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ABSTRACT. The aim of this study was to evaluate the synthesis of pectinase from Penicillium brasilianum 

in shake flasks and address their potential for industrial applications. A Plackett-Burman design followed 

by a complete second order design were used for the screening of most important factors and to maximize 

the polygalacturonase activity, respectively. Maximum polygalacturonase activity was 52.8 U mL-1 at  

48 hours of bioproduction. The kinetic evaluation for substrate consumption showed that 42% total 

organic carbon, 52 nitrogen, 23 magnesium, and 60% potassium were consumed. The crude enzyme 

complex was used on commercial mango juice clarification, and, at a 0.5% concentration (v v-1) reduced 

viscosity by 10%, turbidity by 12% and clarification by 23%. Therefore, the results presented in this study 

could provide valuable and beneficial information for the food and enzyme industries (juice) as well as 

being a new landmark to microbiology by providing essential knowledge on P. brasilianum growing needs. 
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Introduction 

Microbial pectinases have tremendous potential to offer mankind. Fungal pectinases are among the most 

important industrial enzymes and are of great significance with a wide range of application such as textile 

processing, plant blast fibers degumming, pectic wastewater treatment, papermaking, coffee and tea 

fermentations, juice and wine processing, improving liquefaction, clarification and filterability and greater 

color and flavor compounds release entrapped in the grape skin, thereby contributing to wine bouquet and 

easing phenolic compounds release (Esawy, Gamal, Kamel, Ismail, & Abdel-Fattah, 2013; Sandri, Piemolini-

Barreto, Fontana, & Silveira, 2014; Rehman, Aman, Nawaz, & Qader, 2015; Pitol, Biz, Mallmann, Kriegerc, 

& Mitchellb, 2016). 

Usually, commercial pectinase preparations contain one or more types of microbial pectinolytic enzymes 

(depending on the specific use), as well as cellulases, hemicellulases, proteases, and amylases (Esawy  

et al., 2013). Molds such as Aspergillus niger, Coniotryrium diplodiela, Penicillum and Rhizopus species are 

preferred for industrial purposes since as much as 90% of the enzyme may be excreted into the culture 

medium (Souza, Silva, Maia, & Teixeira, 2003; Gomes et al., 2011; Pili et al., 2018). 

Pectinase production by filamentous fungi varies according to the type of strain, cultivation conditions 

(pH, temperature, aeration, stirring rate, and incubation time), and the growth medium composition 

(especially carbon and nitrogen sources). Thus, they have to be specified for each and every single strain of 

interest (Martinez-Trujillo, Arreguin-Rangel, Garcia-Rivero, & Aguilar-Osorio, 2011; Meneghel, Reis, 

Reginatto, Malvessi, & Silveira, 2014). 

A number of authors have studied extracellular pectinases production from Aspergillus sp. using pectic 

substrates, however, just a few studies using Penicillum sp. by submerged fermentation are to be found in 

the literature (Jayani, Saxena, & Gupta, 2005; Sandri, Fontana, & Silveira, 2015). In previous work by our 

research group (Stirling, 2003), a number of microorganisms capable of producing polygalacturonase were 

isolated from different sources. The relevance of this study lays in establishing the optimum conditions for 

maximum polygalacturonase production followed by kinetic evaluation of substrate consumption, pH and 

biomass progress from a newly isolated Penicillium brasilianum strain by submerged fermentation in a 
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synthetic medium. Therefore, this study aimed at providing valuable and beneficial information for the food 

and enzyme industries, as well as being a new landmark for microbiology providing essential knowledge on 

P. brasilianum growing needs, which has been currently lacking in the literature. 

Material and methods 

Microorganism  

The microorganism used in the present study was isolated from tea and previously identified by 

microcultivation technique as belonging to the Penicillium genera (Zeni et al., 2011).  

The newly isolated microorganism was identified following the molecular biology method. Fungi 

genomic DNA extraction was performed using liquid nitrogen for cell disruption (Tanner & Brunner, 1985) 

following DNA quantification using a NanoDrop 1000 model spectrophotometer (NanoDrop Technologies).  

The regions ITS1, 5.8S and ITS2 of fungal rDNA were amplified using primers ITS1 and ITS4 (White, 

Bruns, Lee, & Taylor, 1990). The reactions were performed using a GeneAmp PCR System 9700 model 

thermocycler (Applied Biosystems) using the following conditions; 94º C for 5 min., followed by 33 cycles of 

94ºC for 30 s, 55ºC for 30 s and 72ºC for 45 s; and a final extension of 72ºC for 10 min. The product was 

purified with GFXTM PCR DNA Kit and Gel Band Purification (GE Healthcare) and sequenced in an automatic 

ABI PRISM 3100 Genetic Analyzer sequencer (Applied Biosystems). 

For the sequence consensus construction, the Phred/Phrap and Consed softwares (Altschu, Gish, Miller, 

Myers, & Lipman, 1990) were used and the sequence was compared with data from GenBank National 

Center for Biotechnology Information (NCBI) using Basic Local Alignment Search Tool (Blast) software. The 

global alignment of the sequences and the phylogenetic analysis were performed using MEGA version 4.0 

software. Cladistic analyses were constructed by the neighbor joining method using Jukes-Cantor for 

distance measurement. The confidence levels for individual branches of the resulting tree were assessed by 

bootstrap analysis, in which 1000 bootstrapped trees were generated from the re-sampled data. 

Pectinase bio-production  

The effects of culture medium composition were assessed by a 3-central-point Plackett-Burman Design 

(Screening Design). The independent variables (factors) studied were pectin (2.0-22.0 g L-1), L-Asparagine 

(0-4.0 g L-1), yeast extract (0-20.0 g L-1), magnesium sulphate (0-1.0 g L-1), potassium phosphate (0-4.0 g L-1), 

and iron sulphate (0-0.02 g L-1). Temperature (30ºC), stirring (180 rpm), pH (5.5) and time (24 hours) were 

set at fixed levels. 

A 23 central composite rotatable design (CCRD) was performed based on the results obtained in the 

Placket-Burman design. The independent variables studied were pectin (15.2-48.8 g L-1), yeast extract  

(1.6-18.4 g L-1), and magnesium sulphate (0-1.0 g L-1). 

Kinetic evaluation  

The substrate consumption kinetics (total nitrogen, potassium, magnesium, and total organic carbon - 

TOC), cell mass, pH evolution, and PG production were followed by periodic sampling (3 - 48 hours) using 

the maximization condition established after using the experimental design method.  

Crude enzymatic extracts partial characterization 

The temperature stability of enzymatic extract was determined by enzyme incubation at a fixed pHinitial 
(5.5) and different temperatures: 25, 35, 45, and 55ºC. The pH stability was achieved by incubating the 
extract obtained at 40ºC at pHs 4.0, 5.0, 7.0, and 9.0. The samples were withdrawn at regular time intervals.  

Crude enzymatic extract application in juice clarification  

A commercial mango juice (Del Valle brand) was treated by the crude enzymatic extract obtained at, 

previously established, maximized bioproduction conditions. 0.01, 0.05, 0.1, and 0.5% enzyme concentrations  

(v v-1) at 40ºC, 100 rpm for 60 min. were used by evaluating viscosity, turbidity, and juice clarification percentage. 

Analytical methodology  

Polygalacturonase (PG) was determined by measuring the reducing groups release using the acid 

dinitrosalisilic (DNS) method, initially mentioned by Miller (1959). One PG unit was defined as the amount 



Pectinases synthesis and their potential application Page 3 of 10 

Acta Scientiarum. Technology, v. 42, e48042, 2020 

of enzyme that releases 1 moL D-galacturonic acid per minute of reaction (U= moL min.-1). Pectin 

methylesterase (PME) was determined following a method described by Hultin, Sun, & Bulger (1966), with 

modifications. One PME unit was established as the amount of enzyme capable to catalyze the 

demethylation of pectin corresponding to the consumption of 1 µmol NaOH min.-1 mL-1 under assay 

conditions. Pectin lyase (PMGL) was determined using method described by Pitt (1988), with modifications. 

One enzyme activity unit was established as the amount of enzyme that changes 0.01 absorbance at 550 nm 

under assay conditions. 

Initial and final pH values of the culture medium were determined using a digital pH meter  

(Digimed DMPH-2). Cell mass was quantified by drying at 105ºC (Fanem SE-320) until reaching a 

constant mass. 

Total organic carbon (TOC) was determined by oxidation using catalytic combustion at 680ºC and 

infrared detection (Shimadzu TOC-VCSH model).  
The total nitrogen content in the medium was determined by the Kjedahl method  

(VELP DK-20 and UDK–126 D) according to the procedure described by Association of Official 
Analytical Chemists (AOAC, 2000). Macronutrients (Mg and K) were determined by flame atomic 
absorption spectrometry - FAAS (Varian Spectra AA-55), according to method described by AOAC 
(2000). 

The viscosity reduction of mango juice after enzymatic treatment with crude extract was evaluated using 

a Falling-ball viscometer (Abbas, Abdulkarim, Saleh, & Ebrahimian, 2010). Mango juice clarification after 

enzymatic treatment with crude extract was determined based on color intensity (Chatterjee, Chatterjee, 

Chatterjee, & Guha, 2004), and it was expressed as clarification (%), taking into account the control juice 

color intensity (without enzymatic treatment) and the enzyme-treated juice. Turbidity reduction (%) was 

calculated based on the control juice absorbance (Chatterjee et al., 2004). 

Statistical analysis  

The results were treated using the Statistic 5.0 software (Statsoft, Tulsa, OK, USA). All analyses were 

performed considering a 95% confidence level (p < 0.05). 

Results and discussion 

Microorganism identification  

According to the method described in the previous section, the newly isolated microorganism was 

identified as Penicillium brasilianum with a 100% identification rate as a result of BLAST. This result was 

enhanced by a dendrogram (not shown) generated by the neighbor joining method, using the Jukes-Cantor 

model as distance measurement and 1,000 bootstrap replicates, where the fungal isolate was compared to 

NCBI sequences.  

Pectinases bio-production  

The Plackett-Burman design results are seen in Table 1. It was noted that the pectin concentration 

presented a positive significant effect (p < 0.05) under the polygalacturonase activity, within the studied 

range (Figure 1). L-asparagine, potassium phosphate, and iron (II) variables presented a significant negative 

effect (p < 0.05). Therefore, these variables on level -1 were excluded from the fermentation process as the 

concentration was null. However, the magnesium sulphate and yeast extract variables showed a significant 

negative effect (p < 0.05) on level -1, the concentration used was zero and these variables was excluded from 

the process. 

After analysing the first design, a second one was performed. Table 2 presents the coded and real values 

for the complete 2³ factorial design and the responses in terms of polygalacturonase activity and pH. The 

maximum enzyme activity was obtained from assay 1.  

The statistical analysis of these results allowed building Equation 1. It presents a second order coded 

model, which describes the exo-polygalacturunase activity as a function of the analysed independent 

variables (pectin, yeast extract, and magnesium sulfate), within the studied range. The model was validated 

by the analysis of variance with a 0.87 correlation coefficient and the F calculated was 2.19 times higher 

than the value listed in statistical tables, allowing for the construction of the contour curve presented in 

Figure 2. 



Page 4 of 10  Zeni et al. 

Acta Scientiarum. Technology, v. 42, e48042, 2020 

Table 1. Plackett-Burman design matrix and the responses in terms of PG and pHfinal. 

Assays 
Independent variables* (factors) Responses 

X1 X2 X3 X4 X5 X6 PG (U mL-1) pHfinal 

1 1 (22)  -1 (0)  1 (20) -1 (0) -1 (0) -1 (0) 42.52 4.70 

2 1 (22) 1 (4) -1 (0) 1 (1) -1 (0) -1 (0) 44.92 4.71 

3 -1 (2) 1 (4) 1(20) -1 (0) 1 (4) -1 (0) 5.67 5.57 

4 1 (22) -1 (0) 1 (20) 1 (1) -1 (0) 1 (0.02) 13.51 5.25 

5 1 (22) 1 (4) -1 (0) 1 (1) 1 (4) -1 (0) 31.78 4.66 

6 1 (22) 1 (4) 1 (20) -1 (0) 1 (4) 1 (0.02) 18.25 5.25 

7 -1 (2) 1 (4) 1 (20) 1 (1) -1 (0) 1 (0.02) 8.16 5.55 

8 -1 (2) -1 (0) 1 (20) 1 (1) 1 (4) -1 (0) 6.89 5.50 

9 -1 (2) -1 (0) -1 (0) 1 (1) 1 (4) 1 (0.02) 7.26 5.12 

10 1 (22) -1 (0) -1 (0) -1 (0) 1 (4) 1 (0.02) 49.30 4.25 

11 -1 (2) 1 (4) -1 (0) -1 (0) -1 (0) 1 (0.02) 11.01 5.25 

12 -1 (2) -1 (0) -1 (0) -1 (0) -1 (0) -1 (0) 12.09 4.52 

13 0 (12) 0 (2) 0 (10) 0 (0.5) 0 (2) 0 (0.01) 19.27 5.28 

14 0 (12) 0 (2) 0 (10) 0 (0.5) 0 (2) 0 (0.01) 19.27 5.26 

15 0 (12) 0 (2) 0 (10) 0 (0.5) 0 (2) 0 (0.01) 18.01 5.32 

*X1 = Pectin (g L-1), X2 = L-Asparagine (g L-1), X3 = Yeast extract (g L-1), X4 = Magnesium sulphate (g L-1), X5 = Potassium phosphate (g L-1), X6 = Iron sulphate (g L-1). 

 

Figure 1. Pareto chart of effects (absolute values) for the polygalacturonase (PG) activity response after the Plackett-Burman design. 

Table 2. 23 DCCR matrix (real and coded values) with polygalacturonase (PG) activity and pHfinal responses. 

Assays 
Independent variables* Responses 

X1 X3 X4 PG (U mL-1) pHfinal 

1 -1 (22.0) -1 (5.0) -1 (0.2) 42.65 4.86 

2 1 (42.0) -1 (5.0) -1 (0.2) 36.06 4.77 

3 -1 (22.0) 1 (15.0) -1 (0.2) 25.94 5.17 

4 1 (42.0) 1 (15.0) -1 (0.2) 29.08 5.02 

5 -1 (22.0) -1 (5.0) 1 (0.8) 40.61 4.87 

6 1 (42.0) -1 (5.0) 1 (0.8) 38.51 4.74 

7 -1 (22.0) 1 (15.0) 1 (0.8) 29.84 5.18 

8 1 (42.0) 1 (15.0) 1 (0.8) 24.14 5.03 

9 -1.68 (15.2) 0 (10.0) 0 (0.5) 29.20 5.14 

10 1.68 (48.8) 0 (10.0) 0 (0.5) 16.97 4.88 

11 0 (32.0) -1.68 (1.6) 0 (0.5) 41.73 4.51 

12 0 (32.0) 1.68 (18.4) 0 (0.5) 14.87 5.11 

13 0 (32.0) 0 (10.0) -1.68 (0) 26.27 4.95 

14 0 (32.0) 0 (10.0) 1.68 (1.0) 26.89 4.87 

15 0 (32.0) 0 (10.0) 0 (0.5) 37.73 4.93 

16 0 (32.0) 0 (10.0) 0 (0.5) 37.22 4.91 

17 0 (32.0) 0 (10.0) 0 (0.5) 36.48 4.93 

*X1 = Pectin (g L-1), X3 = Yeast extract (g L-1), X4 = Magnesium sulphate (g L-1). 

PG = 36.31-2.33.X1-3.18.X1
2-6.89.X3-1.33.X3

2 + 0.33.X4-1.94.X4
2 + 0.76.X1.X2-0.54.X1.X3-0.18.X2.X3 (1) 
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where:  

PG = Polygalacturonase (U mL-1);  

X1 = Pectin;  

X3 = Yeast extract, and;  

X4 = Magnesium sulphate. 

Kinetic evaluation 

Figure 3a and b present the kinetic evaluation in terms of substrate consumption pH evolution, biomass and 

polygalacturonase production in the maximized condition. The maximum polygalacturonase activity  

(52.8 U mL-1) was reached at 48 hours of fermentation. 

The fermentation medium pH (Figure 3a) presented a slight decrease in the first 36 hours (from 5.1 to 

4.6) and it was higher at 48 hours. Such behavior could be due to the excretion of galacturonic acid in the 

first 48 hours of fermentation by pectinolytic enzymes action. After this period, higher pH values were 

observed due to the nitrogen consumption (about 52%).  

For substrates consumption (Figure 3b) it was observed a TOC decrease in the first 6 hours of 

fermentation (from 152.6 to 134 mg L-1). After this period the concentration remained constant until 

reaching 24 hours. A TOC concentration reduction after this time could be observed and it was noted that 

the polygalacturonase activity was at its maximum at 48 hours with the TOC concentration of 88 mg L-1 

(42% TOC consumption). 

The potassium content gradually decreased in the first 27 hours of fermentation (from 453 to 385 mg L-1). 

After this period, a 78% reduction at 60 hours could be observed. Magnesium consumption presented 

similar behavior as it reduced by 10 in the first 30 hours. The highest polygalacturonase activity was 

achieved at 23% magnesium consumption after 48 hours evaluation.  

In this work, pH values of all assays were monitored and it was noted that the behavior was not 

associated with the polygalacturonase production. A slight pH reduction could be observed (from 5.5 to 4.5) 

in all assays, as seen in Table 1 and 2. According to Cordeiro & Martins (2009), this pH reduction could be 

due to the glucoronic acid release into the medium caused by pecnolytic enzymes action. Such enzymes are 

produced by the microorganisms during the first hours of fermentation.  

According to Chu, Lee, & Li (1992), pH changes in the culture medium are result of substrate 

consumption. When ammonium ions are used by the microorganisms, the medium is acidified and when the 

organic nitrogen (amino acids and peptides) are assimilated the medium is alkalinized. Considering this 

relationship between the polygalacturonase and the organic compounds utilization, the changes in pH 

values could explain certain behaviors in the polygalacturonase production.  

 

Figure 2. Contour curve for polygalacturonase activity (U mL-1) in terms of pectin and magnesium sulphate concentration. 
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Figure 3. Kinetic in terms of polygalacturonase activity, biomass production, pH evolution (a) and substrates consumption: N2, K, Mg 

and TOC (b) at the maximized condition (32.0 g L-1 pectin, 10.0 g L-1 yeast extract and 0.5 g L-1 magnesium sulphate, at 30ºC, 180 rpm 

and pH 5.5). 

The current literature presents different polygalacturonase activities by fungi in submerged 

fermentation demonstrating the influence of the strain, the culture conditions, and substrates. Sandri  

et al. (2015) obtained a 42 U mL-1 polygalacturonase activity from A. fumigates LB-01-AP using pectin  

(20 g L-1), glucose (22 g L-1), yeast extract (0.05 g L-1) and supplemented with mineral sources  

[5 g L-1 (NH4)2SO4, 0.5 g L-1 MgSO4, 2.5 g L-1 KH2PO4, 6.3x10-4 FeSO4.7H2O, 6.2x10-4 ZnSO4, 1 x10-5 MnSO4]. 

Gomes et al. (2011) obtained a 52 U L-1 polygalacturonase activity from A. niger ATCC 9642 using pectin  

(32 g L-1), L-asparagine (2 g L-1), potassium phosphate (0.06 g L-1), iron sulfate (1 g L-1), 180 rpm, 25ºC and 

4.0 pHinitial. Pili et al. (2015) obtained a 18.5 U mL-1 polygalacturonase activity (specific activity was  

195.6 U mg-1) from A. niger ATCC 9642 using orange peel (80 g L-1), corn steep liquor (60 g L-1), parboiled rice 

water (450 g L-1), 180 rpm stirring rate, 30ºC and 5.5 pHinitial. 

Silva et al. (2007) producing endo-PG and exo-PG evaluated the solid-state fermentation of an orange 

bagasse and wheat bran mixture (1:1, at 28ºC) with the Penicillium viridicatum RFC3. Exo-PG activity 

reached its maximum values at 336 hours of cultivation with 70 (5.8 U mL-1) and 80% (8.9 U mL-1) from 

initial moisture content. 

Crude enzymatic extracts partial characterization 

The stability of the crude enzymatic extracts obtained by P. brasilianum fermentations in relation to 
temperature (Figure 4) was verified in the 25 to 55ºC range at a fixed 5.5 pH value. 

The pH stability (Figure 5) was assessed in the 4.0 to 9 range using 100 µmoL L-1 sodium phosphate 

buffer at 37ºC. The PG produced from P. brasilianum presented higher stability at pH 4.0 to 5.0 and 
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55ºC. Tari, Dogan, & Gogus (2008), when investigating the effect of pH on stability, found that 

polygalacturonase from A. soybean was quite stable at pH 5.0 and retained 60 and 70% of its activity at 

pHs 3.0 and 7.0, respectively. 

Kant, Vohra, & Gupta (2013) studied the stability of purified polygalacturonase from A. niger MTCC 3323 

and found enzymatic stability from pH 4.0 to 5.5 for 1 hours. Gomes et al. (2011) evaluated the stability of 

PG produced from A. niger using a complex medium (32 g L-1 pectin, 2 g L-1 L-asparagine, 0.06 g L-1 

potassium phosphate and 1.0 g L-1 iron sulfate) and observed that at pH 5.0 60% of the PG initial activity 

during 150 hours of storage was maintained. Silva et al. (2007) evaluated pectinolytic enzymes from 

Penicillium viridicatum RFC3 and obtained the maximum activity at pH 6.0 and 60ºC. 

Crude enzymatic extract application for juice clarification  

Table 3 shows a turbidity reduction and a clarification increase of commercial mango juice treated with 

the crude enzymatic extract. It shows a 12% reduction in turbidity and a 23% increase in clarification, 

obtained using a 0.5% enzymatic concentration (v v-1) at 40ºC, 100 rpm for 60 min. 

 

Figure 4. Stability of PG crude enzymatic extract at 25, 35, 45, and 55ºC. 

 

Figure 5. Stability of PG crude enzymatic extract at pHs 4, 5, 7, and 9. 
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Table 3. Viscosity, turbidity, and clarification reduction of commercial mango juice treated with pectinolytic crude enzymatic extract. 

Determination 
Enzymatic treatment* 

0.01 % (v v-1) 0.05 % (v v-1) 0.1 % (v v-1) 0.5 % (v v-1) 

Reduction of viscosity (%) 2.00 ± 0.03c 4.40 ± 0.14b 4.74 ± 0.20 b 10.06 ± 0.22a 

Reduction of turbidity (%) - 7.91 ± 0.02c 11.38 ± 0.28b 12.01 ± 0.01a 

Clarification (%) 0.03 ± 0.01d 2.10 ± 0.03c 12.78 ± 0.44b 23.02 ± 0.12a 

*Mean ± standard deviation followed by equal letters in the lines indicates no significant difference at a confidence level of 5%. 

This effect was also observed by Chatterjee et al. (2004), and might is possibly be related to the presence 

of other pectinases in crude enzymatic extracts, such as pectin methylesterase (PME) with 6.0 U mL-1 

activity and pectin lyase (PMGL) with 6.61 U mL-1 activity. Thus, the results could have been influenced by 

these and other enzymes whose activities have not been quantified in the study. Clemente and Pastore 

(1998) and Vámos-Vigyázó (1981), using a commercial enzyme (Pectinex), which showed cellulases activity, 

verified a better performance of the clarification process for peach juice compared to the isolated enzymes. 

Poletto, Renosto, Baldasso, Zeni, and Silveira (2015), in the clarification of blackberry juices, verified a 

reduction in viscosity and turbidity of 40 and 50%, respectively. According to Echavarría, Torras, Pagán, and 

Ibarz (2011), the reduction of these parameters is paramount to ensure juice stability during storage. 

Conclusion 

The crude enzyme-complex as well as the pectinolytic activity of polygalacturonase (52.8 U mL-1) showed 

pectin methylesterase (6 U mL-1) and pectin lyase (6.6 U mL-1) activities. The crude enzymatic complex with 

a 0.5% concentration (v v-1) used for commercial mango juice clarification reduced the viscosity by 10%, 

turbidity by 12% and clarification by 23%. In this way, the results presented. 
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