the 

optical fiber. For values      , the second harmonic wave has higher dispersion than the fundamental 

wave. For values      , it is the fundamental wave that has the higher dispersion. The   quantity is the 

signal of the fundamental GVD wave. When     , the fundamental wave is in normal dispersion regime, 

but if     , the fundamental wave is in anomalous dispersion regime. Finally, parameter   measures the 

difference of group velocities of fundamental and second harmonic waves, so it accounts for the presence of 

Poynting vector walk-off that occurs in birefringent media. It should be noticed that is possible to choose 

the characteristics (velocity, width, amplitude, etc.) of the wave to be propagated in the optical media, 

selecting or proposing materials with the appropriate  ,      and   dielectric properties.  

The PDE system Equation 1 presents soliton solutions. In this work we use cascaded           
nonlinearity soliton solutions, as given by Equation 2 and 3 (Menyuk et al., 1994; Galléas et al., 2003). 
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where: 

The term             is the velocity of these solitons, so the independent variable   has spatial 

character, whereas the independent variable   has temporal character. 

In (Cirilo et al., 2010) a numerical procedure was developed based on the CFDM and relaxation Gauss-

Seidel method to solve the propagation of soliton waves in optical media described by the PDE system 

Equation 1. By comparing the obtained numerical results with the known analytical solutions Equation 2 

and 3, the validation of the developed numerical procedure was verified. This numerical development is 

presented in the next section. 

Numerical model for the propagation of solitons in optical fibers 

The PDE system Equation 1, which describes the propagation of solitons, is complex. Our numerical 

approach to solve the complex problem was based on the mathematical theory of Taylor series of 

complex functions. In this context, we adapted the FDM to approximate derivatives of complex 

functions. We also decided to make approximations in order to obtain an Implicit Method, because the 

resulting linear system (in complex variables) became well-conditioned. Finally, we have chosen to 

solve the resulting linear system by the Relaxation Gauss-Seidel method, which accelerates the 

convergence. Note that the resolution of the complex linear system can be performed by other 

procedures, such as Cholesky decomposition, conjugate gradient, tridiagonal matrix algorithm (TDMA), 

modified strongly implicit procedure (MSI), among others. We chose the Relaxation Gauss-Seidel 

method because of its mathematical simplicity and easy computational implementation (Smith, 2004; 
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Sperandio, Mendes, & Monken, 2006; Romeiro, Castro, Cirilo, & Natti, 2011; Ferreira et al., 2012; 

Pardo, Natti, Romeiro, & Cirilo, 2011; Ladeia, Romeiro, Natti, & Cirilo, 2013; Saita et al., 2017; 

Romeiro, Mangili, Costanzi, Cirilo, & Natti, 2017; Cirilo, Barba, Romeiro, & Natti, 2018; Cirilo, 

Petrovskii, Romeiro, & Natti, 2019; Agrawal, 2019). We show that our procedure converges. 

The system Equation 1 is numerically resolved in domain   s = [0, T ]   [-L, L], where T, L. By 

discretizing the variables                          
 and                          

, for   

               and               , where      is denominated the last advance in   and    is the maximum 

number of points in  , the propagation domain of the soliton waves is defined by a discretized 

computational grid of         points, as represented in Figure 1. 

Thus, by means of the developed CFDM, approaching the temporal derivates by progressive differences, 

and the spatial derivates by central differences (Smith, 2004), the following linear systems are generated 

from the PDE system Equation 1, namely, according Equation 4: 
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and in these approaches     is the current time,   is the previous time,    is the spatial quantity 

discretized and    is the temporal quantity discretized, so that        . 

In this work, the linear system Equation 4 is resolved by means of the Gauss-Seidel Relaxation method 

(Smith, 2004; Sperandio, Mendes, & Monken, 2006; Cirilo et al., 2008). Consider this linear system for 

       
, given explicitly by 
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which can be written in compact form as        
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From the initial condition      
, given by soliton solution Equation 2, and imposing the contour 

conditions        
   and         

  , for   sufficiently large,   
     - 

   
  is iteratively calculated by means of 

the Equation 5: 
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where: 

           is the iterative level,     
       

       

   
      

     
      

   
           , until the stop criterion is fulfilled, 

namely, according Equation 6: 
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Figure 1. Computational domain of the propagation of soliton waves. 

This method consists in determining        

   
 by using the already known components of          

     
   and 
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 , with the advantage of not requiring the simultaneous storage of the two vectors           

     
  and  

  
     - 

   
 at each step. Likewise,         

   
  is resolved. 

It should be noticed that in Equation 5 and 6 the value       was used for the parameter of relaxation 

(Cirilo, Natti, Romeiro, & Natti, 2008). Such value corresponds to the optimal relaxation parameter in 

relation to the variations of the dielectric parameters  ,   and   of system Equation 1. Figure 2 presents the 

flowchart of the numerical code developed for PDEs system Equation 1. 

 

Figure 2. Flowchart of the numerical code developed to obtain the numerical soliton solutions. 
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Results and discussion 

Stability of perturbed soliton waves 

In our previous work (Cirilo et al., 2010), the dielectric parameters  ,   and   in Equation 1 were 

considered constant, so that PDE system Equation 1 presented soliton solutions. On the other hand, in real 

optical media, the dielectric parameters  ,   and   are not constant. 

This section will study how localized fluctuations of the dielectric parameters occurring in the splices of 

optical media affect the propagation of soliton waves. In the context of optical fibers, the fusion splicing 

process of optical fibers is usually realized by means of an electric arc, but it can be realized by laser, gas 

flame, or tungsten filament through which current is passed. The fusion splicing apparatus consists of two 

fixtures on which the fibers are mounted. The fibers in the apparatus are aligned and then fused. In fusion 

splicing, the splice loss is a direct function of the angles of alignment and quality of the two fiber-end-faces. 

A splice loss under 0.1 dB is typical. Alternatives to fusion splicing includes using optical fiber connectors or 

mechanical splices, both of which have higher insertion losses, lower reliability and higher return losses 

than fusion splicing. 

In the fusion splicing process, the local dielectric properties of the optical media are modified along the 

spatial coordinate s, ranging from the default value to a maximum variation, in the region where the optical 

properties are more affected by the fusion splicing process, to then decrease again to the default value. In 

order to model these perturbations of optical properties in the fusion splicing regions, we will use a 

Gaussian function. Our aim is to analyse the stability of the perturbed soliton waves as a function of the 

dielectric parameters fluctuations in the optical media. In this case, only numerical solutions are possible, 

since the propagated waves are not solitons given by Equation 2 and 3 anymore.  

In reference (Cirilo et al., 2010) we validate our numerical procedure by comparison between the numerical 

and analytical solution by getting smaller errors than 10-6. See Equations 4 and 5 of this work. 

A localized perturbation in the optical fiber 

Initially, the discretization of the computational grid will be described. For spatial variable  , the interval 

         was established, with discretization            , whereas for temporal variable  , the 

interval was       , with discretization            . The geometry of the computational grid was 

adjusted so that the physics of the propagation of the perturbed soliton wave is within the considered 

computational domain. 

In the sequence, the mathematical modeling of the dielectric parameters fluctuation in the splices of the 

optical media will be considered, as well as such localized fluctuation affects the stability of the propagation 

of waves. In the modeling of the optical properties along the dielectric media used in this work, it is 

supposed that, in average, the dielectric parameters take values       ,       ,        and      

 . It is also supposed that in the areas surrounding the splices of two optical media, the optical properties  , 

  and   are altered according to a Gaussian function, as explained above. In the following simulations, 

Gaussian fluctuations of 5% in the values of the dielectric parameters are considered.  

Parameter : Figure 3 shows the simulations of perturbations in         and         due to the 

fluctuations in parameter  , around       , with maximum amplitude corresponding to 5% of the 

average value of the dielectric parameter. By establishing values       ,       ,        and varying 

  by means of the Gaussian function                                  , there is the occurrence of 

small variations in the amplitudes of         and        , not easily visualized in Figure 3. From the 

Gaussian function, it is observed that the fluctuations in   occur around     . 

Parameter : Figure 4 shows the simulations of perturbations in         and         due to the 

fluctuations in parameter  , around       , with maximum amplitude corresponding to 5% of the 

average value of the dielectric parameter. By establishing values       ,       ,        and varying 

  by means of the Gaussian function                                 , there is the occurrence of 

small variations in the amplitudes of         and        , not easily visualized in Figure 4. From the 

Gaussian function, it is observed that the fluctuations in   occur around     . 

Parameter : Figure 5 shows the simulations of perturbations in         and         due to the 

fluctuation in parameter  , around       , with maximum amplitude corresponding to 5% of the average 

value of the dielectric parameter. By establishing values       ,       ,        and varying   by 

means of the Gaussian function                                 , in Figure 5 there is the occurrence 
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of visible variations in the amplitudes of         and        . From the Gaussian function, it is observed that 

the fluctuations in   occur around     . 
When Figure 3, 4 and 5 are compared, it is verified that the propagation of the soliton wave was more 

sensitive to the fluctuations of parameter  . 

 

Figure 3. Numerical solutions         and         when                                 with       ,        and       . 

 

Figure 4. Numerical solution         and         when                                 with       ,        and       . 

 

Figure 5. Numerical solution         and         when                                 with       ,        and       . 

Periodic perturbations 

In this subsection, the computational grid was constructed by considering, for variable  , the interval 

        , with discretization            , and for variable  , the interval       , with 

discretization            . Again, the geometry of the computational grid was adjusted so that the physics of 

the propagation of the perturbed soliton wave is completely within the considered computational domain.  

It was also considered that the fluctuations of the dielectric parameters in the splices of the optical media 

are modeled by means of Gaussian functions. In the simulations conducted, periodic fluctuations of 1% were 
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considered in the values of the dielectric parameters in      with           . By establishing, for the 

dielectric parameters, the average values       ,       ,        and       , and considering the 

described periodic Gaussian perturbations, it is verified again that         and         are more sensitive to 

the fluctuations of parameter  .  

Figure 6 shows the simulations of perturbations in         and         due to the periodic fluctuations in 

parameter  , around       , when       ,       ,       . In this case, significant variations are 

observed in the amplitudes of         and        . 

From the simulations in this subsection, it is observed that, in the context of optical communication with 

localized perturbative processes, the propagation of soliton waves is more affected by the fluctuations in 

parameter  . Therefore, the procedures for carrying out splices in optical media should be conceived so that, 

locally, the dielectric properties related to parameter   are little affected. 

 

Figure 6. Numerical solution         and         for 1% Gaussian perturbations in the   value, in     , for          , with       ,          

       and        . 

Parameter   and the stability of perturbed solitons 

In the preceding sections, by simulating the propagation of soliton waves through localized 

perturbations with various geometric configurations and intensities, it was verified that the soliton wave is 

more distorted when there is fluctuation in parameter . With the objective of verifying whether the 

perturbed soliton waves achieve stability in function of the fluctuations in the dielectric parameter , in the 

sequence, the evolution of such waves with higher values of temporal coordinate   will be studied. Thus, a 

computational grid was constructed, considering for variable   the interval         , with 

discretization            , and for variable  , the interval        , with discretization        

    . In all the following simulations, the values considered for the dielectric parameters were:       , 

      ,       .  

In Figure 7, a Gaussian-type perturbation of 1% is considered in parameter  , around     . It is verified 

that         and         evolve towards a stationary situation for higher values of  . 

 

Figure 7. Numerical solution         and         when                                 with       ,        and 

      , for large values of temporal coordinate  . 
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In Figure 8, a Gaussian-type perturbation of 5% is considered in parameter , around     . It is observed 

again that the perturbed soliton wave evolves towards a stationary situation with damped fluctuations for 

increasing values of  . 

 

Figure 8. Numerical solution         and         when                                 with       ,        and  

      , for large values of temporal coordinate  . 

Conclusion 

In this work, we studied the stability of the propagation of soliton waves through      optical media 

splices. It is observed that the dielectric properties are locally altered in splicing process of optical media. In 

order to simulate the propagation of solitons through such splices, considered as perturbations, the 

fluctuations of the dielectric parameters were locally modeled by means of Gaussian functions. By 

considering local and periodic configurations for the optical media splices, it was verified that the perturbed 

soliton wave presents higher sensitivity to parameter , a measure of the phase mismatch; in other words, 

fluctuations in the dielectric parameter   generate higher amplitude perturbations (oscillations) in the 

soliton waves. With the objective of verifying whether such perturbations generate unstable solitons, the 

evolution of the soliton wave was studied for several configurations of perturbations along of optical media, 

for higher values of temporal coordinate  . It was verified that, after the end of the perturbations, the 

perturbed soliton wave achieves stability, i.e., the amplitude of the oscillations decreases as values of 

temporal coordinate   increases. It is therefore concluded that soliton waves, subject to Gaussian 

perturbations in the dielectric parameters of the optical media, present numerical stability.  

As an experimental application of this work, we propose that the procedures and experimental methods 

utilized in the process of optical media fusion are designed so that, locally, the   dielectric properties are 

less altered during the splice process.  
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