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ABSTRACT. Structural Equation Modeling (SEM) is used to analyze the causal relationships between 

observable and unobservable variables. Among the assumptions considered, but not essential, for the 

application of the SEM are the presence of multivariate normality between the data, and the need for a large 

number of observations, in order to obtain the variances and covariances between the variables. It is not 

always possible to have access to a sufficiently large number of observations to enable the calculation of 

parameters, and the convergence of the iterative algorithm is one of the problems in obtaining the results. 

This work investigates the convergence of iterative algorithms, which minimize the variation of parameters, 

through a stipulated convergence rate, using the Maximum Likelihood (ML) and Generalized Least Squares 

(GLS) estimation methods on structural equation models using confirmatory factor analysis (CFA) and 

regression models. Convergences were evaluated in relation to the number of observations, in order to 

obtain a minimum quantity sufficient for a convergence rate above 50%. The calculations were performed 

in the statistical environment R® version 3.4.4, and the results obtained showed a convergence rate above 

50% for models estimated by GLS, even with the data showing lack of multivariate normality, kurtosis and 

accentuated asymmetry. Thus, it was possible to define a minimum number of observations necessary for 

an adequate convergence of the iterative algorithms in obtaining the necessary parameters. 
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Introduction 

Structure Covariance Analysis or Structural Equations Modeling - SEM combines multivariate statistical 

methods to describe the causal relationships between observable and unobservable variables. Assuming that 

the parameters of the model are identified, these relationships are represented by regression coefficients, 

variances and covariances between exogenous variables, variances and covariances of disturbance terms and 

indicate the magnitude of the effect that variables have on each other (Kaplan, 2009). 

For the application of SEM some assumptions must be considered. One of these concerns the adequate number 

of observations relative to the number of variables, parameters to be determined, and the complexity of the model. 

Another point in question, before estimation, is the verification of the model's identifiability, because when the 

number of parameters to be estimated is greater than the number of data, the model is undetermined. 

There are many attempts to determine minimum and/or maximum quantities of observations for an 

adequate parameter estimation.  

One of the attempts is from Monte Carlo simulations made by Boomsma (Westland, 2010) that, considering 

a ratio r obtained from the number of manifest (or observed) items or variables (p) and latent variables (or 

factors; f) of the model of the shape r = p / f, adjusted a curve to the data obtained, and Westland (2010) 

proposed a formula to determine the appropriate size (n) for a sample defined by 

𝑛 ≥ 50𝑟2 − 450𝑟 + 1100, r = p / f      (1) 

Bentler and Chou (1987) observed that the sample size must be considered related to the number of 

parameters to be estimated. However, the number of observations depends on other conditions that include 

similarity and number of indicators per factor. In summary, the sample size recommendations required in the 

SEM literature are simply guesswork. 
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But it is worth remembering that, for structural equation models, the data are not the individual 

observations of each subject in each variable, but the variances and covariances between the manifest 

variables (Marôco, 2014). The sample size requirement is not equivalent to the data array size. But we must 

remember that, in order to estimate the model parameters, iterative algorithms must show convergence, that 

is, they minimize a function of the adjustment errors estimated by the difference between the covariances 

observed in the sample and the covariance matrix generated by the theoretical model with parameters.  

Statistics show that the problem of the estimation is summarized in tune with the matrix, the covariance-

based estimates of Σ(𝜃) is the matrix of covariance observed in the sample S = (sij) of order p x p, where the 

algorithms are iterative successive approximations, we obtain the estimates of the parameters that minimizes 

a function of the difference between the matrix Σ(𝜃) and S of the type F(S, Σ(𝜃)), with F ≥ 0, then the function 

call to the discrepancy (distance) between Σ(𝜃) e S. The matrix E = S – Σ(𝜃) is called the residual matrix 

(Marôco, 2014). If the structural equation model is 'correct', the data 'generated' by the model is sufficiently 

close to the observed data, and the model error will be minimal.  

Taking an initial estimate for the parameters denoted 𝜃1 and successively generating new estimates 

denoted 𝜃2, 𝜃3, ... within the allowed parametric space such that  𝐹(𝜃| |𝑛 + 1) < 𝐹(𝜃| |𝑛). This process 

continues until convergence is achieved. The lower the value of F the better the adjustment of the theoric 

model to the observed data. The perfect fit occurs when the value of 𝐹 (𝑆, 𝛴(𝜃)) = 0. The classic adjustment 

methods vary according to the software used and the assumptions about the data and distribution of variables, 

with the Generalized Least Square - GLS and Maximum Likelihood - ML methods being the most used. 

If the observation vector has a multivariate normal distribution and the sample size is large enough, the 

GLS and ML methods will produce unbiased and consistent estimates for the parameters. The adjustment per 

ML estimates the parameters that maximize the likelihood of observing the sample covariance matrix.  

The method produces estimates of the centered and consistent parameters as the sample size increases, 

approaching the true value of the parameter, with normal distribution. The GLS method has the same 

asymptotic properties, the maximum likelihood method, consistency and efficiency, but can be used with less 

restrictive assumptions about the normality of the data (Marôco, 2014). For both methods, the sample size 

determines the best estimate of the parameters with minimal errors in the residual matrix. It is clear that the 

greater the amount of data observed, the smaller the value of the discrepancy function and, consequently, the 

better the fit of the model.  

However, until minimum amount of data can be assured, it is necessary an adequate adjustment and 

essentially, and the convergence of the iterative approximation algorithm, in order to obtain model 

parameters with satisfactory fit quality. Small amounts of data can lead to problems in estimates and in the 

estimation and adjustment models, and the alternatives would be to obtain more data, which in some cases 

may be impossible or expensive, or, increase the value of the discrepancy function, which could lead to large 

differences between the covariance matrix observed in the sample in relation to the real values. In this work 

it will be analyzed the determination of a minimum number of observations, in which an adequate 

convergence can be obtained without changes in the discrepancy function of the estimation models, from a 

small study of simulations generated on data from structural equation models, and analysis of the stipulated 

convergence rate obtained for the ML and GLS models. The results obtained with the number of varied 

observations and limited values of variables are neither statistically justified nor generalizable to general 

conditions (Yang, Jiang, & Yuan, 2018), but they can add one more factor in determining a minimum amount 

possible to lead to satisfactory results in SEM. 

Material and methods 

For the verification of the convergence of SEM models with respect to the estimation method and the 

number of observations, 5 models of structural equations with their respective database will be used. The 

models have the following characteristics: 

Model 1: 1st order factorial analysis model with 17 observable variables, 3 factors, 116 degrees of freedom 

and 199 observations; 

Model 2: model of 2nd order factorial analysis, with 13 observable variables, 3 First-order factors, 1 latent 

second-order factor, having 51 degrees of freedom and 296 observations; 

Model 3: structural model of regression with 9 observable variables, 3 factors, 23 degrees of freedom and 

352 observations; 



Analysis of convergence rate in structural equation models Page 3 of 7 

Acta Scientiarum. Technology, v. 44, e58268, 2022 

Model 4: structural model of regression with 13 observable variables, 4 factors, 59 degrees of freedom and 

485 observations; 

Model 5: model of regression structure with 23 observable variables, 8 factors, 222 degrees of freedom and 

512 observations. 

The models described above were used with the permission of the authors and chosen because they present 

the respective databases with an adequate number of observations for the proposed work. The necessary 

calculations will be performed in the software environment R® version 3.4.4, and written algorithms, 

functions and packages will be used for the language. 

Initially, the data will be evaluated in relation to multivariate normality through the Monte Carlo Test 

of Multivariate Normality Based on Distances (Teste Monte Carlo de Normalidade Multivariada Baseado 

em Distâncias – TMCNMD), proposed by Biase and Ferreira (2012) and, regarding kurtosis and asymmetry 

by the Mardia Test. In the multivariate case, the Shapiro-Wilks test presents an inferior performance 

compared to normality tests based on skewness and kurtosis deviations (Cantelmo & Ferreira, 2007), 

whereas in relation to multivariate skewness and kurtosis, Mardia's indices are more widely used. For 

both tests, the normality hypothesis is rejected if the p-value is less than the generally adopted 

significance level of 5%.  

If the data do not present multivariate normality, data with multivariate normality will be generated from 

the original data. The original data of each model will be considered in the form of an r x c matrix, where each 

column (c) represents an observed variable, and each row (r) a single observation. To obtain data, obtained 

randomly with multivariate normality, the mean of each observed variable and the original data covariance 

matrix is calculated. Using the ‘rmvnorm’ function of the R® software an r x c matrix of normal data is obtained. 

It is important to consider the analysis for normal and non-normal data for two reasons, the data collected in 

problems involving SEM may not present multivariate normality and, based on the presence or absence of 

multivariate normality, it is possible to determine the best estimation method to be used, and the ML method 

is more restricted as to use on non-normal data. 

Subsequently, the multivariate normality analysis is carried out and, using formula (1), the minimum 

number of observations to be considered for each model is determined, with 150 observations being the 

smallest of the quantities calculated among the five models. Using the original data available, initially, 150 

observations from the database of a model are randomly chosen and a simulation is carried out. The 

simulation is repeated 100 times, and those that show convergence to the iterative algorithm are counted. 

The same procedure is performed on all evaluated models.  

The entire procedure above is repeated for a small number of observations, with each group of simulations 

being reduced by 10 observations, until there is no convergence for any of the models in all simulations. If 

the data do not show multivariate normality, all simulations will be repeated using normal data, obtained 

from the original data, according to the procedure described above. Simulations that showed convergence are 

counted and this value is used to calculate the convergence rate of the models in relation to the number of 

observations considered, per model used. This convergence rate (CR) is determined by: 

𝐶𝑅 = (
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
. 100)%,     (2) 

where the number of successful fits is equal to the fits that showed convergence. 

The convergence rate will be calculated for simulations made with the original data and, in case they do 

not present multivariate normality, for the data generated from the original data with multivariate normality, 

and for the ML and GLS estimation methods. 

As described, there may be four distinct scenarios, where you can have data without multivariate normality 

being estimated by ML or GLS and data with multivariate normality being estimated by ML and GLS. 

Results and discussion 

First, the multivariate normality of the available data should be assessed in order to evaluate the behavior 

of the estimation methods regarding the presence or non-presence of multivariate normality. The TMCNMD 

and Mardia test results applied on the data for each model are described in Table 1, noting that in both tests 

the hypothesis of normality is rejected if the p value is lower than the level of significance α (5%). 
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Table 1. Results of the TMCNMD test and Mardia’s test to verify the multivariate normality of the data from the evaluated models.  

 
TMCNMD Mardia test 

Result 
R2 p-value Skewness p-value (Skewness) Kurtosis p-value (Kurtosis) 

Model 1 0.9720818    0.005997001 2976.6037       1.3789 e-202 33.6492                     0 NO 

Model 2 0.94255918 0.0004997501 1184.8849 19334 e-66 13.2254 0 NO 

Model 3 0.9122142 0.00149925 1111.5849 4.8087 e-140 19.2766 0 NO 

Model 4 0.9122142 0.0004997501 1735.4559 1.5613 e-148 33.3922 0 NO 

Model 5 0.8216363 0.0004997501 17669.6776 0 172.4151 0 NO 

Source: Authors. 

A strong multivariate asymmetry is observed in the results obtained from the Mardia test, mainly for 

models 1 and 5, with very high values compared to the other models. There is no consensus among researchers 

about the threshold value of kurtosis and multivariate asymmetry, obtained by specific tests, for the 

application of the maximum likelihood estimation technique in non-normal data. There is no generally 

accepted cut value of multivariate kurtosis which indicates non-normality (Finney & DiStefano, 2013). The 

application of the maximum likelihood estimation method may be compromised by the marked asymmetry 

verified. The non-normality of the data does not prevent the application of the Maximum Likelihood (ML) 

estimation technique, but because we have models with marked multivariate abnormality, the application of 

the Generalized Least Squares (GLS) estimation technique is more appropriate.   

As all models presented data without multivariate normality, samples with multivariate normality will be 

generated to continue the work from the original data. In order to continue with the procedures described in the 

methodology, the codes presented in the Figure 1 of this article will be used. The codes were written in R® language. 

From the original data, not normally distributed data with multivariate normality are generated and, using 

codes 2 and 3 in the annex, simulations are carried out to estimate the parameters of the evaluated models, 

thus verifying the convergence, or not, of the iterative model, in relation to the observations used, mainly in 

relation to the number of observations.  

 

Figure 1. Codes used to obtain the results presented, in R® language. 
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From the original data, not normally distributed data with multivariate normality are generated and, using 

codes 2 and 3 in the annex, simulations are carried out to estimate the parameters of the evaluated models, 

thus verifying the convergence, or not, of the iterative model, in relation to the observations used, mainly in 

relation to the number of observations. The results of the convergence rate, calculated using formula (2), can 

be seen in the following tables. Table 2 and 3 present the convergence rates calculated for the ML and GLS 

estimation models on the original data, without multivariate normality, and Table 4 and 5 present the 

convergence rates calculated on data with multivariate normality, obtained from the normal data, for the ML 

and GLS estimation models. 
From the results, we can describe the following analysis. Of the models used to verify the convergence 

rate, Model 3 showed the best convergences. The model is the simplest of all those evaluated, containing only 

3 factors and 9 well-adjusted variables. The low number of degrees of freedom and the low complexity of the 

model interferes with convergence. 

Table 2. Convergence rate by model using original (non-normal) data estimated per ML (in percentages). 

 
Sample Size 

20 30 40 50 60 70 80 90 100 110 120 130 140 150 
Model 1 51.5 63.9 61.8 57.3 53.5 51.3 51 48.8 48.7 46.9 46.6 40.8 40.3 37.2 
Model 2 44.2 59.5 68.1 74.7 78.8 83.5 86.1 88.2 88.7 90 91.8 91.2 92.8 93.8 
Model 3 70.5 81.9 88.7 90.6 92 92.4 93.9 93.3 93.5 94 92.8 92.3 90.6 91.3 
Model 4 71.6 88.9 94.2 96.4 97.4 99.1 99 99.6 99.6 99.6 99.9 99.9 100 99.9 
Model 5 0 23.1 25.3 26.7 29.8 24.1 24.8 23.5 27.9 26.9 26.4 25.5 29 29.6 

Table 3. Convergence rate by model using original (non-normal) data estimated per GLS (in percentages).        

 
Sample Size 

20 30 40 50 60 70 80 90 100 110 120 130 140 150 
Model 1 41.4 47.6 50.2 59.5 71.4 81.8 90.2 94.5 96.4 98.8 99.8 99.7 100 100 
Model 2 48.5 52.8 63.8 72.8 89.4 91.4 95.5 95.3 97.3 98.8 98.3 99.4 99.9 99.8 
Model 3 86.1 96.8 99.6 99.8 99.8 99.8 100 100 100 100 100 100 100 100 
Model 4 51 64.8 76.1 78.4 84.4 85.8 86.2 87.9 90.6 92.1 91.7 94.1 94.3 95.1 
Model 5 0 57.8 58.1 59.2 64.8 70.4 74.3 77.8 82.7 84.3 87.6 90.6 90.9 91.6 

Table 4. Convergence rate by model using normal data generated from original data estimated by ML (in percentages). 

 
Sample Size 

20 30 40 50 60 70 80 90 100 110 120 130 140 150 
Model 1 68.3 67.9 58.8 55.9 54.2 53.8 51.1 50 46 45.6 46 45.5 46.4 43.8 
Model 2 45.1 57 65.2 73.6 74.4 77.3 80.8 82.9 85 87.2 87.4 90 92.4 92.8 
Model 3 79.3 89.1 90.7 89.8 93.8 92.3 91.6 91.5 91.6 91.7 92.3 91.6 92.2 91.3 
Model 4 79.6 92.3 96.6 98.1 99.2 99 99.5 99.6 99.8 99.7 100 99.7 100 100 
Model 5 0 22.3 23.2 27 26.9 27.3 30.5 28.5 30.3 30.9 33.5 32 35.1 35.3 

Table 5. Convergence rate by model using normal data generated from original data estimated by GLS (in percentages). 

 
Sample Size 

20 30 40 50 60 70 80 90 100 110 120 130 140 150 
Model 1 49.5 44.4 55.5 68.8 79.4 86.7 92.1 93.3 95.6 95.9 98.1 98.2 99.3 99 
Model 2 48.7 62.2 73.9 84.4 86.3 92.1 93.1 95.2 95.5 97.4 96.2 98.2 98.1 97.4 
Model 3 89.5 97.8 99.2 99.9 100 100 100 100 100 100 100 100 100 100 
Model 4 52.8 67.4 77.7 81.5 84 87.5 90 90.4 91.6 91.8 93.4 94 93.5 94.2 
Model 5 0 61.2 59.9 66.9 72.5 78 85.4 86.3 89.8 92 92.8 93.9 95.6 96.3 

 

Therefore, models with this configuration fit well with small amount of observations. Its lowest 

convergence rate was 70.5% when evaluating the ML estimation method in the original data and 86.1% when 

using the GLS method, which is less restricted to non-normality. 
For the normal data generated from the original data, the convergence rate behavior was equivalent to the 

non-normal original data. Models 1 and 5 showed, when analyzing their data using the Mardia test, 

accentuated kurtosis and asymmetry. Furthermore, as in all models, the data did not show multivariate 

normality. The effects of non-normality on ML-based results depend on its extent, the greater the non-

normality, the greater the impact on the results. However, the convergence rate results when using the ML 

estimation method on normal data also became very low in both models. This is probably due to the process 
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of numerical optimization of the maximum likelihood function that does not allow us to obtain an explicit solution 

for estimators. 
Studies have shown that the ML methodology is not much affected by the lack of multivariate normality, but 

its values change with the increase of multivariate kurtosis (Brosseau-Liar & Savalei, 2014). 
It is also observed that the convergence rate in models 1 and 5 did not show direct proportion to the 

number of observations considered when the ML method was applied, and model 1 even revealed a decline in 

values with the increase of observations (Table 4). The complexity of the model, the low amount of data considered 

and the accentuated kurtosis and multivariate asymmetry interfere with convergence when using the ML estimate. 
Other factors that can influence the result may be associated with the population, the original data and 

also the degrees of freedom of the model. Correlations may also occur between the errors of variables and 

factors that can affect convergence. In these cases, it is recommended to use polychoric correlation as a 

measure of correlation, but Babakus,  Ferguson, and Jöreskog (1987) state that, although polychoric 

correlation produces better results concerning the precision of parameters and estimates, it produces poor 

good-fit statistics, which can lead to the rejection of a correctly specified model. Kurtosis and asymmetry, 

both with steep values, can also affect error estimates and chi-square statistics. The χ2 test is sensitive to the non-

normality of the data, the number of parameters and, especially, the sample size (Hair Jr., Gabriel, & Patel, 2014). 
Although model 4 presented kurtosis similar to model 5, it was not associated with high asymmetry, in 

addition to presented low degrees of freedom. Therefore, these factors, when combined, produce effects on 

the convergence of the iterative model, especially when the ML estimation method is applied. For the 

estimates by the GLS method, the convergence rates showed high numbers, even with few observations. It is 

observed that the accentuated kurtosis and asymmetry in some models, added to the non-normality of the 

data, did not cause problems in the convergence of the iterative algorithms. The values obtained for the 

convergence rate increase as the number of observations increases. It can be seen in Tables 3 and 5, reaching 

values close or equal to 100% in all models. The GLS method has few restrictions and is the best option to 

estimate model parameters, especially in cases with few observations. 
There is no consensus on the number of observations to be applied to SEM problems. The implications for 

using few observations vary from non-convergence on the model to parameter estimation with excessive bias. 

The errors result from the lack of sufficient information to compose a matrix that represents the real variances 

and covariances between the variables involved, generating not very robust measures for small samples. In 

models with small degrees of freedom and small sample sizes, we may also have model fit problems, often 

indicated by the RMSEA (Root Mean Square Error of Approximation) adequacy index (Kenny, Kaniskan, 

& McCoach, 2015). It is also observed that, from 20 observations, model 5 presented a null convergence 

rate, that is, none of the 100 simulations performed was successful in estimating the parameters.  
The small number of observations, the complexity of the model with 23 variables and 222 degrees of freedom 

and the number of parameters to be determined are factors that can lead to convergence problems. A model cannot 

do more than what is contained in the data itself. If the data is poor, in the sense of reflecting a substantial lack of 

reliability in evaluating aspects of a studied phenomenon, the results will be poor, regardless of the particularity 

of the models used (Raykov & Marcoulides, 2006). Remembering that it is not the individual observations, but the 

variances and covariances between the manifest variables that are the data for a structural equation model. 
The variance and covariance matrix observed for this number of observations does not reproduce the 

effects and relationships that should be evidenced in the sample. The distribution of data and the randomness 

of your choice can also be factors that define non-convergence. It is observed that, for the other models, 

convergence was obtained, with the same number of observations. Even with the possibility of an accentuated 

bias in the results, it is possible to stipulate quantities of observations from an established convergence rate, 

having, as a reference, the values obtained with the application of the GLS estimation method, since the ML 

method presented inconsistency in the models whose data did not show multivariate normality and also with 

marked kurtosis and marked asymmetry. 
Thus, the following values, presented in Table 6, can be proposed. 

Table 6. Minimum number of observations per convergence rate, estimated by gls method. 

Estimation Method for Generalized Least Squares 
Convergence Rate 

50% 60% 70% 80% 90% 
Number of observations - Normal data 40 50 60 80 110 

Number of observations - Non-normal data data 40 60 70 100 130 
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Conclusion 

The results obtained in the simulations showed a more satisfactory behavior for the GLS method, both for 

data with or without multivariate normality. Factors such as model complexity, degrees of freedom, number 

of indicators, large difference in variance between observable variables, can interfere in the convergence rate 

of iterative models, when estimated by ML. The kurtosis and marked asymmetry, when associated, also 

interfered in the convergence in both estimation methods. The results allowed to indicate minimum 

quantities of observations that can be admitted for each rate of convergence stipulated in the evaluated 

models, considering possible biases in the results. 
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