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ABSTRACT. Social media has significantly influenced modern lifestyle and the way in which most of the 

industries operate their business. Social media data refers to the contents created by users during their 

social interactions in the form of text, sound, visuals, etc. It has now evolved as the major source of 

information for different industry verticals like retail, marketing, advertising, tourism, hospitality, 

education, etc. The huge volume of data resulted in the necessity for better and efficient procedures for 

personalized information retrieval. Traditional data mining and information retrieval techniques based on 

content-based and/or collaborative filtering proved computationally costly and less scalable against the 

volume it must deal with. Adoption of clustering techniques is a potential solution for this problem as it 

can minimize the amount of data required to be managed in industrial applications like recommender 

systems. This empirical research focuses on evaluating multiple clustering algorithms with the goal of 

finding an ideal solution for clustering numerical data extracted from social media sources. Three different 

publicly available datasets with varying number of attributes and records from tourism domain are used for 

the experiments conducted as part of this work. 
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Introduction 

Be it any industry, social media offers quite a lot of opportunities for data scientists to perform their 

research. Social media interactions can be treated as a true reflection of the societal thought process on 

various matters (Kaplan & Haenlein, 2010). It contains huge volume of data about users and their information 

exchanges captured for a considerable period. Various personalized and contextualized recommender systems 

available across different industries leverages the predictive power of social media at large (Schoen et al., 2013; 

Renjith, Sreekumar, & Jathavedan, 2019; Renjith, Biju, & Mathew, 2020; Renjith, Sreekumar, & Jathavedan, 2021a, 

b). One of the key challenges in the area is the huge amount of data required to be processed. 

Collaborative and hybrid filtering algorithms (Renjith & Anjali, 2013a; Renjith & Anjali, 2014) are 

extensively used by conventional recommender systems in societal contexts for forecasting probable user 

actions and thereby generating contextualized recommendations. The challenge associated with this 

approach is the huge amount of data to be processed when social media data is considered as the source of 

information (Jiang, Qian, Mei, & Fu, 2016; Coelho, Nitu, & Madiraju, 2018). This leads to the concept of 

clustering input data and process only the relevant cluster. It is important to identify the best clustering 

approach to be adopted considering the datasets in consideration (Estivill-Castro, 2002). This empirical study 

compares the quality of output and performance of multiple clustering algorithms by applying on three real 

time datasets collected from travel and tourism industry. 

Section 2 describes the clustering concept with a quick review of various clustering algorithms and cluster 

evaluation techniques that are examined in this empirical study. Sections 3 reviews existing literature in this 

area and Section 4 describes on the methodology adopted, tools used, and datasets considered. Section 5 captures 

the quantitative and statistical data collated through the experiments. Section 6 discusses our observations and 

inferences, and Section 7 summarizes the paper along with a brief on our future research plans. 

https://orcid.org/0000-0003-1088-0825
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Antecedents 

Clustering 

In the world of machine learning, clustering is the process of creating data segments within a dataset with 

similar elements. The aim of clustering algorithms is to form clusters with the highest intra-cluster similarity 

and the lowest inter-cluster similarity. Similarity is calculated in terms of a distance measure with less 

distance indicating more similarity. Typical distance measures in consideration include Euclidean, Cosine, 

Manhattan, Jaccard and Minkowski distances (Renjith & Anjali, 2013b). 

K-means algorithm 

K-means (Hartigan & Wong, 1979; MacQueen, 1967) is the most commonly used partitioning clustering 

technique. It groups a given dataset into k dissimilar segments via an iterative process. The mean value of 

elements present in a cluster is labeled as the centroid. The aim of the algorithm is to ensure minimum within 

cluster variation for each cluster being formed. The within cluster variation at cluster level and total within 

cluster variation is calculated as Equation (1) and (2) respectively. 

𝑊𝐶𝑉(𝐶𝑘) = ∑ (𝐸𝑖 − 𝜇𝑘)2
𝐸𝑖∈𝐶𝑘

       (1) 

𝑇𝑜𝑡𝑎𝑙 𝑊𝐶𝑉 = ∑ 𝑊𝐾
𝑘=1 𝐶𝑉(𝐶𝑘) = ∑ ∑ (𝐸𝑖 − 𝜇𝑘)2

𝐸𝑖∈𝐶𝑘
𝐾
𝑘=1     (2) 

𝐸𝑖 is an element in cluster, 𝐶𝑘 with 𝜇𝑘 being the centroid and 𝐾 being the total count of clusters formed. 

K-means algorithm is considered as the simplest, less complex, easy to implement, and efficient clustering 

approach and thereby is the most popular one. The major challenge with this algorithm is its low tolerance 

towards the existence of noise or outliers. Other limitations include the prerequisite to specify the cluster 

count in advance, sensitiveness for initialization, and its inability to deal with non-convex cluster shapes. 

K-medoids algorithm 

K-medoids algorithm (Kaufman & Rousseeuw, 1987; Kaufman & Rousseeuw, 1990) works like k-means 

algorithm but differs in the logic used for determining the centroids. While k-means algorithm does not 

require an actual element from the dataset to mark as centroid, k-medoids algorithm always assign an element 

from the population as the medoid whose average dissimilarity with other cluster elements is the lowest. 

Partitioning around Medoids (PAM) is the most used k-medoids procedure. PAM algorithm iteratively 

identifies k medoids from the elements of dataset using an objective function and assign other elements to 

the nearest medoids for form clusters. 

Compared to k-means algorithm, k-medoids algorithm is less susceptible to the presence of outliers. While 

k-means algorithm focuses on minimizing the total squared error, k-medoids attempts to minimize the sum 

of dissimilarities among entities within a cluster and its centroid. The main constraint with the algorithm is 

its high time complexity while comparing with k-means algorithm. 

Clustering large applications (CLARA) 

CLARA (Clustering for Large Applications) algorithm (Kaufman & Rousseeuw, 1987; Park & Jun, 2009) is 

an expansion of k-medoids algorithm to handle datasets having large volume. The CLARA algorithm selects 

a sample from the population to apply PAM procedure to determine best possible set of medoids. The 

goodness of these medoids are then verified against the complete population. The sampling and clustering 

process are repeated to minimize the sampling bias. This approach helps in reducing the limitations of PAM 

like lengthy processing time and high memory needs. 

The major advantage of CLARA algorithm is its ability to deal with larger datasets while preserving the 

benefits of k-Medoids or PAM. The key drawback of the algorithm is its dependency on the sample size being 

chosen. Also, any probable bias in selecting the sample may influence the overall quality of the clustering 

process. 

Fuzzy C-means algorithm 

Fuzzy C-means algorithm (FCM) (Bezdek, Ehrlich, & Full, 1984) is a soft clustering technique with every 

element in the population can belong to each cluster formed to a certain magnitude. Based on the similarity 

or distance of an element with the centroid of a cluster, the extent of belonging of it to the cluster is 
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calculated. If the element is nearer to a centroid, its belonging to the corresponding cluster will be high, of 

course with the cumulative membership value for an element at any point of time is kept as 100% or 1. 

Mathematically, the belongingness of an element in clusters can be denoted as in Equation (3). 

∑ 𝜇𝑘
𝐾
𝑘=1 (𝐸𝑖) = 1         (3) 

K is cluster count and 𝜇𝑘 is the extent of belongingness of an element, 𝐸𝑖 in cluster, 𝐶𝑘. 

Fuzzy C-means algorithm is the best option to select while the dataset contains overlapped clusters. As it 

allows partial belongings of entities in multiple clusters, the algorithm always converges. However, this 

results in high computational time requirements. As like k-means algorithm, FCM also has the constraint of 

specifying cluster count in advance and has high sensitiveness for initialization.  

Agglomerative nesting 

Agglomerative nesting aka hierarchical agglomerative clustering (AGNES or HAC) (Kaufman & 

Rousseeuw, 1990; Zepeda-Mendoza & Resendis-Antonio, 2013) is the hierarchical clustering strategy which 

adopts a bottom-up approach. This algorithm commences with every element in the dataset as an individual 

cluster. At each succeeding phase, the algorithm successively merges the closest pair of clusters till one 

cluster remains. The algorithm has to take irreversible clustering decisions based on local patterns at each 

stage as it lacks global distribution details of the dataset. Agglomerative nesting is the widely used 

hierarchical clustering algorithm in practice. 

Hierarchical clustering algorithm does not require upfront information on the cluster count. 

Agglomerative nesting is easy to implement and could yield best results in most of the scenarios. Major 

challenges include relatively high time complexity (O(n2 log n)) and difficulty in identifying correct number 

of clusters from dendrogram. Also  

Divisive analysis 

Divisive Analysis aka hierarchical divisive clustering (DIANA or HDC) (Kaufman & Rousseeuw, 1990; 

Jayaprada, Amarapini, & Gayathri, 2014) is the hierarchical clustering strategy which adopts a top-down 

approach. The clustering process begins from the top with all elements considered as members of one group. 

This cluster is then sliced using a flat clustering algorithm like k-means. These steps are recursively performed 

until each element become a member of a singleton cluster.  

The implementation of top-down approach is complicated in comparison with bottom-up approach as it 

require a separate algorithm to slice the clusters. However, this clustering model possess the advantage of 

having complete knowledge of the global distribution of dataset while taking clustering decisions. 

Expectation-maximization 

The expectation-maximization (EM) clustering technique (Bouveyron, Girard, & Schmid, 2007) works like 

k-means algorithm, but with the key difference of not performing hard-assignment of elements to clusters 

and rather do a soft assignment. EM clustering algorithm determines the probability of cluster belongingness 

(expectation) based on probability distributions. The aim of EM clustering algorithm is to ensure maximum 

overall probability for the final set of clusters. The algorithm assumes that dataset is always a subset of 

Gaussian distribution mixture. 

The EM clustering is widely used for determining the missing data in a sample. In EM algorithm the 

likelihood always increases with the number of iterations. It leverages both forward and backward 

probabilities and suffers with slow convergence to the local optima. 

Related works 

There are some good review articles available which mainly talk about the challenges and approaches to 

address those in the big data context. (Parker, 2012) explained the differences between large scale machine 

learning and standard supervised classification scenario. (Jagadish et al., 2014) articulated various challenges 

in leveraging the full potential of big data like inconsistency, heterogeneity, incompleteness, privacy, 

timeliness, visualizations, etc. (Grolinger et al., 2014) described various issues with MapReduce while 

handling big data. (Najafabadi et al., 2015) narrated on how data analytics problems can be tackled with the 

help of deep learning and the improvements required in specific areas of deep learning to perform better. 

(L’Heureux, Grolinger, Elyamany, & Capretz, 2017) shared a good composition of the restraints in performing 
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machine learning approaches with big data and their cause-effect relationship with four dimensions of big 

data - i.e., volume, variety, velocity, and veracity. 

(Xu & Wunsch II, 2005) did an extensive survey of clustering algorithms, but lacked on covering the big 

data or social media context in it. (Shirkhorshidi, Aghabozorgi, Wah, & Herawan, 2014) provided an academic 

review of various clustering algorithms to handle big data concerns. Other theoretical works regarding the 

usage of clustering algorithms in the context of big data include the literatures from (Sajana, Rani, & 

Narayana, 2016), (Ajin & Kumar, 2016), and (Dave & Gianey, 2016). The significant works in empirical 

analysis of clustering algorithms are limited. (Wei, Lee, & Hsu, 2003) conducted an experimental study of the 

data characteristics of CLARA, CLARANS, GACR, and GAC-RARw clustering algorithms. (Fahad et al., 2014) 

attempted a comparison of five candidate clustering algorithms using ten different datasets - eight of which 

are simulated and two are publicly available datasets used in multiple researches. 

Latest studies (Shin, 2021a, b, c, d, e, f) in the area of algorithmic journalism give high focus to algorithmic 

trust, which can be considered as a measure of the digital affordance to algorithm based offerings. It is 

important to establish sufficient level of algorithmic trust before finalizing an approach in artificial 

intelligence based systems. It is observed that there are only a limited number of empirical analysis are 

conducted on clustering algorithms in the past focusing on a particular industry segment. Few attempts of 

this type include experimental works performed by S. Renjith et al. by using datasets from tourism domain 

(Renjith, Sreekumar, & Jathavedan, 2018; Renjith, Sreekumar, & Jathavedan, 2020a, b, c). Our attempt in this 

work is to perform an empirical analysis of the core clustering algorithms explicitly focusing on real datasets 

from travel and tourism domain. 

Methodology 

Approach 

This research is conducted using a three-stage approach as depicted in Figure 1. The same process is 

repeated for all datasets in consideration to arrive at the inferences. 

 
Figure 1. Three-stage research methodology adopted in this work. 

Determination of k 

Partitioning, hierarchical and expectation-maximization clustering techniques require to determine the 

optimal cluster count (k). However, determination of k is subjective and highly dependent on the similarity 

measures chosen and parameters considered for clustering. We chose to use the three most common 

algorithms to determine k - two direct methods (Elbow Method (Thorndike, 1953), Average Silhouette Method 

(Rousseeuw, 1987)) and one statistical testing method (GAP Statistic Method (Tibshirani, Walther, & Hastie, 

2001)). Direct methods work by optimizing a criterion like intra-cluster sum of squares in Elbow Method and 

statistical testing method compares evidences against a null hypothesis. 
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Clustering 

We have experimented with four partitioning clustering algorithms (k-means (Hartigan & Wong 1979; 

MacQueen, 1967), k-medoids (Kaufman & Rousseeuw, 1987; Kaufman & Rousseeuw, 1990), CLARA 

(Kaufman & Rousseeuw, 1987; Park & Jun, 2009), and fuzzy c-means (Bezdek et al., 1984)), two 

hierarchical clustering algorithms (agglomerative nesting (Kaufman & Rousseeuw, 1990; Zepeda-

Mendoza & Resendis-Antonio, 2013), and divisive analysis (Kaufman & Rousseeuw, 1990; Jayaprada et 

al., 2014)), and one model-based high dimensional data clustering algorithm (expectation - maximization 

(Bouveyron et al., 2007)). 

Cluster evaluation 

We have validated the clustering outputs using three popular internal evaluation criteria namely 

Silhouette Index (Rousseeuw, 1987), Dunn Index (Dunn, 1973), Calinski-Harabasz Index (Calinski & 

Harabasz, 1974) and Davies-Bouldin Index (Davies & Bouldin, 1979). 

Tools used 

R programming language (R Core Team, 2009; Tierney, 2012), the free open-source programming language for 

statistical computing and RStudio (Racine, 2011), its integrated development environment are extensively leveraged 

in this experimental analysis.  The specific packages that are used in this research are captured in Table 1. 

Table 1. Purpose of R packages used in the analysis. 

Package Purpose 

stats k-means algorithm 

cluster Partition around medoids (k-medoids or PAM) and Clustering for Large Applications (CLARA) algorithms 

ppclust Fuzzy c-means (FCM) algorithm 

factoextra Agglomerative nesting (AGNES) and Divisive analysis (DIANA) algorithms 

HDclassif Expectation - Maximization algorithm (Bergé, Bouveyron, & Girard, 2012) 

NbClust Get optimal count of clusters (Charrad, Ghazzali, Boiteau, & Niknafs, 2014) 

clusterCrit Internal evaluation of clusters 

stats k-means algorithm 

 

Datasets used 

We leveraged three real-world datasets from travel and tourism domain that are publicly available on The 

UCI Machine Learning Repository (Renjith & Anjali, 2014; Renjith, Sreekumar, & Jathavedan, 2018) for our 

experiments and recorded the results. These datasets correspond to the user interest details collated from 

destination reviews, ratings on attractions visited, and feedbacks provided on different point of interests from 

three different geographies.  Subsequent sections depict more specifics of the datasets in consideration. 

Dataset 1 

High level dataset description for dataset 1 is provided in Table 2. This dataset was used by the research 

team to evaluate collaborative filtering technique and was derived from reviews on points of interest 

published by 249 top contributing members of holidayiq.com in 2014 (Renjith & Anjali, 2014). Reviews 

spanning across 6 categories mentioned in Table 2 about the point of interests located in South India were 

collated and the number of reviews per category per reviewer is captured. Personally identifiable information 

(PII) is masked in the dataset to ensure anonymity. 

Dataset 2 

High level dataset description for dataset 2 is provided in Table 3. Dataset 2 is collated by crawling 

TripAdvisor.com (Renjith, Sreekumar, & Jathavedan, 2018). Destination reviews falling under 10 categories 

specified in Table 3 across East Asian countries are captured. Each user rating is recorded in a scale of 0 to 4 

and the average rating is calculated per category per user. Personally identifiable information (PII) is not 

captured in the dataset. 
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Table 2. Dataset description for dataset 1. 

Description User interest information derived from traveler reviews on tourist destinations from South India 

Record Count 249 

Count of Attributes 1 user attribute and 6 user interest attributes 

Details of Attributes 

Attrib01 : Unique user identification number 

Attrib02 : Count of reviews published on sports facilities. 

Attrib03 : Count of reviews published on religious destinations. 

Attrib04 : Count of reviews published on natural bodies like beach, lake, etc. 

Attrib05 : Count of reviews published on cinemas, exhibitions, etc. 

Attrib06 : Count of reviews published on shopping destinations. 

Attrib07 : Count of reviews published on parks or picnic destinations. 

 

Table 3. Dataset description for dataset 2. 

Description User interest information derived from destination reviews on tourist destinations across East Asian countries 

Record Count 980 

Count of Attributes 1 user attribute and 10 feedback attributes 

Details of Attributes 

Attrib01 : Unique user identification number 

Attrib02 : Avg. user rating on art galleries 

Attrib03 : Avg. user rating on dance clubs 

Attrib04 : Avg. user rating on juice bars 

Attrib05 : Avg. user rating on restaurants 

Attrib06 : Avg. user rating on museums 

Attrib07 : Avg. user rating on resorts 

Attrib08 : Avg. user rating on parks/picnic spots 

Attrib09 : Avg. user rating on beaches 

Attrib10 : Avg. user rating on theaters 

Attrib11 : Avg. user rating on religious institutions 

 

Dataset 3 

High level dataset description for dataset 3 is provided in Table 4. Dataset 3 is collated by taking user 

ratings from Google reviews (Renjith, Sreekumar, & Jathavedan, 2018). Ratings on points of interest from 24 

categories mentioned in Table 4 throughout Europe are captured. Average user rating per category is 

calculated and recorded (Google ratings range from 1 to 5). No personally identifiable information (PII) is 

stored in our systems. 

Determination of k 

Three indices considered by us in this paper to determine optimal cluster count (K) are Elbow Method, 

Average Silhouette Method, and one GAP Statistic Method. We used the functions available in the R package 

factoextra for capturing and plotting the criteria considered. 

Empirical research 

Elbow method 

Elbow method (Thorndike, 1953) is proposed based on the clustering goal of achieving the lowest total 

within-cluster sum of square (Total WSS). This approach calculates the ‘Total WSS’ as a function of cluster 

count for the dataset in consideration. The optimal cluster count, K' is determined through iteration when 

there is not much improvement to ‘Total WSS’ by choosing (K'+1) clusters. Mathematically, the ‘Total WSS’ 

is represented as Equation (4). 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑆𝑆 = 𝑓(𝑘) = ∑ ∑ (𝐸𝑖∈𝐶𝑘
𝐾
𝑘=1 𝜇𝑘 − 𝐸𝑖)

2     (4) 

K is the number of clusters considered in each iteration and 𝐸𝑖 is an element of the cluster, 𝐶𝑘 having centroid, 𝜇𝑘. 
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The plot of ‘Total WSS’ against number of clusters form the shape of an elbow and hence the approach is 

named so. Figure 2 represents the elbow plots for the three datasets considered in this paper. 

Table 4. Dataset description for dataset 3. 

Description Average user rating on different types of tourist destinations from Europe 

Record Count 5456 

Count of Attributes 1 user attribute and 24 rating attributes 

Details of Attributes 

Attrib01 : Unique user identification number 

Attrib02 : Avg. user feedback score for churches 

Attrib03 : Avg. user feedback score for resorts 

Attrib04 : Avg. user feedback score for beaches 

Attrib05 : Avg. user feedback score for parks 

Attrib06 : Avg. user feedback score for theatres 

Attrib07 : Avg. user feedback score for museums 

Attrib08 : Avg. user feedback score for malls 

Attrib09 : Avg. user feedback score for zoos 

Attrib10 : Avg. user feedback score for restaurants 

Attrib11 : Avg. user feedback score for pubs/bars 

Attrib12 : Avg. user feedback score for local services 

Attrib13 : Avg. user feedback score for burger/pizza shops 

Attrib14 : Avg. user feedback score for hotels/other lodgings 

Attrib15 : Avg. user feedback score for juice bars 

Attrib16 : Avg. user feedback score for art galleries 

Attrib17 : Avg. user feedback score for dance clubs 

Attrib18 : Avg. user feedback score for swimming pools 

Attrib19 : Avg. user feedback score for gyms 

Attrib20 : Avg. user feedback score for bakeries 

Attrib21 : Avg. user feedback score for beauty & spas 

Attrib22 : Avg. user feedback score for cafes 

Attrib23 : Avg. user feedback score for viewpoints 

Attrib24 : Avg. user feedback score for monuments 

Attrib25 : Avg. user feedback score for gardens 

 
Figure 2. Determination of optimal cluster count using Elbow method. 

Average silhouette method 

Average silhouette method (Rousseeuw, 1987) is based on the clustering objective of having maximum 

Average Silhouette. This approach calculates the ‘Average Silhouette’ as a function of cluster count for the 

dataset in consideration.  The optimal cluster count, 𝐾′ is identified when the maximum value is achieved for 

‘Average Silhouette’. Mathematically, the ‘Average Silhouette’ is represented as Equation (5). 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 =  𝑓(𝐾) =
1

𝐾
∑ 𝑆𝑘

𝐾
𝑘=1       (5) 

𝐾 is the number of clusters considered in each iteration and 𝑆𝑘 is the cluster mean Silhouette, which is 

calculated through steps Equation (6) to (10). 

For each element, 𝐸𝑖 determine the average dissimilarity, 𝛼(𝑖) with all other elements of the cluster, 𝐶𝑘 to 

which it belongs to 

𝛼(𝑖) =
1

𝑛𝑘−1
∑ 𝑑𝑖′∈𝐼𝑘 𝑎𝑛𝑑 𝑖′ ≠𝑖 (𝐸𝑖 , 𝐸𝑖′)      (6) 
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For all other clusters, 𝐶𝑘′ to which element, 𝐸𝑖 does not belong to, determine the average dissimilarity, 

𝛿(𝐸𝑖 , 𝐶𝑘′) of the element, 𝐸𝑖 to the elements of every other clusters, 𝐶𝑘′. 

𝛿(𝐸𝑖 , 𝐶𝑘′) =
1

𝑛𝑘′
∑ 𝑑𝑖′∈𝐼𝑘′

(𝐸𝑖 , 𝐸𝑖′)       (7) 

The dissimilarity between element 𝐸𝑖 and the nearest cluster to which it does not belong to, 𝛽(𝑖) is 

computed as 

𝛽(𝑖) = min𝑘′≠ 𝑘𝛿(𝐸𝑖 , 𝐶𝑘′)        (8) 

The Silhouette width for the element 𝐸𝑖 is calculated as 

𝑠(𝑖) =
𝛽(𝑖)−𝛼(𝑖)

max(𝛼(𝑖),𝛽(𝑖))
        (9) 

The cluster mean Silhouette, 𝑆𝑘 is computed as 

𝑆𝑘 =
1

𝑛𝑘
∑ 𝑠𝑖∈𝐼𝑘

(𝑖)        (10) 

Figure 3 represents the Average silhouette plots of the three datasets considered in this paper. 

 
Figure 3. Determination of optimal cluster count using Average silhouette method. 

Gap statistic method 

Gap statistic method (Tibshirani, Walther, & Hastie, 2001) calculates ‘total intra-cluster variation’ as a function 

of cluster count for the dataset and compares it against anticipated values for null reference distribution of all the 

elements in the dataset. The optimal cluster count, 𝐾′ is calculated as in Equation (11) to (13). 

𝐾′ = min(𝑘),  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐺𝑎𝑝(𝑘)  ≥ 𝐺𝑎𝑝(𝑘 + 1) − 𝑠𝑘+1    (11) 

𝐺𝑎𝑝𝑛(𝑘) = 𝐸𝑛
∗{log 𝑊𝑘} − log 𝑊𝑘       (12) 

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟,  𝑠𝑘 = √1 +
1

𝐵 𝑠𝑑(𝑘)
        (13) 

𝑊𝑘 is the variance quantity, 𝐵 is the Monte Carlo and  𝑠𝑑(𝑘) is the standard deviation. 

Figure 4 represents the Gap Statistic plots for the three datasets considered in this paper. 

 
Figure 4. Determination of optimal cluster count using Gap Statistic method. 
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Clustering 

Figures 5, 6, 7, 8, 9, 10 and 11 depicts the two dimensional plots of the resulting clusters on the three 

datasets in consideration. 

 
Figure 5. k-means clustering of three datasets in consideration. 

 
Figure 6. k-medoids (PAM) clustering of three datasets in consideration. 

 
Figure 7. CLARA clustering of three datasets in consideration. 

 
Figure 8. Fuzzy c-means clustering of three datasets in consideration. 
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Figure 9. Agglomerative hierarchical clustering of three datasets in consideration. 

 
Figure 10. Divisive Hierarchical clustering of three datasets in consideration. 

 
Figure 11. High Dimensional Data Clustering (using Expectation - maximization) of three datasets in consideration. 

Cluster evaluation 

Cluster evaluation is the process of measuring the quality or goodness of the clustering process. The key 

approach in evaluating clusters is internal evaluation, where the clustering accuracy is measured as a quality 

index. There are multiple internal evaluation measures proposed by various researchers and the key 

approaches include Silhouette index (Rousseeuw, 1987), Dunn index (Dunn, 1973), Calinski-Harabasz index 

(Calinski & Harabasz, 1974) and Davies-Bouldin index (Davies & Bouldin, 1979). Tables 5, 6 and 7 summarize 

complete set of observations captured using the R package clusterCrit for each clustering experiments on all 

three datasets. 

Table 5. Cluster evaluation details for dataset 1. 

Index Rule k-means k-medoids CLARA FCM AGNES DIANA EM 

Ball-Hall maximum difference 3108.694 3408.315 3286.101 3316.374 3855.931 3670.431 5023.637 

Banfeld-Raftery minimum 1997.632 2012.631 2015.598 2003.073 2083.153 2043.688 2136.191 

C minimum 0.109289 0.156458 0.106268 0.111697 0.202202 0.132742 0.360147 

Calinski-Harabasz maximum 149.7532 126.6908 137.2106 145.1667 66.9698 110.8282 35.9588 

Davies-Bouldin minimum 1.039654 1.169786 1.032207 1.071810 1.352548 1.104113 2.913632 
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Det Ratio minimum difference -9.2397 -7.3837 -8.4748 8.5860 -6.3090 7.9184 4.6422 

Dunn maximum 0.053582 0.047632 0.065719 0.044738 0.084775 0.056638 0.026759 

Baker-Hubert Gamma maximum 0.749760 0.639956 0.753406 0.743996 0.569685 0.700797 0.240393 

G plus minimum 0.058491 0.081130 0.059737 0.058632 0.107293 0.074145 0.182447 

GDI maximum 0.053582 0.047632 0.065719 0.044738 0.084775 0.056638 0.026759 

GDI maximum 0.312923 0.234861 0.380998 0.253149 0.413514 0.351454 0.152812 

GDI maximum 0.108711 0.081032 0.132948 0.088336 0.143536 0.122316 0.053064 

GDI maximum 1.010285 1.125364 1.056989 1.056989 1.014902 1.010285 0.806539 

GDI maximum 5.900093 5.548888 6.127773 5.980983 4.950473 6.269047 4.605828 

GDI maximum 2.049721 1.914494 2.138273 2.087042 1.718371 2.181810 1.599364 

GDI maximum 0.492003 0.548003 0.524025 0.517120 0.494528 0.512719 0.349893 

GDI maximum 2.873311 2.702065 3.037971 2.926124 2.412203 3.181536 1.998103 

GDI maximum 0.998202 0.932274 1.060093 1.021060 0.837306 1.107267 0.693837 

GDI maximum 0.399303 0.445758 0.419673 0.423407 0.356309 0.408797 0.124991 

GDI maximum 2.331941 2.197923 2.433007 2.395849 1.738001 2.536676 0.713777 

GDI maximum 0.810128 0.758334 0.848993 0.836023 0.603282 0.882837 0.247858 

GDI maximum 0.191100 0.215337 0.221162 0.210940 0.226125 0.229717 0.211111 

GDI maximum 1.116031 1.061772 1.282158 1.193606 1.102987 1.425447 1.205570 

GDI maximum 0.387715 0.366336 0.447406 0.416504 0.382860 0.496097 0.418632 

Ksq DetW maximum difference 5.58.E+28 6.98.E+28 6.09.E+28 -6.01.E+28 8.17.E+28 -6.51.E+28 -1.11.E+29 

Log Det Ratio minimum difference NaN NaN NaN 535.384 NaN 515.229 382.264 

Log SS Ratio minimum difference 0.196804 0.029565 0.109333 0.165698 -0.607943 -0.104203 -1.229810 

McClain-Rao minimum 0.569550 0.612671 0.571827 0.569349 0.665627 0.600086 0.836456 

PBM maximum 3953.264 2874.049 3889.564 3352.529 3227.626 2942.661 1623.846 

Point-Biserial maximum -27.09968 -23.18306 -27.97701 -26.60413 -21.69544 -26.58485 -9.37878 

Ray-Turi minimum 0.316503 0.344230 0.328744 0.313391 0.575935 0.352242 3.990921 

Ratkowsky-Lance maximum 0.431878 0.414224 0.419599 0.429530 0.370675 0.416439 0.244542 

Scott-Symons minimum NaN NaN NaN 7472.943000 NaN NaN NaN 

SD minimum 0.444982 0.494001 0.463430 0.475443 0.595929 0.560087 0.745296 

SD minimum 0.016679 0.016177 0.016581 0.016061 0.021395 0.015918 0.055505 

S Dbw minimum 0.444982 0.827334 1.606287 Inf 1.462595 5.810087 1.678630 

Silhouette maximum 0.360524 0.305478 0.353079 0.323384 0.317772 0.311686 0.148054 

Tau maximum 0.512631 0.429613 0.524413 0.503537 0.402293 0.493362 0.166613 

Trace W maximum difference 783411.6 855770.7 821173.4 796810.6 1124800.0 913824.9 1344235.0 

Trace WiB maximum difference 4.160582 3.467845 3.866838 3.962628 3.601713 4.173832 2.394011 

Wemmert-Gan carski maximum 0.476168 0.420121 0.460678 0.457101 0.338303 0.407069 0.118968 

Xie-Beni minimum 17.576710 30.14763 13.40604 28.07055 10.17403 18.34990 87.07315 

Table 6. Cluster evaluation details for dataset 2. 

Index Rule k-means k-medoids CLARA FCM AGNES DIANA EM 

Ball-Hall maximum difference 412.059 408.698 419.786 413.067 1251.769 1620.499 1687.000 

Banfeld-Raftery minimum 5754.738 5746.353 5762.442 5753.021 7146.294 7034.551 7310.028 

C minimum 0.062866 0.065830 0.070027 0.063380 0.390822 0.313280 0.387854 

Calinski-Harabasz maximum 1338.7110 1322.6970 1290.2630 1333.2070 91.7943 147.9322 32.5353 

Davies-Bouldin minimum 0.829626 0.850951 0.872814 0.844661 4.241983 5.656803 5.532857 

Det Ratio minimum difference -9.6247 9.3921 9.0682 -9.5368 -9.4520 -25.2786 4.4471 

Dunn maximum 0.010938 0.016630 0.009694 0.009391 0.004871 0.004938 0.004503 

Baker-Hubert Gamma maximum 0.816273 0.808407 0.795785 0.814896 0.165908 0.291998 0.107332 

G plus minimum 0.036715 0.037223 0.039204 0.036508 0.208229 0.174128 0.173479 

GDI maximum 0.010938 0.016630 0.009694 0.009391 0.004871 0.004938 0.004503 

GDI maximum 0.083379 0.123971 0.075915 0.070381 0.038030 0.038888 0.044819 

GDI maximum 0.029635 0.044156 0.027170 0.025084 0.014129 0.014456 0.015599 

GDI maximum 0.865136 0.841024 0.684735 0.865136 0.550273 0.896060 0.914911 

GDI maximum 6.595021 6.269512 5.362181 6.483784 4.296002 7.057368 9.106571 

GDI maximum 2.344042 2.233076 1.919110 2.310841 1.596043 2.623395 3.169596 

GDI maximum 0.348413 0.337470 0.307879 0.349650 0.202104 0.216721 0.188625 

GDI maximum 2.655986 2.515712 2.411012 2.620460 1.577830 1.706897 1.877479 

GDI maximum 0.944007 0.896047 0.862895 0.933940 0.586193 0.634495 0.653468 

GDI maximum 0.319263 0.295566 0.268033 0.308509 0.049881 0.036296 0.043258 

GDI maximum 2.433774 2.203327 2.098970 2.312131 0.389426 0.285867 0.430568 

GDI maximum 0.865027 0.784781 0.751216 0.824051 0.144679 0.106264 0.149862 

GDI maximum 0.123927 0.123076 0.117667 0.125257 0.130287 0.132107 0.128966 

GDI maximum 0.944711 0.917482 0.921449 0.938741 1.017159 1.040471 1.283662 

GDI maximum 0.335775 0.326789 0.329784 0.334570 0.377893 0.386769 0.446786 
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Ksq DetW maximum difference 8.52.E+19 -8.73.E+19 -9.04.E+19 8.60.E+19 8.67.E+19 3.24.E+19 -1.84.E+20 

Log Det Ratio minimum difference NaN 2195.069 2160.676 NaN NaN NaN 1462.398 

Log SS Ratio minimum difference 1.414612 1.402578 1.377751 1.410492 -1.265300 -0.788096 -2.302524 

McClain-Rao minimum 0.367882 0.370062 0.375365 0.367628 0.813124 0.708248 0.914219 

PBM maximum 4654.983 4288.195 4032.787 4472.888 374.272 239.935 80.346 

Point-Biserial maximum -17.95063 -17.46502 -17.12382 -17.76397 -5.38039 -8.69440 -2.02907 

Ray-Turi minimum 0.253663 0.298844 0.323877 0.272556 12.228300 21.023680 14.771200 

Ratkowsky-Lance maximum 0.218594 0.217163 0.216372 0.217995 0.243366 0.292046 0.141017 

Scott-Symons minimum NaN NaN NaN NaN NaN NaN NaN 

SD minimum 0.173550 0.173544 0.178539 0.174266 0.629842 0.835184 0.898221 

SD minimum 0.065546 0.071095 0.073397 0.067935 0.239807 0.286920 0.201936 

S Dbw minimum 2.160563 2.334583 1.959573 2.304092 4.564995 6.526231 7.487439 

Silhouette maximum 0.385259 0.371411 0.353295 0.377094 0.076218 -0.058792 0.029971 

Tau maximum 0.516042 0.503921 0.493095 0.511805 0.117232 0.204792 0.066915 

Trace W maximum difference 369788.7 373381.8 380877.8 371015.8 1475195.0 1300210.0 1719471.0 

Trace WiB maximum difference 8.475324 8.189494 7.884873 8.338135 4.168003 6.162842 2.878671 

Wemmert-Gan carski maximum 0.520069 0.514221 0.497763 0.516158 0.001709 0.000000 0.008162 

Xie-Beni minimum 216.125400 94.39833 247.59490 294.15460 1282.19600 1136.05800 1363.25800 

Table 7. Cluster evaluation details for dataset 3. 

Index Rule k-means k-medoids CLARA FCM AGNES DIANA EM 

Ball-Hall maximum difference 23.301 22.290 24.320 22.069 25.389 24.444 23.157 

Banfeld-Raftery minimum 16980.860 17080.530 17380.240 -Inf 18250.960 17684.940 17418.150 

C minimum 0.151689 0.210255 0.201569 0.263825 0.215935 0.181886 0.287781 

Calinski-Harabasz maximum 550.3073 507.4880 450.7393 470.4533 261.3554 393.6296 386.4883 

Davies-Bouldin minimum 2.105948 2.134367 2.500716 1.963873 2.104312 2.020829 2.834875 

Det Ratio minimum difference 1486.8010 618.5754 336.1966 4.6127 676.4823 288.4327 184.1171 

Dunn maximum 0.005693 0.010780 0.007623 0.001034 0.080858 0.012336 0.034581 

Baker-Hubert Gamma maximum 0.723710 0.602866 0.625110 0.424875 0.523657 0.624652 0.437096 

G plus minimum 0.033017 0.046522 0.047721 0.143781 0.118866 0.072171 0.072640 

GDI maximum 0.005693 0.010780 0.007623 0.001034 0.080858 0.012336 0.034581 

GDI maximum 0.022423 0.038339 0.028310 0.003905 0.295241 0.044018 0.133730 

GDI maximum 0.007825 0.013596 0.009957 0.001374 0.103715 0.015526 0.047017 

GDI maximum 0.886049 0.965920 0.911923 0.697276 0.917979 0.978892 0.681791 

GDI maximum 3.490176 3.435305 3.386773 2.632919 3.351862 3.493016 2.636612 

GDI maximum 1.218022 1.218263 1.191174 0.926316 1.177476 1.232025 0.926984 

GDI maximum 0.521696 0.509647 0.546404 0.476318 0.579940 0.597573 0.445269 

GDI maximum 2.054980 1.812563 2.029278 1.798582 2.117565 2.132342 1.721935 

GDI maximum 0.717159 0.642790 0.713725 0.632779 0.743880 0.752101 0.605401 

GDI maximum 0.278428 0.261215 0.206479 0.308091 0.276217 0.326578 0.153811 

GDI maximum 1.096736 0.929015 0.766836 1.163354 1.008565 1.165340 0.594814 

GDI maximum 0.382745 0.329457 0.269707 0.409292 0.354299 0.411028 0.209126 

GDI maximum 0.284736 0.278561 0.293977 0.352395 0.260646 0.325292 0.217224 

GDI maximum 1.121586 0.990706 1.091796 1.330648 0.951711 1.160751 0.840044 

GDI maximum 0.391417 0.351334 0.384000 0.468150 0.334326 0.409410 0.295344 

Ksq DetW maximum difference 2.67.E+89 6.42.E+89 1.18.E+90 1.21.E+91 5.87.E+89 1.38.E+90 2.16.E+90 

Log Det Ratio minimum difference 39852.710 35068.000 31741.350 8341.192 35556.240 30905.300 28456.160 

Log SS Ratio minimum difference -0.346617 -0.427621 -0.546205 -1.757077 -1.091213 -0.681683 -0.699992 

McClain-Rao minimum 0.717476 0.759115 0.758793 0.852714 0.824172 0.777429 0.822768 

PBM maximum 2.263 2.342 2.612 3.301 2.423 2.528 2.211 

Point-Biserial maximum -0.87507 -0.73370 -0.76860 -0.68436 -0.82559 -0.89172 -0.56328 

Ray-Turi minimum 1.389454 1.830232 2.960701 1.448698 1.870234 1.346409 4.359012 

Ratkowsky-Lance maximum 0.223888 0.213439 0.208174 0.213276 0.192858 0.208925 0.201579 

Scott-Symons minimum NaN NaN NaN -Inf NaN NaN NaN 

SD minimum 0.768706 0.685568 0.737399 0.608274 0.839776 0.826652 0.811169 

SD minimum 0.418255 0.505083 0.652722 0.320192 0.482594 0.398025 0.786303 

S Dbw minimum NaN NaN NaN NaN NaN NaN NaN 

Silhouette maximum 0.149896 0.138825 0.129434 NaN 0.158646 0.163184 0.132553 

Tau maximum 0.353806 0.291808 0.315408 0.300432 0.369940 0.387363 0.222056 

Trace W maximum difference 123845.9 127970.2 133879.1 180303.3 158266.9 140403.3 141264.1 

Trace WiB maximum difference 16.287450 12.412110 10.943120 3.603373 13.819290 12.616240 9.776459 

Wemmert-Gan carski maximum 0.238891 0.224468 0.180752 0.190689 0.204696 0.211226 0.138728 

Xie-Beni minimum 3323.916000 1074.63400 2172.26900 128586.70000 21.82478 943.66480 86.23692 
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Silhouette index 

The Silhouette Index (SI) is a cluster evaluation criterion which represents the quality of clustering by 

indicating how well the elements in the dataset is clustered (Rousseeuw, 1987). Alternatively, it indicates how 

similar an element is to the cluster it belongs to.  A high value for SI is considered as a result of good 

clustering. Mathematically, Silhouette Index is calculated as the mean of the mean Silhouette (10) of all the 

clusters as in Equation (14). 

𝑆. 𝐼. =
1

𝐾
∑ 𝑆𝑘 

𝐾
𝑘=1          (14) 

Figure 12 represents evaluation of multiple clustering algorithms on all three datasets considered in this 

paper using Silhouette Index. 

 
Figure 12. Evaluation of clustering algorithms using Silhouette Index. 

Dunn index 

Dunn Index (DI) is an internal cluster evaluation metric described as the ratio of minimum inter-cluster 

separation to maximum intra-cluster distance (Dunn, 1973). Mathematically, it can be arrived through steps 

Equation (15) to (19). The distance between two clusters 𝐶𝑘 and 𝐶𝑘′ can be represented by the distance 

between their closest points. 

𝑑𝑘𝑘′ = min𝑖∈𝐼𝑘 𝑎𝑛𝑑 𝑗∈𝐼𝑘′
||𝐸𝑖

{𝑘}
− 𝐸𝑗

{𝑘′}
||      (15) 

The inter-cluster separation can be computed as the minimum of the pairwise distance. 

𝑑min = min𝑘≠𝑘′𝑑𝑘𝑘′        (16) 

The largest distance separating two points within a cluster (also referred as diameter of the cluster) can be 

calculates as below: 

𝐷𝑘 = max𝑖,𝑗∈𝐼𝑘 𝑎𝑛𝑑 𝑖≠𝑗 ||𝐸𝑖
{𝑘}

− 𝐸𝑗
{𝑘}

||      (17) 

The intra-cluster compactness is computed as the maximum value of intra-cluster distances. 

𝑑max = max1≤𝑘≤𝐾 𝐷𝑘        (18) 

Dunn index can be represented as the ratio between inter-cluster separation and intra-cluster 

compactness. 

𝐷. 𝐼. =
𝑑min

𝑑max
          (19) 

Figure 13 represents evaluation of multiple clustering algorithms on all three datasets considered in this 

paper using Dunn Index. 
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Figure 13. Evaluation of clustering algorithms using Dunn Index. 

Calinski-Harabasz index 

The Calinski-Harabasz Index (CHI) is an internal cluster evaluation measure expressed as the ratio of inter-

cluster dispersion (variance between clusters) and intra-cluster dispersion (variance within each cluster) 

(Calinski & Harabasz, 1974). A larger value for Calinski-Harabasz Index is considered as the indication of good 

clustering. Mathematically, Calinski-Harabasz Index is calculated through steps Equation (20) to (23). 

The inter-cluster dispersion can be defined as the dispersion of cluster centroids,𝐺{𝑘} with respect to the 

global centroid, 𝐺 of the dataset in consideration. If 𝑛𝑘 is the number of elements in the cluster, 𝐶𝑘,. 

𝐵𝐶𝐷 = ∑ 𝑛𝑘
𝐾
𝑘=1 ||𝐺{𝑘} − 𝐺 ||

2

       (20) 

The intra-cluster dispersion of cluster 𝐶𝑘 is the sum of the squared distances between its elements, 𝐸𝑖
{𝑘}

 

and the cluster centrod, 𝐺{𝑘}. 

𝑊𝐶𝐷{𝑘} = ∑ ||𝐸𝑖
{𝑘}

− 𝐺{𝑘}||
2

𝑖∈𝐼𝑘
        (21) 

Hence, the pooled intra-cluster dispersion can be explained as the sum of the intra-cluster dispersions of 

all the clusters  

𝑊𝐶𝐷 = ∑ 𝑊𝐾
𝑘=0 𝐶𝐷{𝑘}        (22) 

Calinski-Harabasz Index is calculated as the ratio of 𝐵𝐶𝐷 and 𝑊𝐶𝐷. 

𝐶. 𝐻. 𝐼. =

𝐵𝐶𝐷
(𝐾−1)
𝑊𝐶𝐷

(𝑁−𝐾)

=
(𝑁−𝐾)

(𝐾−1)

𝐵𝐶𝐷

𝑊𝐶𝐷
        (23) 

Figure 14 represents evaluation of multiple clustering algorithms on all three datasets considered in this 

paper using Calinski-Harabasz Index. 

Davies-Bouldin index 

The Davies-Bouldin Index (DBI) is a measure to evaluate cluster quality as it attempts to detect group of 

clusters that are well separated and compact by calculating the ratio of intra-cluster distances to inter-cluster 

distances (Davies & Bouldin, 1979).  A smaller value for DBI represents better quality of 

clustering.  Mathematically, Davies-Bouldin Index is calculated through steps Equation (24) to (26). 

Calculate the mean distance,𝛿𝑘 of the elements in cluster 𝐶𝑘 to its centroid, 𝐻{𝑘}. 

𝛿𝑘 =
1

𝑛𝑘
∑ ||𝑀𝑖

{𝑘}
− 𝐻{𝑘}||𝑖∈𝐼𝑘

       (24) 

The distance between centroids 𝐻{𝑘}and 𝐻{𝑘′}of clusters 𝐶𝑘and 𝐶𝑘′is computed as 
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𝛥𝑘𝑘′ = 𝑑(𝐻{𝑘}, 𝐻{𝑘′}) =  ||𝐻{𝑘′} − 𝐻{𝑘}||      (25) 

For each cluster, 𝐶𝑘 identify the maximum, 𝑀𝑘 of 
𝛿𝑘+𝛿𝑘′

𝛥𝑘𝑘′
 for all 𝑘′ ≠ 𝑘. 

Davies-Bouldin Index is the mean value of 𝑀𝑘 aong all the clusters in the dataset in consideration. 

𝐷. 𝐵. 𝐼. =
1

𝐾
∑ 𝑀𝑘

𝐾
𝑘=1 =

1

𝐾
∑ max𝑘′≠𝑘

𝐾
𝑘=1 (

𝛿𝑘+𝛿𝑘′

𝛥𝑘𝑘′
)     (26) 

 
Figure 14. Evaluation of clustering algorithms using Calinski-Harabasz Index. 

Figure 15 represents evaluation of multiple clustering algorithms on all three datasets considered in this 

paper using Davies-Bouldin Index. 

 
Figure 15. Evaluation of clustering algorithms using Davies-Bouldin Index. 

Discussion 

In this experiment, we referred to three real datasets covering numerical information extracted from 

reviews, feedbacks, and ratings from travelers that are collated from holidayiq.com, tripadvisor.com, and 

Google destination reviews, respectively. As part of the empirical analysis, we evaluated seven core clustering 

algorithms using internal evaluation strategies. Our consideration included four partitioning clustering 
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algorithms (k-means, k-medoids, CLARA, and Fuzzy c-means), two hierarchical clustering algorithms 

(AGNES, and DIANA) and one model-based clustering algorithm (EM).  

We could observe that partitioning algorithms showed an edge with lower volume and a smaller number 

of attributes. However, no pattern is observed with larger volume of data and high number of attributes. So, 

we recommend evaluating and choosing an algorithm for the dataset to be processed rather than selecting an 

algorithm upfront. We introduced a structured and data driven approach in our analysis using defined and 

repeatable processes and is explained in section 4.1 which can be extended for evaluating clustering 

algorithms in similar contexts. 

Another attribute which requires attention is the execution time required for various clustering 

algorithms. Though the execution time is highly dependent on the hardware configuration and environment 

variables used, it is also important to check the time complexity for various clustering algorithms. The 

cardinality and dimensionality of the dataset being processed have major influence on the overall processing 

time. We have conducted an explicit research on the same and the results are already published (Renjith, 

Sreekumar, & Jathavedan, 2020a). 

Conclusion 

Clustering is considered as a key strategy for handling large volume of data generated in social media 

platforms. It helps to reduce the volume of data to be processed and thereby reducing the computational cost 

and processing time required. Any type of social media content that can be treated as the reflection of traveler 

traits and/or feedbacks can be considered as a tourism social media data.  

In this experiment, we evaluated seven core clustering algorithms against three real datasets covering 

numerical information extracted from reviews, feedbacks, and ratings from travelers on holidayiq.com, 

tripadvisor.com, and Google destination reviews. Based on the results obtained, no algorithm could outperform in 

all tourism scenarios as performance varied against evaluation criteria chosen and dataset being considered. So, it 

is critical to evaluate and select appropriate clustering algorithms for each of the dataset to be processed. 

Another cause for the high computational intensiveness of social media data is the curse of dimensionality. As 

a subsequent step of this work, we are planning to leverage dimensionality reduction techniques prior to clustering 

process. We aim to evaluate various dimensionality reduction techniques ranging from principal component 

analysis (PCA) to deep learning techniques like autoencoder against real data from tourism domain. 
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