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Sulfated agaran with 4,6-pyruvated form from red seaweed
Acanthophora muscoides attenuates thrombin formation: in
vitro and ex vivo studies
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ABSTRACT. Invitro studies have described the sulfated agaran from Acanthophora muscoides as an intrinsic
inhibitor of thrombin generation (TG), but not in ex vivo assay. This investigation partially characterized a
pyruvate fraction with in vitro and ex vivo effects on an intrinsic/extrinsic pathway-induced thrombin
generation (TG) continuous model using 36 or 60-fold diluted mice or defibrinated, normal human plasma.
Fraction separated by DEAE-cellulose chromatography exhibited charge homogeneity and non-sulfated
polysaccharides (<100 kDa) by agarose and polyacrylamide gel electrophoresis, respectively, using Stains-
all alone. Fourier Transform Infrared and Nuclear Magnetic Resonance studies indicated a 4,6-pyruvated
agaran-structure. The fraction and heparin had no effect on prothrombin time, but there was a
preponderant intrinsic rather than extrinsic pathway inhibition in TG assay; themselves, acting on both
free and fibrin bound thrombin activity without chromogenic substrate interaction. Both fractions,
desulfated and native, anticipated and induced thrombin formation in activators-devoid or normal plasma.
In addition, mice pretreated with fraction (20 mg kg'!, intraperitoneally) reduced intrinsically plasma TG ex
vivo after 2h. Heparin suppressed TG in vitro, but induced it ex vivo. Therefore, agaran from A. muscoides
blocks TG on in vitro and ex vivo studies, suggesting to evaluate the blood coagulability status.
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Introduction

Blood coagulation is a complex reaction involving plasma factors that circulate in an inactive form until
proteolytic activation by an upstream factor, and thrombin is the major effector for clot formation. Thrombin
is generated by the tissue factor-dependent extrinsic pathway and the contact factor-dependent intrinsic
pathway (Rau, Beaulieu, Huntington, & Church, 2007), which are analyzed by prothrombin time (PT) and
activated partial thromboplastin time tests, respectively. However, these tests do not accurately prove the
amplification and propagation steps of hemostasis. Because of these limitations, thrombin generation (TG)
tests have been suggested since 1953 as global assays of plasma coagulability, including automated (Castoldi
& Rosing, 2011; Duarte, Ferreira, Rios, Reis, & Carvalho, 2017) and alternative (Ofosu et al., 1984; Nishino, Fukuda,
Nagumo, Fujihara, & Kaji, 1999; Glauser et al., 2009; Rodrigues et al., 2016a) methods. The measurement of
thrombin activity via fluorogenic or chromogenic thrombin substrates added to plasma evaluate the prognostic of
bleeding or thrombosis (Castoldi & Rosing, 2011; Duarte et al., 2017; Lau, Berry, Mitchell, & Chan, 2007), and
plasma anticoagulants (Ofosu et al., 1984; Glauser, Pereira, Monteiro, & Mourdo, 2008; Perzborn, Heitmeier,
Buetehorn, & Laux, 2014; Wu et al., 2014; Furugohri & Morishima, 2015; Chahedet al., 2020).

Thrombin has pro- and anticoagulant roles connected to coagulation factors and inhibitors, such as
antithrombin on protease regulation (factors Xa, IXa and Flla - thrombin), an amino acid glycoprotein
produced in the liver (Rau et al., 2007), which has unfractionated heparin (UHEP) as its cofactor due to the
unique pentasaccharide sequence with high affinity binding to antithrombin displaying in vitro and in vivo
effects (Nader et al.,, 2001). Although effective inhibitor of TG (Wu et al.,, 2014), UHEP induces
thrombocytopenia and extensive bleeding complications, besides parental contamination (Gurbuz, Elliott, & Zia,
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2005; Guerrini et al., 2008), sparking efforts to develop substitutes (Mourdao& Pereira, 1999; Mestechkina &
Shcherbukhin, 2010; Rodrigues et al., 2011; Xie, Chen, Li, Yang, & Huang, 2011; Pomin, 2012; Mourao, 2015).

Seaweed sulfated polysaccharides (SPs) are strongly anionic due to their high content of sulfate esters
(S=0) originated from nucleophilic substitution of hydroxy groups, having these molecules large molecular
distribution (>100 kDa) (Mestechkina & Shcherbukhin, 2010; Pomin, 2012), with their complex structures
varying among species (Cardozo et al., 2007; Farias et al., 2008; Recalde et al., 2016; Mourao et al., 2015).
They induce anti-clotting effects in mammalian plasma, not only by sulfated galactans (carrageenan and
agaran-type structures) (Rhodophyceae) (Cardozo et al., 2007), but also by fucans or fucoidans (Phaeophyceae)
(Rocha et al., 2005; Pomin, 2012; Mourao et al., 2015) and by ulvans (Chlorophyceae) (Farias et al., 2008; Arata
et al., 2015; Rodrigues et al., 2019). Besides that, complexity occurs also by specific requirement degree for
anticoagulation independently from sulfation level on their chains (Pomin, 2012; Mourao et al., 2015).
Furthermore, they have great advantage as alternatives to industrial and pharmacological applications
because of their minimum viral/toxic risks (Li, Zhang, & Song, 2005; Cardozo et al., 2007; Rodrigues et al.,
2012 and 2013; Mourao et al., 2015).

TG studies have been applied to characterize SPs on their functionalities in plasma. Ofosu et al. (1984)
found that heparan sulfate and dermatan sulfate had complementary modes for blocking the intrinsic
pathway-induced TG in normal plasma. Fucoidan from the brown seaweed Ecklonia kurome inhibited TG in
both coagulation pathways using normal or defibrinated plasmas (Nishino et al., 1999). Mourao et al. (2001)
demonstrated that a fucosylated chondroitin sulfate from Ludwigothurea grisea (sea cucumber) interfered with
TG in defibrinated plasma by both contact-activated and thromboplastin-activated systems. Glauser et al.
(2009) revealed that SPs from Rhodophyta Botryocladia occidentalis inhibited the prothrombinase complex in
TG using serpin-free plasma. Dermatan sulfate from the skin of the freshwater fish Oreochromis niloticus
(Salles et al., 2017) and SPs isolated from the Rhodophyta Gracilaria birdiae (Rodrigues et al., 2017a) and
Chlorophyta Caulerpa cupressoides (Rodrigues et al., 2017b; Rodrigues, Benevides, Tovar, & Mourao, 2019)
continually attenuated TG in diluted human plasma by both intrinsic and extrinsic pathways. Conversely,
Zhang et al. (2014) and Mansour et al. (2017) revealed that a fucoidan from Fucus vesiculosus (Phaeophyceae)
and a fucosylated chondroitin sulfate from Mediterranean sea cucumber Holothuria polii body wall exhibited
dual effects on TG in whole plasma by intrinsic coagulation pathway using the Calibrated Automated
Thrombogram. Barcellos et al. (2018) predicted thrombosis in vitro in diluted human plasma, by contact
pathway when in continuous system, evaluating increasing amounts of SPs fractions isolated from Ulva
lactuca (Chlorophyta). Despite descriptive studies, sensitivity of continuous systems for TG detection using
different plasmas treated with seaweeds SPs remain poorly investigated.

Acanthophora muscoides (Linnaeus) Bory de Saint-Vicent (Rhodomelacea, Ceramiales) is a tropical red
seaweed found along the Brazilian coastline. Quinderé et al. (2014) characterized a SPs fraction by Nuclear
Magnetic Resonance (NMR) spectroscopy, which showed structural heterogeneity in terms of variable sulfate
ester and/or methyl ether substitutions, 3,6-anhydro-o-galactosyl units, and pyruvate. Subsequently, it
revealed agaran-structures along its matrix structure (Rodrigues et al., 2016b). There has already been
described in vitro and/or in vivo with antinociceptive, anti-inflammatory (Quinderé et al., 2013),
antithrombotic (Quinderé et al., 2014), antiatherogenesis (Quinderé et al., 2015), anti-TG (Rodrigues et al.,
2016a) and antiviral (Vanderlei et al., 2016) effects devoid of toxicity in vivo (Quinderé et al., 2013); and as
safe supplement to cryodiluent media for fish semen (Pereira et al., 2020). Recently, Rodrigues, Quinderé, and
Benevides (2021) reported in vitro effects of a native and modified SPs fraction on intrinsic pathway-induced
TG in diluted depleted or normal plasma and suggested that sulfated galactose residues in saccharide units of
the alkali-derivative acted on the prothrombinase complex. Nevertheless, its effects on the extrinsic
coagulation pathway and ex vivo anti-clotting potential remain unexplored.

The aim of this investigation was to expand our knowledge concerning in vitro inhibitory effects of a SPs
fraction from A. muscoides on TG by extrinsic/intrinsic coagulation pathways and to continually measure its
ex vivo action on TG using systemically-treated mice plasma.

Material and methods

Drugs and reagents

The unfractionated heparin was obtained from the Europharma Lab (Sao Paulo, Brazil). The standard
glycosaminoglycansdextran sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, heparan sulfate and
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dermatan sulfate were purchased from Sigma-Aldrich (St, Louis, MO, USA). Activated partial thromboplastin
time and prothrombin time reagents and calcium chloride were from Wiener Lab (Rosario, Argentina). While
chromogenic substract for thrombin S-2238 or Factor Xa S-2222, and thrombin and Factor Xa were purchased
from Chrommogenix (Mdlndal, Sweden) and from Haematologic Technologies (Essex Junction, VT, USA),
respectively. The snake venom enzyme Ancrod was obtained from Sigma-Aldrich (St, Louis, MO, USA). Other
reagents were purchased from Brazilian companies or analytical grade.

Seaweed and SPs fraction preparation

Specimens of red seaweed A. muscoides (Linnaeus) Bory de Saint-Vincent (Ceramiales, Rhodophyta) were
manually collected in September 2012 at Pacheco beach (Caucaia, CearaState) at low tide at mesolittoral zone,
and then placed in plastic bags and sent to the Carbohydrates and Lectins Laboratory, Federal University of
Cearad, Brazil, and treated as described (Rodrigues et al., 2021). A voucher specimen (#46093) was deposited
in the Herbarium PriscoBezerra, Department of Biology, Federal University of Ceara. Studies were carried out
at the Connective Tissue Laboratory, Federal University of Rio de Janeiro, Brazil.

SPs were enzymatically extracted from dehydrated algal tissue by papain incubation (60°C, 6h) in 100 mM
sodium acetate buffer, pH 5.0, containing EDTA and cysteine (both 5 mM), and then fractionated by anion-
exchange chromatography on a DEAE-cellulose column using a stepwise of NaCl from 0 to 1.25 M, with
intervals of 0.25 M, in 50 mM sodium acetate buffer, pH 5.0, yielding four fractions, as recently described
(Rodrigues et al., 2021). Fractions of 2.5 mL were collected and analyzed for SPs using the metachromasy
assay (Asysnm) With dimethylmethyleneblue (Farndale, Buttle, & Barrett, 1986). Biological analyses were
performed with the fraction showing the highest lyophilized yield, named SP-Am.

Desulfation of thepyridinium salt of the SP-Am with dimethylsulfoxide wascarried out at 80°C for 4h
(Nagasawa, Inoue, & Kamata, 1977). Its purity and molecular mass distribution was checked by
electrophoresis on agarose (Dietrich & Dietrich, 1976) and polyacrylamide gels (Rodrigues et al., 2016b),
respectively, associated with toluidine blue or Stains-all to reveal complex polysaccharides (Volpi & Maccari,
2002; Andrade, Oliveira, Tovar, Mourao, & Vilanova, 2017; Rodrigues et al., 2019) by comparison with the
mobility of standard glycosaminoglycans dextran sulfate ¢ 8 kDa), chondroitin-4-sulfate ¢ 40 kDa),
chondroitin-6-sulfate ¢60 kDa), heparan sulfate and/or dermatan sulfate (Rodrigues et al., 2021). The identity
of the polymer (5 mg) was verified by Fourier Transform Infrared (FT-IR) spectroscopy in KBr using a
Shimadzu IR spectrophotometer to characterize agar polysaccharide (Vanderlei et al., 2016; Rodrigues et al.,
2021) and NMR spectroscopy (*H/**C HMBC) in 0.6 mL 99.9% deuterium oxide (Cambridge Isotope Laboratory,
Cambridge, MA) using Bruker DRX 800 MHz (1024 = 256 points, with a 60 ms delay for evolution of long-range
couplings and set with no decoupling during acquisition time) with trimethylsilyl propionic acid as a standard
to characterize the SP pyruvate form (Quinderé et al., 2014), respectively, and spectrum processed using the
SpinWorks 3.1.8 software package (USA).

In vitro clotting assay

Blood collection and animal/human plasma sample preparation

A total of 10 different healthy donors (University Hospital Clementino Fraga Filho, Rio de Janeiro, Brazil) were
used for coagulation studies. A quantity of 8 mL venous blood was drawn into 4.5 mL Vacutainer
polypropylene tubes containing 3.2% sodium citrate. After collection, platelet-poor plasma was separated by
centrifugation (2000 x g, 15 min.) and the plasma supernatant aliquoted (1 mL)into Eppendorf vials and frozen
at - 70°C until use (Rodrigues et al., 2021). Human plasma was defibrinated by incubation with 0.1 unit mL™!
Ancrod (snake venom enzyme) at 37°C for 30 min. Then, the clot formed was removed, and the plasma
centrifuged (2,700 x g, 10 min) was used for TG analysis (Glauser et al., 2009). Mice peripheral blood was
collected, centrifuged (500 x g, 15 min) and plasma samples containing 3.2% sodium citrate were stored at
70°C prior to use. This study was approved by the Ethical Committee of the Federal University of Rio de Janeiro
(protocol 01200.001568/2013-87).

Traditional PT test

SP-Am was assessed by coagulation assay based on manufacturer kit specifications, to measure its effect
in a coagulometer (Amelung KC4A) before the in vitro TG assays. A mixture of 100 uL plasma and SP-Am
concentration of 1 mg mL! was incubated at 37°C for 1 min. After incubation, 100 uL PT reagent was added
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to the mixtures, and the clotting time was automatically recorded. Values were expressed as ratios of clotting
time in the presence (T;) or absence (T) of the polysaccharide (Rodrigues et al., 2016b).

Effects of SP-Am on TG in vitro

This assay was based on Salles et al. (2017) and Rodrigues et al. (2016a and 2021) in microplate format
with 10 pL rabbit brain cephalin (contact-activator system) or PT reagent (830 ug well-plate, factor
tissue-activator system) + 30 uL 0.02 M Tris HCI/PEG buffer, pH 7.4 + 10 uL polysaccharides (SP-Am or
desulfated product: 0, 4.1, 8.3, 41.6 or 83.3 ug well-plate’! or UHEP: 2 or 4 well-plate?!) + 60 uL 20 mM
CaCl; and 0.33 mM chromogenic substrate S-2238 (10:50 ratio, v:v). The reaction was triggered at 37°C
by addition of 36 or 60-fold diluted defibrinated or normal human plasma (10 pL), and the absorbance
(405 nm) was read for 60 min. using a Thermomax Microplate Reader (Molecular Devices, Menlo Park,
CA, USA). Inhibitory response of thrombin generation by polysaccharides after the addition of the diluted
plasma was determined by lag time (related to the initiation phase of coagulation), peak thrombin and
time to peak (that reflect the amplification phase of coagulation) (Mansour et al., 2017; Rodrigues et al.,
2021).

Analysis of the use of SP-Am on substrates using two purified protease systems

The interaction of SP-Am on the substrate by the purified systems (thrombin or Factor X) was further
analyzed continuously. Different concentrations of SP-Am (0, 4.1, 8.3, 41.6 or 83.3 ug well-plate™!) or UHEP
(4 ng well-plate!) (10 puL) were used with 1.66 nM thrombin (10 uL) in 0.02 M Tris HCI/PEG buffer, pH 7.4. The
reaction mixture was triggered in final volume of 120 pL by adding 60 puL 20 mM CaCl, and 0.33 mM
chromogenic substrate S-2238 or S-2222 (10:50 ratio, v:v), and the absorbance (405 nm) was read at 37°Cfor
80 minusing a Thermomax Microplate Reader(Molecular Devices, Menlo Park, CA, USA).

Effect of SP-Am on TG in plasma devoid of cephalin

This study was based on Rodrigues et al. (2019) using a microplate format, without cephalin. The test was
conducted as follow: 40 uL 0.02 M Tris-HCI/PEG buffer (pH 7.4) + 10 uL SP-Am (0, 4.1, 41.6 or 83.3 ug well-
plate’!; UHEP: 2 pg.well-plate!) + 60 uL 20 mM CaCl»/0.33 mM chromogenic substrate S-2238 (10:50 ratio,
v:v). The in vitro reaction was triggered at 37°C by the addition of plasma (diluted 60-fold well-plate!, 10 uL),
and the substrate hydrolysis was detected at 405 nm every 1 min (120 min., 37°C) using a Thermomax
Microplate Reader (Molecular Devices, Menlo Park, CA, USA). The stimulatory response of TG by SP-Am was
analyzed by absorbance of the assay.

Ex vivo effect of SP-Am on TG in mice plasma

Male Swiss mice (28-32 g) from the Animal Care Unit of the Federal University of Rio de Janeiro, Brazil,
were kept in a temperature-controlled room (20-22°C) with free access to water and food on a 12/12h
light/dark cycle and all care was taken to avoid environmental disturbances that might influence animal
responses. For systemic treatment, groups of five animals were segregated and handled separately, and then
they received SP-Am (20 mg kg 'body weight, ip.) (Quinderé et al., 2013), UHEP (5 mg kg! body weight, ip.)
(Gurbuz et al., 2005) or saline (0.9% NaCl w/v, ip) for 1 or 2h. After that, mice were anesthetized (100 mg kg!
body weight ketamine and 16 mg kg! body weight xylazine, i.m.) and citrated plasma samples used for TG
analysis.

Statistical analysis

The graphical representations were constructed using the Origin software version 8.0 as the Statistical
Analysis Software (USA). For in vitro TG study, experimental data (mean * standard deviation, n = 3),
calculated from the control curves (%), were analyzed by one-way ANOVA, followed by Tukey' test for
unpaired data, with differences considered statistically significant at p < 0.05. For ex vivo TG analysis, data per
hour (mean # standard deviation, n = 3) were also subjected to Student t-test for unpaired values, applying p
< 0.05 as significant. All the experimental data were also calculated from the controls (%) and the statistical
analyses performed applying GraphPad Prism® version 5.01 for Windows (GraphPad Software, 1992-2007,
San Diego, CA; www.graphpad.com) (Rodrigues et al., 2021).
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Results

Sulfated galactan from A. muscoides reveals 4,6-pyruvate

Separation of the crude SP in A. muscoides by DEAE-cellulose chromatography showed a prominent peak
of metachromasy at 0.75 M NaCl-eluted fraction (SP-Am) accounting for ~50% total polysaccharide (w/w%).
By specific staining with toluidine blue, the physical-chemical analysis by agarose gel electrophoresis
revealed SP-Am as asingle band exhibiting strong metachromasy migrating to dermatan sulfate (Figure 1Aa),
whereas the polyacrylamide analysis indicated a distinct profile from standard glycosaminoglycans on gel, which
was because the high molecular size SP-Am (> 100 kDa) revealed concentrated in the origin (Figure 1Ba).
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Figure. 1. Agarose (A) and polyacrylamide (B) gel electrophoresis of SP-Am and standard glycosaminoglycans chondroitin-4-sulfate
(C-4-8, 40 kDa), chondroitin-6-sulfate (C-6-S, 60 kDa), dextran sulfate (DexS, 8 kDa), dermatan sulfate (DS) and heparan sulfate (HS)
were stained with 0.1% toluidine blue (a) or Stains-all (b). FT-IR spectrum at 500-4000 cm™ (C) in KBr and 2D H!/C'>SHMBC spectral
region (D) of SP-Am characterize an agarocolloid of 4,6-pyruvylated form.

Regarding the electrophoresis gels stained with cationic dye Stains-all, polysaccharides assumed their
identities by distinct color and more sensitivity of the single polysaccharide species than toluidine blue alone
(Figures 1Ab and Bb). More relevant was a brown polydisperse blot of SP-Am migrating like condroitin-6-
sulfate until the central portion of the gel, therefore, it was recognized due to its contrasting color vs.
standards (Figure 1Bb).

FT-IR showed characteristic absorption bands of agar-polysaccharide in SP-Am sample (Figure 1C).
Among the main signals, it was attributed to the presence of sulfate ester bond (at 1382 cm™), S=O (at 1261
cm!'), C-O-C corresponding to 3,6-anhydro-a-L-galactopyranose (at 933 cm!), galactan (at 1072 cm™), sign
of an agar (at 889 cm™!) and galactose structure at C-6 position (at 821 cm™'), which were chemical signals for
agaran-structures. In addition, at 1635-1421 and at 1155 cm™ were related to the occurrence of uronic acid
and C-0, and C-C of vibrating piranosic ring, respectively, in native polysaccharide. The desulfated product
of SP-Am had no important chemical vibration for the sulfated signalsdescribed above, indicating the efficacy
of the process in eliminating these charged groups attached to saccharide chains (not shown).

The HMBC analysis of SP-Am showed spectral signals at 8y 1.51-26, 1.51-101.2 and 1.51-175.6 ppm
corresponding to the groups CHs, O-C-O and COOH of pyruvate, respectively (Figure 1D). These data led to
the identification of a six-membered cyclic ketal, including O-4 and O-6 positions (4,6-O-(1'carboxy)-
ethylidene cyclic ketals) of galactoses located at non-reducing ends of the polysaccharide.

SP-Am has no effect on PT test, but inhibits TG in vitro and induces it by desulfation

Analysis by means of PT test revealed that the SP-Am was not an inhibitor in vitro of the extrinsic
coagulation pathway based on T; T, ratio (1.01 * 0.03), when normal human plasma was treated with a high
polysaccharide concentration (1 mg mL). Its clotting time (11.23 + 0.01 s) remained similar to plasma control
(11.01 £ 0.02 s); likewise, UHEP (12.37 £ 0.04 s, 1 mg mL™!), p>0.05.

By contrast, TG study evidenced that the SP-Am modulated the factor tissue-activator system when in
diluted human plasma (36 or 60-fold), with different resolution pattern as observed by thrombin activity
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(Figure 2). SP-Am altered in vitro (p<0.05) the TG parameters in the range of concentration tested (4.1-83.3
ug well-plate™). These extrinsic inhibitory effects by SP-Am were more remarkable in 60-fold diluted plasma
than the 36-fold one. Table 1 lists the values of peak thrombin (%), time to peak, and lag timefor each
concentration used in the assays. It inactivation on TG in 36-fold diluted plasma led to relatively parental
dose-response curves, showing lag time at 11 min and maximum inhibitory potential with 41.6ug well-plate!
(67.79 £ 0.60% peak thrombin inhibition) at 33+ 1.10 min. vs. control (time to peak: 17 # 1.00 min.), whereas
at 83.3ug well-plate™! of SP-Am the inhibitory response (62.92 + 0.39%) was anticipated for 27 = 1.00 min. in
plasma (Figure 2A). In the presence of UHEP, total inactivation of TG was achieved at 4 ug well-plate™.

The profile of TG inhibition in 60-fold diluted plasma by SP-Am was concentration-dependent and highly
sensitive (p<0.05) than the 36-fold one (Figure 2). When 83.3 ug well-plate! of SP-Am was added to
thromboplastin-activated plasma, the TG curve was abolished. The dose-effect with SP-Am (4.1-41.6 pg well-
plate’!) was observed (p<0.05), yielding average inhibition rates of 35.35 = 0.25,40.71 +0.24 and 53.92 + 0.28%
for peak of thrombin in times of 22 + 1.00, 26 = 1.00 and 43 # 1.00 min; and lag times at 11 *# 1.00, 14 + 1.00
and 33 * 1.00 min, respectively, vs. control curve. While at highest dose (83.3 ug well-plate™!), it required an
amount 20.82-fold of SP-Am higher than UHEP to reach complete inhibition of TG by extrinsic pathway
(Figure 2B). Considering both plasma preparations, no inhibition of TG was found in the absence of
thromboplastin.

Table 1. Average values of TG parameters in diluted plasma treated with SP-Am and its desulfated product using UHEP as a reference.

Polysaccharide

(ng well-plate!) peak of thrombin (%) time to peak (min) lag time (min)

thromboplastin-activated TG in 36-fold diluted plasma

SP-Am: 4.1 56.17£0.20 % 22+1.00% 10+ 1.00*
SP-Am: 8.3 56.92 +0.23 3 23+1.00 10+1.00*
SP-Am: 41.6 67.79 £0.60 YA 33+1.00° 13+1.00 %
SP-Am: 83.3 62.92 +0.39 4 27 £1.00 A 11+1.00 4
UHEP: 2 58.42+0.27 ™ 20+ 1.00 02+1.00¢
UHEP: 4 100 * 0.00%* - -
Control - 17 +£1.00 06 = 1.00
thromboplastin-activated TG in 60-fold diluted plasma
SP-Am: 4.1 35.35+0.25% 22 +1.00 11+1.003
SP-Am: 8.3 40.71+0.24 ® 26 +1.00 " 14 £1.00%®
SP-Am: 41.6 53.92+0.28 B 43+1.00 B 33+1.00
SP-Am: 83.3 100+ 0.37 48 -B -B
UHEP: 4 100 £ 0.00 ¢ - -
Control - 18 £ 1.00 8+1.00
tissue factor pathway-inducing desulfated product in 60-fold diluted plasma
SP-Am: 4.1 18.07 £0.98 (+) * 28+1.00° 15£1.00?
SP-Am: 8.3 18.07£0.99 (+) * 30+1.00° 17£1.00°
SP-Am: 41.6 6.62%1.22 (+)° 28 +£1.00 ¢ 15+ 1.00 ¢
SP-Am: 83.3 3.61+1.13(+)° 31 +1.00 2>« 17 £1.00 <4
UHEP: 4 100 £0.00 ¢ - -
Control - 37+1.00 24 £1.00

Data represent means * SEM (n = 3). Letters among the polysaccharide concentrations indicate significant difference at p<0.05 vs. control. Letters between
polysaccharide concentration reveal significant difference at p<0.05, considering the diluted plasmas. Values were analyzed by one-way ANOVA followed
by Tukey's test or t-Student; - not determined; (+) algal polysaccharide-induced TG.

Accordingly, SP-Am and UHEP did no interact with thrombin substrate in purified system since the
different concentrations of the polysaccharides did not modify the control assay profile (not shown). When
evaluated in purified Factor Xa system, only UHEP had a distinct profile in the presence of the substrate
compared with the normal dynamic of the assay (Figure 3C).

SP-Am inhibited intrinsic pathway-triggered TG in 60-fold diluted plasma (Table 2), but when devoid of
cephalin, it increased the clot formation dose-dependently, although with modest role vs. UHEP which had
no effect on it (Figure 2D). By contrast, desulfated SP-Am importantly stimulated thromboplastin-induced
TG in 60-fold diluted plasma treated in the range of concentrations vs. control (Figure 2E). The desulfated
product led to a hypercoagulation response in connectively with the TG parameters by active extrinsic
pathway, not only inducing the system, but also reducing the lag time compared with the control (p<0.05).
These effects were preponderant in low doses, up to 8.3 ug well-plate! (Table 1). The absence of sulfation had
an opposite effect on blood coagulation based on total inhibition of UHEP.
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Figure 2. Effect of different concentrations of SP-Am from A.muscoideson thromboplastin or cephalin-induced TG using 36 (A) or 60
(B)-fold diluted human plasma, purified Factor Xasystem (C), without contact-activator (D) and desulfated-derivative (E) by continuous
detection method (37°C, 60-120 min.).
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kg! body weight, ip.) or saline (0.9% NaCl wv'!, ip.). After 1 (A) or 2 (B) h treatment, peripheral blood was collected and plasma

analyzed ex vivo for TG.
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SP-Am intrinsically modulates TG using normal or defibrinated plasma

Table 2 lists that normal plasma treated with SP-Am entirely inhibited TG at high doses (100% inhibition).
In other way, the effect of SP-Am reduced cephalin-induced TG using defibrinated plasma (Table 2). It was an
anti-TG agent concentration-dependent effective (p<0.05), although inhibiting by 72.97 + 0.35% in highest
dose (83.3 pug well-plate!) the peak of thrombin recorded at 18 * 1.00 min., and lag time of 14 * 1.00 min. For
UHEP, at concentration 41-fold lower, it completely suppressed TG. Even with thromboplastin, SP-Am had
no significant effect in this system (data not shown).

Table 2. Average values of TG parameters in cephalin-triggered diluted plasma system using SP-Am and UHEP as a reference.

Polysaccharide

(ug well-plate) peak of thrombin (%) time to peak (min) lag time (min)

cephalin-activated TG in 60-fold diluted plasma

SP-Am: 4.1 58.25+0.22° 40+1.00° 29+1.00°
SP-Am: 8.3 58.25+0.25° 42+1.00° 37+1.00°
SP-Am: 41.6 100.00 £ 0.00° 52+1.00° 43+£1.00°¢
SP-Am: 83.3 100.00 £0.00° 53+£1.00°¢ 44+1.00¢
UHEP: 2 100£0.00 ¢ - -
Control - 34+1.00 28 +1.00
cephalin-activated TG in 60-fold diluted defibrinated plasma
SP-Am: 4.1 41.44+0.61° 17+1.002 11£1.00?
SP-Am: 8.3 41.44+£047°? 16+1.00° 08 £1.00°
SP-Am: 41.6 68.46 +0.27" 17+1.00° 10+ 1.00 2
SP-Am: 83.3 72.97£0.35°¢ 18+1.00° 14+1.00
UHEP: 4 100 *0.00 4 - -
Control - 15+1.00 09 £1.00

Data represent means = SEM (n = 3). Letters among the polysaccharide concentrations indicate significant difference at p<0.05 vs. control. Values were
analyzed by one-way ANOVA followed by Tukey's test; - not determined.

Treatment with SP-Am reduces TG ex vivo in mice plasma

Systemic administration of SP-Am (20 mg mL’, ip.) to mice with a single injection produced ex vivo TG
inhibition. From the collected plasma, no effect on the intrinsic coagulation pathway by polysaccharide was
noticed after 1 hour treatment from the saline group (p>0.05), except for a discrete delay in lag time (Figure 3A).

As a reference, UHEP induced TG in analyzed plasma sample, similar to time of peak generated by saline
group (20 £ 1.02 min.) in the assay (Table 3). Extended treatment of the animals for 2hours allowed to clearly
detect an inhibitory effect of TG at 25 min. (Figure 3B), with 40.20 = 1.22% reduction (p<0.05) of the response
generated by cephalin (Table 3). UHEP potentially increased the hypercoagulation in plasma vs. saline group,
as well as anticipating the lag time for 19 # 1.00 min. in the same experiment. Significant effects of SP-Am by
means of the thromboplastin-stimulated TG were not detected (not shown).

Table 3. Average values of TG parameters incephalin-triggered diluted mice plasma using SP-Amand UHEP as a reference, after 1 or

2hours.
Polysaccharide (ug well-plate™) peak of thrombin (%) time to peak (min) lag time (min)
1 hour
SP-Am (20 mg kg!, ip.) 06.18+1.51% 25+1.05° 12+1.002
UHEP (5 mg kg!, ip.) 25.77+1.35(+)° 20+1.12° 10£1.00°
Saline (0.9% NacCl, ip.) - 20 +1.02 09 £1.00
2 hours
SP-Am (20 mg kg!, ip.) 40.20%1.22°2 45+1.00? 25+1.00°
UHEP (5 mg kg'}, ip.) 28.86+1.26 (+)° 29+1.00° 19+1.00°
Saline (0.9% NacCl, ip.) - 43+1.00 26 £1.00

Data represent means + SEM (n = 3). Letters among the polysaccharide concentrations indicate significant difference at p<0.05 vs. control. Values were
analyzed by one-way ANOVA followed by Tukey's test; - not determined; (+) polysaccharide-induced TG.

Discussion

In this study, SP-Am was physically, chemically and structurally checked, and further evaluated in vitro
and ex vivo on TG using human and mice-collected plasmas, respectively. SP-Am also contained nonSPs of
low molecular mass (Rodrigues et al., 2021) as previously confirmed by Vanderlei et al. (2016) using gel
permeation chromatography, which showed a heterogeneous system formed by a polysaccharide chain with
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low molecular distribution. This result appeared on gel electrophoresis, after the use of Stains-all alone, in
brown color, suggesting uronic acid-containing glycans in A. muscoides and purity of the agarocolloid
confirmed by its structure as identified on FT-IR and NMR analyses (Quinderé et al., 2014; Vanderlei et al.,
2016; Rodrigues et al., 2021) and by comparisons with other authors who found agar polysaccharide in
Acanthophora (Duarte et al., 2004) and other seaweed species (Ferreira et al., 2012; Recalde et al., 2016).
Similar to our study, polysaccharides isolated from animal (Volpi & Maccari, 2002; Andrade et al., 2017), plant
(Souza et al., 2015) and seaweed (Rodrigues et al., 2017b and 2019) were also characterized by their specific
colors, reinforcing the use of Stains-all alone as a more precise strategy to also reveal acidic polysaccharides
in red seaweeds than in combination with toluidine blue (Rodrigues et al., 2021). Additionally, HMBC analysis
showed a doublet signal due to nondecoupling of the pulse sequence relatives to a sulfated galactan pyruvate
form of six-membered cyclic ketal, including O-4 and O-6 positions (4,6-O-(1'carboxy)-ethylidene cyclic
ketals), since that this structural feature has not been frequently found in agarophytes (Cardozo et al., 2007,
Ferreira et al., 2012; Mourao, 2015). Other authors reported a possible coexistence in sulfated galactan pyruvate
forms of five-membered/six-membered cyclic ketals, as in green seaweeds (Farias et al., 2008; Arata et al., 2015).

Collectively, our investigation led us to, for the first time, report a peculiar pyruvylated galactan for
Acanthophora, but typical for the order Ceramiales, whose members show high structural complexity of
agarophyte forms (Ferreira et al., 2012). Notably, with low molecular weight agarans independent of other
galactans, like carrageenans (Recalde et al., 2016).

TG has a vital role in hemostatic balance (Rau et al., 2007), when it is reduced antithrombotic and
hemorrhagic events increase, while stimulates thrombosis (Castoldi & Rosing, 2011; Duarte et al., 2017).
Studies on the extrinsic pathway, which is a physiological trigger for hemostasis or thrombus production (Rau
et al., 2007), have been little explored using SPs (Nishino et al., 1999; Wu et al., 2014; Rodrigues et al., 2017a;
Barcellos et al., 2018; Salles et al., 2017). SP-Am modified TG parameters at dose-dependent effects, in 36- or
60-fold diluted human plasmas, on the tissue-factor pathway compared to control curves, respectively. On
the contrary, the used doses of SP-Am were relatively lower than in the PT test (Barcellos et al., 2018), by
which none allowed to detect slight differences due to its low lack, since it has fast kinetic to reveal thrombin
formed (Arata et al., 2015), while TG assay had more precision to measure total thrombin (Castoldi & Rosing,
2011; Duarte et al., 2017), thus showing the anticoagulant dynamic of SP-Am compared with other studies
(Nishino et al., 1999; Wu et al., 2014; Rodrigues et al., 2017a and 2019; Salles et al., 2017). UHEP abolished
TG at an amount 2-fold higher than that required to intrinsically inactivate TG (Rodrigues et al., 2019; Salles
et al., 2017), in which UHEP had affinity for plasma antithrombin (Rodrigues et al., 2021); whereas in the PT
assay, it did not alter the normal values, as reported by Rodrigues et al. (2016b). The intrinsic inhibitory effect
from all the polysaccharides was more important than the extrinsic one, similarly to brown seaweed E. kurome
(Nishino et al., 1999) and freshwater fish O. niloticus (Salles et al., 2017) SPs. In this way, SP-Am could interact with
factors (V, VII/Va, IX and X) and/or other mechanisms involved in the extrinsically TG inhibition (Rau et al., 2007).

No difference at the level of absorbance between the thrombin generated in control plasmas was noted as
by intrinsic pathway, confirming that SP-Am and UHEP did not interact with the substrate for thrombin
(Rodrigues et al., 2021). Similarly, SP-Am did not interfere with purified FXa system, which is critical for TG
(Rau et al., 2007), contrasting UHEP that directly interacted with the slow-reacting substrate in the
continuous assay; therefore, acting as a competitor for thrombin. Thus, our method was able to monitor SPs
with affinities or not when substrate was involved during its cleavage for thrombin activity (Lau et al., 2007).

Anti-clotting effects by SPs are due to sulfate groups attached to polymer, but not when desulfated
(Quinderé et al., 2014; Mourao, 2015). SP-Am displayed serpin-independent TG inhibition by contact-
activation related to its chemical structure (Rodrigues et al., 2021). In this study, desulfated SP-Am was devoid
of anti-TG action in 60-fold diluted human plasma by extrinsic pathway, but, interestingly, potentially
anticipated and induced TG, as also previously observed by the intrinsic one, while UHEP did not induce TG
as expected (Furugohri & Morishima, 2015; Rodrigues et al., 2021). The expression of both free thrombin
activity and thrombin-A2M with unmodified or desulfated SP-Am could be hard to interpret due to unknown
interactions with slow-acting substrate along of the reactions (Lau et al., 2007). Taking with literature data,
our results were in line with the procoagulant effect of the desulfated fucoidan from the brown seaweed Fucus
vesiculosus, when examined by the calibrated automated thrombogram method (Zhang et al., 2014). Direct
thrombin inhibitors, as melagatran, induced coagulation in vitro initiated by tissue factor based on its serpin-
independent anticoagulant mechanism (Perzborn et al., 2014).
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Cephalin or thromboplastin-devoid TG allowed to examine whether SP-Am would stimulate 60-fold diluted
plasma, and suggested that, in the concentration range tested, the modestly TG-induced algal polysaccharide as
FXII-speculated procoagulant effect previously related to low molecular mass accordingly, while UHEP did no
activate FXII (Quinderé et al., 2014). This was also postulated for a SPs fraction from the green seaweed Caulerpa
cupressoides, but 100% TG inducing at highest dose (Rodrigues et al., 2019). Mansour et al. (2017) revealed that the
oversulfated fucosylated chondroitin sulfate from the sea cucumber Holothuria polii body wall exhibited unusual
procoagulant effect by means of calibrated automated thrombography. As report, induced TG by melagatran, but
not UHEP, was recorded by intrinsic pathway in human plasma (Furugohri & Morishima, 2015). Thus, desulfated
and native SP-Am require future comparison on TG based on balance between pro- and anticoagulant effects, as
already studied in vivo using SPs (Rodrigues et al., 2011; Quinderé et al., 2014; Mourao, 2015).

Ancrod is a non-thrombin inhibitor that acts by cleaving fibrinopeptide in plasma (Gurbuz et al., 2005).
Herein, assay with SP-Am-treated 60-fold diluted defibrinated human plasma stimulated by intrinsic pathway
dose-dependently reduced TG, and was suppressed by UHEP from the control, as revealed by TG parameters.
Glauser, Pereira, Monteiro, and Mourao (2008) also detected actions of sea cucumber L. grisea SPs on the
contact pathway using defibrinated plasma. Comparison between the assays using normal and defibrinated
plasmas suggested that the free thrombin activity predominated over that in in vitro normal plasma system.
It could be convenient because substrate cleavage would feed normal plasma TG, contrasting to plasma
treated with Ancrod prior to assay, in which the activity of free and fibrin bound thrombin reduced clot
formation (Lau et al., 2007). In the presence of SP-Am in the same plasma, when induced by thromboplastin,
no important inactivation was achieved in the absence of fibrin, demonstrating its effects as preponderant in
intrinsic coagulation. UHEP abolished TG as expected (Glauser et al., 2008). Therefore, SP-Am acted on the
presence or absence of fibrin in diluted human plasma, similar to fibrin polymerization inhibitors (Lau et al., 2007).

Finally, mice treated with SP-Am for 1 or 2h changed TG response in 60-fold diluted peripheral blood
plasma, in terms of lag time and peak of thrombin activity, by reducing thrombosis risk, since similar levels
of active thrombin were generated by intrinsic pathway in the saline controls. These effects were coherent
with those in vivo, which are involved in antithrombotic action devoid of hemorrhage in SP-Am-treated rats
(Quinderé et al., 2014). Rats orally administered fucoidan (900 and 2500 mg kg™!) from the brown seaweed
Laminaria japonica presented anti-clotting in vivo as an adverse consequence considering renal patients (Li et
al., 2005). Rocha et al. (2005) discovered that a SP from the brown seaweed Spatoglossum schroederi had time-
dependent antithrombotic effect in rats, displaying an important effect up to 8h after intravenous
administration. Rodrigues et al. (2013) discovered that SPs from the green seaweed Caulerpa cupressoides
administered (9 mg kg!, ip.) to mice along fourteen consecutive days altered the platelet count in peripheral
blood. Its SPs had in vivo important pharmacological effects from other studies (Rodrigues et al., 2011, 2012).
Early, SP-Am did not induce any systemic damage in mice (Quinderé et al., 2013). Conversely, heparinized
animals showed high risk of thrombocytopenia by a possible interaction with the circulating platelets (Gurbuz
et al., 2005), since the prolonged use of UHEP can induce clot complications (Mourao & Pereira, 1999), based
on cephalin free and platelet poor plasma assays that showed no hypercoagulable state as already mentioned.
Another result was the lack of ex vivo anti-TG effect by SP-Am-received mice plasma activated by
thromboplastin, postulating, under our conditions, that its systemic action did not involve the extrinsic
clotting pathway (Xie et al., 2011).

In summary, the application of a TG model using SP-Am allowed to compare continually in vitro and ex
vivo effects on both coagulation pathways. Further correlation between these effects could help in the
development of an antithrombotic agent to better understand its persistence in plasma, as well as
bioavailability and prognostics of circulatory disorders (Mourdo & Pereira, 1999) associated with
inflammation (Quinderé et al., 2015) and infections (Vanderlei et al.,2016), using different routes in future
studies, to direct investigations on its pharmacological actions (Rodrigues et al., 2017b).

Conclusion

The Rhodophyta Acanthophora muscoides presents a 4,6-pyruvylated agaran galactan fraction, containing
acid uronic residues of low molecular mass, revealing peculiar structural characteristics distinct from other
agarophyte species. This polysaccharide exerts intrinsic inhibitory effects on thrombin generation more
remarkable than extrinsic effects in 60-fold diluted mice and human plasmas, whereas desulfated and native
fractions stimulate coagulation with or without activator related to in vitro procoagulant events, respectively.

Acta Scientiarum. Technology, v. 43, €55043, 2021



Polysaccharides as prophylactic agents in coagulability Page 11 of 14

It also acts on both free and fibrin bound thrombin activity by contact via similar to fibrin polymerization
inhibitors, besides in the ex vivo assay using heparin or fraction-treated mice plasma prove to be useful to
evaluate the systemic coagulability status, as a pre-clinical prognostic. Overall, our study contributes with
biological basis to the understanding of the anticoagulant dynamics of the algal polysaccharide to the
regulation of clot formation in vitro and ex vivo.

Acknowledgements

We would like to thank to Laboratério de Carboidratos e Lectinas (CARBOLEC, Brazil) for project support.
This study was supported by Fundacdo de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPER], Brazil),
Conselho de Desenvolvimento Cientifico e Tecnolégico (CNPq, Brazil) and Coordenacao de Aperfeicoamento
de Pessoal de Nivel Superior (CAPES/PNPD and Project no. 43/2013 Ciéncias do Mar II, Brazil). Benevides,
N.M.B. is senior investigator of CNPq/Brazil.

References

Andrade, ]. P. S., Oliveira, C. P., Tovar, A. M. F., Mourao, P. A. d. S., & Vilanova, E. (2017). A color-code for
glycosaminoglycans identification by means of polyacrylamide gel electrophoresis stained with the cationic
carbocyanine dye Stains-all. Electrophoresis, 39(4), 666-669. DOI: http://doi.org/10.1002/elps.201700391

Arata, P. X., Quintana, I., Caneldn, D. ]., Vera, B. E., Compagnone, R. S., & Ciancia, M. (2015). Chemical
structure and anticoagulant activity of highly pyruvylated sulfated galactans from tropical green
seaweeds of the order Bryopsidales. Carbohydrate Polymers,122, 376-386.

DOI: http://doi.org/10.1016/j.carbpol.2014.10.030

Barcellos, P. G., Rodrigues, J. A. G., Queiroz, I. N. L., Aratjo, I. W. F., Benevides, N. M. B., & Mourao, P. A. S.
(2018). Structural and physical-chemical analyses of sulfated polysaccharides from the sea lettuce Ulva
lactuca and their effects on thrombin generation. Acta Scientiarum. Biological Sciences, 40(e34916), 1-12.
DOI: http://doi.org/10.4025/actascibiolsci.v40i1.34916

Castoldi, E, & Rosing, J. (2011). Thrombin generation tests. Thrombosis Research, 127(3), S21-S25.

DOI: http://doi.org/10.1016/S0049-3848(11)70007-X

Cardozo, K. H. M., Guaratini, T., Barros, M. P., Falcao, V. R., Tonon, A. P., Lopes, N. P, ... Pinto, E. (2007).
Metabolites from algae with economical impact. Comparative Biochemistry and Physiology - Part C:
Toxicology & Pharmacology, 146(1-2), 60-78. DOI: http://doi.org/10.1016/j.cbpc.2006.05.007

Chahed, L., Balti, R., Elhiss, S., Bouchemal, N., Ajzenberg, N., Ollivier, V., ... Mansour, M. B. (2020).
Anticoagulant activity of fucosylated chondroitin sulfate isolated from Cucumaria syracusana. Process
Biochemistry, 91, 149-157. DOI: http://doi.org/10.1016/j.procbio.2019.12.006

Dietrich, C. P., & Dietrich, S. M. C. (1976). Electrophoretic behaviour of acidic mucopolysaccharides in diamine
buffers. Analytical Biochemistry, 70(2), 645-647. DOI: http://doi.org/10.1016/0003-2697(76)90496-6

Duarte, M. E. R., Cauduro, ]. P., Noseda, D. G., Noseda, M. D., Goncalves, A. G., Pujol, C. A, ... Cerezo, A. S.
(2004). The structure of the agaran sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and
its antiviral activity. Relation between structure and antiviral activity in agarans. Carbohydrate Research,
339(2), 335-347. DOI: http://doi.org/10.1016/j.carres.2003.09.028

Duarte, R. C. F., Ferreira, C. N., Rios, D. R. A., Reis, H. J. d., & Carvalho, M. d. G. (2017). Thrombin
generation assays for global evaluation of the hemostatic system: perspectives and limitations. Revista
Brasileira de Hematologia e Hemoterapia, 39(3), 259-265. DOI: http://doi.org/10.1016/j.bjhh.2017.03.009

Farias, E. H. C., Pomin, V. H., Valente, A. P., Nader, H. B., Rocha, H. A. O., & Mourao, P. A. S. (2008). A
preponderantly 4-sulfated, 3-linked galactan from the green alga Codium isthmocladum. Glycobiology,
18(3), 250-259. Doi: http://doi.org/10.1093/glycob/cwm139

Farndale, R. W., Buttle, D. J., & Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated
glycosaminoglycans by use of dimethylmethylene blue. Biochimica et Biophysica Acta (BBA) — General
Subjects, 883(2), 173-177. DOI: http://doi.org/10.1016/0304-4165(86)90306-5

Ferreira, L. G., Noseda, M. D., Gongalves, A. G., Ducatti, D. R. B., Fujii, M. T., & Duarte, M. E. R. (2012). Chemical
structure of the complex pyruvylated and sulfated agaran from the red seaweed Palisada flagellifera (Ceramiales,
Rhodophyta). Carbohydrate Research, 347(1), 83-94. DOI: http://doi.org/10.1016/j.carres.2011.10.007

Acta Scientiarum. Technology, v. 43, €55043, 2021



Page 12 of 14 Rodrigues et al.

Furugohri, T., & Morishima, Y. (2015). Paradoxical enhancement of the intrinsic pathway-induced thrombin
generation in human plama by melagatran, a direct thrombin inhibitor, but not edoxaban, a direct factor Xa
inhibitor, or heparin. Thrombosis Research, 136(3), 658-662. DOI: http://doi.org/10.1016/j.thromres.2015.06.034

Glauser, B. F., Pereira, M. S., Monteiro, R. Q., & Mourao, P. A. S. (2008). Serpin-independent anticoagulant
activity of a fucosylated chondroitin sulfate. Thrombosis and Haemostasis, 100(3), 420-428.

DOI: http://doi.org/10.1160/th08-04-0210

Glauser, B. F., Rezende, R. M., Melo, F. R., Pereira, M. S., Francischetti, I. M. B., Monteiro, R. Q., ... Mourao,
P. A. S. (2009). Anticoagulant activity of a sulfated galactan: Serpin-independent effect and specific
interaction with factor Xa. Thrombosis and Haemostasis, 102(6), 1183-1193. DOI:
http://doi.org/10.1160/TH09-04-0273

Guerrini, M., Beccati, D., Shriver, Z., Naggi, A., Viswanathan, K., Bisio, A., ... Sasisekharan, R. (2008).
Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events.
Nature Biotechnology, 26(6), 669-675. DOI: http://doi.org/10.1038/nbt1407

Gurbuz, A. T., Elliott, W. G., & Zia, A. A. (2005). Heparin-induced thrombocytopenia in the cardiovascular
patient: diagnostic and treatment guidelines. European Journal of Cardio-thoracic Surgery, 27(1), 138-149.
DOI: http://doi.org/ 10.1016/j.ejcts.2004.09.021

Wu, J., Zhao, H. R., Zhang, H. Y., Ge, Y. L., Qiu, S., Zhao, J., ... Lu, S. S. (2014). Thrombin generation
increasing with age and decreasing with use of heparin indicated by calibrated automated thrombogram
conducted in Chinese. Biomedical and Environmental Sciences, 27(5), 378-384.

DOI: http://doi.org/10.3967/bes2014.063

Lau, A., Berry, L. R., Mitchell, L. G., & Chan, A. K. C. (2007). Effect of substrate and fibrin polymerization
inhibitor on determination of plasma thrombin generation in vitro. Thrombosis Research, 119(6), 667-677.
DOI: http://doi.org/10.1016/j.thromres.2006.05.008

Li, N., Zhang, Q., & Song, J. (2005). Toxicological evaluation of fucoidan extracted from Laminaria japonica in
Wistar rats. Food and Chemical Toxicology, 43(3), 421-426. DOI: http://doi.org./10.1016/j.fct.2004.12.001

Mansour, M. B., Balti, R., Ollivier, V., Jannet, H. B., Chaubet, F., & Maaroufi, R. M. (2017). Characterization
and anticoagulant activity of a fucosylated chondroitin sulfate with unusually procoagulant effect from
sea cucumber. Carbohydrate Polymers, 174, 760-771. DOI: http://doi.org/10.1016/j.carbpol.2017.06.128

Mestechkina, N. M., & Shcherbukhin, V. D. (2010). Sulfated polysaccharides and their anticoagulant activity: A
review. Applied Biochemistry Microbiology, 46(3), 267-273. DOI: http://doi.org/10.1134/5000368381003004X

Mourao, P. A. S. (2015). Perspective on the use of sulfated polysaccharides from marineorganisms as a source of
new antithrombotic drugs. Marine Drugs, 13(5), 2770-2784. DOI: http://doi.org/10.3390/md 13052770

Mourao, P. A. S., Vidal, C.B., Bretaudiere, ].T., Drouet, B., Bros, A., & Fischer, A.-M. (2001). Inactivation of
thrombin by a fucosylated chondroitin sulfate from Echinoderm. Thrombosis Research, 102(2), 167-176.
DOI: http://doi.org/10.1016/S0049-3848(01)00230-4

Mourao, P. A. S., & Pereira, M. S. (1999). Searching for alternatives to heparin: sulfated fucans from marine
invertebrates. Trends in Cardiovascular Medicine, 9(8), 225-232. DOI: http://doi.org/10.1016/S1050-
1738(00)00032-3

Nader, H. B., Pinhal, M. A. S., Bau, E. C., Castro, R. A. B., Medeiros, G. F., Chavante, S. F., ... Dietrich, C. P.
(2001). Development of new heparin-like compounds and other antithrombotic drugs and their
interaction with vascular endothelial cells. Brazilian Journal of Medical and Biological Research, 34(6),
699-709. DOI: http://doi.org/10.1590/5S0100-879X2001000600002

Nagasawa, K., Inoue, Y., & Kamata, T. (1977). Solvolytic desulfation of glycosaminoglycuronan sulfates with
dimethyl sulfoxide containing water or methanol. Carbohydrate Research, 58(1), 47-55.
DOI: http://doi.org/10.1016/S0008-6215(00)83402-3

Nishino, T., Fukuda, A., Nagumo, T., Fujihara, M., & Kaji, E. (1999). Inhibition of the generation of thrombin
and factor Xa by a fucoidan from the brown seaweed Ecklonia kurome. Thrombosis Research, 96(1), 37-49.
DOI: http://doi.org/10.1016/S0049-3848(99)00060-2

Ofosu, F. A., Modi, G. J., Smith, L. M., Cerskus, A. L., Hirsh, J., & Blajchman, M. A. (1984). Heparan sulfate

and dermatan sulfate inhibit the generation of thrombin activity in plasma by complementary pathways.
Blood, 64(3), 742-747.

Acta Scientiarum. Technology, v. 43, €55043, 2021



Polysaccharides as prophylactic agents in coagulability Page 13 of 14

Pereira, V. A., Alencar, D. B. d., Aradjo, I. W. F. d., Rodrigues, J. A. G., Lopes, ]. T., Nunes, L. T., ... Vanderley,
C. S. B. S. (2020). Supplementation of cryodiluent media with seaweed or Nile tilapia skin sulfated
polysaccharides for freezing of Colossoma macropomum (Characiformes: Serrasalmidae) semen.
Aquaculture, 528, 735553. DOI: http://doi.org/10.1016/j.aquaculture.2020.735553

Perzborn, E., Heitmeier, S., Buetehorn, U., & Laux, V. (2014). Direct thrombin inhibitors, but not the direct
factor Xa inhibitor rivaroxaban, increase tissue factor-induced hypercoagulability in vitro and in vivo.
Journal of Thrombosis and Haemostasis, 12(7), 1054-1065. DOI: http://doi.org/10.1111/jth.12591

Pomin, V. H. (2012). Fucanomis and galactanomics: current status in drug discovery, mechanisms of action
and role of the well-defined structures. Biochimica et Biophysica Acta(BBA), 1820(12), 1971-1979.

DOI: http://doi.org/10.1016/j.bbagen.2012.08.022

Quinderé, A. L. G., Benevides, N. M. B., Pelli, G., Lenglet, S., Burger, F., Carbone, F., ... Montecucco, F.
(2015). Treatment with sulphated galactan inhibits macrophage chemotaxis and reduces intraplaque
macrophage content in atherosclerotic mice. Vascular Pharmacology, 71, 84-92.

DOI: http://doi.org/10.1016/j.vph.2015.02.015

Quinderé, A. L. G., Fontes, B. R., Vanderlei, E. d. S. O., Queiroz, I. N. L. d., Rodrigues, J. A. G., Aratjo, I. W. F.
d., ... Benevides, N. M. B. (2013). Peripheral antinociception and anti-edematogenic effect of a sulfated
polysaccharide from Acanthophora muscoides. Pharmacological Reports, 65(3), 600-613.

DOI: http://doi.org/10.1016/S1734-1140(13)71037-5

Quinderé, A. L. G., Santos, G. R. C., Oliveira, S. N. M. C. G., Glauser, B. F., Fontes, B. P., Queiroz, I. N. L., ...
Mourdo, P. A. S. (2014). Is the antithrombotic effect of sulfated galactans independent of serpin? Journal
of Thrombosis and Haemostasis, 12(1), 43-53. DOI: http://doi.org/10.1111/jth.12448

Rau, J. C., Beaulieu, L. M., Huntington, J. A., & Church, F. C. (2007). Serpins in thrombosis, hemostasis and
fibrinolysis. Journal of Thrombosis and. Haemostasis, 5(1), 102-115. DOI: http://doi.org/10.1111/j.1538-
7836.2007.02516.x

Recalde, M. P., Caneldn, D. J., Compagnone, R. S., Matulewicz, M. C., Cerezo, A. S., & Cianca, M. (2016).
Carrageenan and agaran structures from the red seaweed Gymnogongrus tenuis. Carbohydrate Polymers,
136, 1370-1378. DOI: http://doi.org/10.1016/j.carbpol.2015.10.07

Rocha, H. A. O., Moraes, F. A., Trindade, E. S., Franco, C. R. C., Torquato, R. . S., Veiga, S. S., ... Dietrich, C. P.
(2005). Structural and hemostatic activities of a sulfated galactofucan from the brown alga Spatoglossum
schroederi: an ideal antithrombotic agent? Journal of Biological Chemistry, 280(50), 41278-41288.

DOI: http://doi.org/10.1074/jbc.M501124200

Rodrigues, J. A. G., Barcellos, P. G., Salles, T. C., Benevides, N. M. B., Tovar, A. M. F., & Mourdo, P. A. d. S.
(2017a). In vitro inhibition of thrombin generation by sulfated polysaccharides from the tropical red
seaweed Gracilaria birdiae Plastino & Oliveira. Acta of Fisheries and Aquatic Resources, 5(1), 22-32.

DOI: http://doi.org/10.2312/ActaFish.2017.5.1.22-32

Rodrigues, J. A. G., Eloy, Y. R. G., Vanderlej, E. S. O., Cavalcante, J. F., Romanos, M. T. V., & Benevides, N.
M. B. (2017b). An anti-dengue and anti-herpetic polysulfated fraction isolated from the coenocytic green
seaweed Caulerpa cupressoides inhibits thrombin generation in vitro. Acta Scientiarum. Biological
Sciences, 39(2), 149-159. DOI: http://doi.org/10.4025/actascibiolsci.v39i2.28081

Rodrigues, J. A. G., Benevides, N. M. B., Tovar, A. M. F., & Mourao, P. A. d. S. (2019). Molecular
characteristics of polysulfated fractions from the green seaweed Caulerpa cupressoides and actions on
thrombin generation in vitro. Acta Scientiarum. Biological Sciences, 41(e35655), 1-15.

DOI: http://doi.org/10.4025/actascibiolsci.v41i1.35655

Rodrigues, J. A. G., Queiroz, I. N. L. d., Quinderé, A. L. G., Benevides, N. M. B., Tovar, A. M. F., & Mourao, P.
A. d. S. (2016a). Mild-acid hydrolysis of a native polysulfated fraction from Acanthophora muscoides
generates sulfated oligosaccharides displaying in vitro thrombin generation inhibition. Acta Scientiarum.
Biological Sciences, 38(1), 7-15. DOI: http://doi.org/10.4025/actascibiolsci.v38i1.28257

Rodrigues, J. A. G., Queiroz, I. N. L. d., Quinderé, A. L. G., Benevides, N. M. B., Tovar, A. M. F., & Mourao, P.
A. d. S. (2016b). Extraction and structural properties of Acanthophora muscoides (Rhodophyceae)
extracellular matrix sulfated polysaccharides and their effects on coagulation. Acta Scientiarum.
Technology, 38(3), 273-282. DOI: http://doi.org/10.4025/actascitechnol.v38i3.26146

Acta Scientiarum. Technology, v. 43, €55043, 2021



Page 14 of 14 Rodrigues et al.

Rodrigues, J. A. G., Queiroz, I. N. L. d., Quinderé, A. L. G.,Vairo, B. C., Mourao, P. A. d. S., & Benevides, N. M.
B.(2011). An antithrombin-dependent sulfatedpolysaccharide isolated from the green alga
Caulerpacupressoides has in vivo anti- and prothrombotic effects. Ciéncia Rural, 41(4), 634-639.

DOI: http://doi.org/10.1590/S0103-84782011000400014

Rodrigues, J. A. G., Quinderé, A. L. G., & Benevides, N. M. B. (2021). In vitro effects of an Acanthophora muscoides
(Ceramiales, Rhodophyta) native and modified sulfated polysaccharide fraction on thrombin generation. Acta
Scientiarum. Technology, 43(1), e49082. DOI: https://doi.org/10.4025/actascitechnol.v43i1.49082

Rodrigues, J. A. G., Vanderlei, E. d. S. O, Aratjo, I. W. F. d., Quinderé, A. L. G., Coura, C. O., & Benevides, N.
M. B. (2013). In vivo toxicological evaluation of crude sulfated polysaccharide extracted from the green
seaweed Caulerpa cupressoides var. lycopodium in Swiss mice. Acta Scientiarum. Technology, 35(4), 603-610.
DOI: http://doi.org/10.4025/actascitechnol.v35i4.15699

Rodrigues, J. A. G., Vanderlei, E. d. S. O, Silva, L. M. C. M., Aratjo, I. W. F. d., Queiroz, I. N. L. d., Paula, G.
A.d., ... Benevides, N. M. B. (2012). Antinociceptive and anti-inflammatory activities of a sulfated
polysaccharide isolated from the green seaweed Caulerpa cupressoides. Pharmacological Reports, 64(2),
282-292. DOI: http://doi.org/10.1016/S1734-1140(12)70766-1

Salles, T. C., Rodrigues, J. A. G., Barcellos, P. G., Amaral, G. F., Aradjo, I. W. F., & Mourao, P. A. d. S. (2017).
Inhibition of thrombin generation by dermatan sulfate isolated from the skin of Oreochromis niloticus, Agrdria
-Revista Brasileira de Ciéncias Agrdrias, 12(1), 98-104. DOI: http://doi.org/10.5039/agraria.v12i1a5412

Souza, R. O. S., Assreuy, A. M. S., Madeira, ]. C., Chagas, F. D. S., Parreiras, L. A., Santos, G. R. C,, ... Pereira,
M. G. (2015). Purified polysaccharides of Geoffroea spinosa barks have anticoagulant and antithrombotic
activities devoid of hemorrhagic risks. Carbohydrate Polymers, 124, 208-215.

DOI: http://doi.org/10.1016/j.carbpol.2015.01.069

Vanderlei, E. d. S. O., Eloy, Y. R. G., Aratijo, I. W. F. d., Quinderé, A. L. G., Fontes, B. P., Mendes, G. S., ...
Benevides, N. M. B. (2016). Structural features, molecular weight and anti-HSV activity of sulfated
polysaccharides from three red seaweeds. Journal of Chemical and Pharmaceutical Research, 8(7), 164-170.

Volpi, N., & Maccari, F. (2002). Detection of submicrogram quantities of glycosaminoglycans on agarose
gels by sequential staining with toluidine blue and Stains-All. Electrophoresis, 23(24), 4060-4066.

DOI: http://doi.org/10.1002/elps.200290021

Xie, L., Chen, M.-H., Li, ]., Yang, X.-M., & Huang, Q.-]. (2011). Antithrombotic effect of a polysaccharide
fraction from Laminaria japonica from the South China Sea. Phytotherapy Research, 25(9), 1362-1366.
DOI: http://doi.org/10.1002/ptr.3433

Zhang, Z., Till, S., Jiang, C., Knappe, S., Reutterer, S., Scheiflinger, F., ... Dockal, M. (2014). Structure-
activity relationship of the pro- and anticoagulant effects of Fucus vesiculosus fucoidan. Thrombosis and
Haemostasis, 111(3), 429-437. DOI: http://doi.org/10.1160/TH13-08-0635

Acta Scientiarum. Technology, v. 43, €55043, 2021



