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ABSTRACT. The impact evaluation of exogenous policies over time is of great importance in several 

areas. Unfortunately, an adequate time-series analysis has not always been taken into account in the 

literature, mainly in health problems. When regression models are used in the known interrupted 

time-series approach, the required error assumptions are in general neglected. Specifically, usual 

linear segmented regression (lmseg) models are not adequate when the errors have nonconstant 

variance and serial correlation. To instigate the correct use of intervention analysis, we present a 

simple approach extending a linear model with log-linear variance (lmvar) to estimate linear trend 

changes under heteroscedastic errors (lmsegvar). When the errors are autocorrelated, the Cochrane-

Orcutt (CO) modification is implemented to correct the estimated parameters. As an application, we 

estimate the impact in temporal trend of the Brazilian Rede Mãe Paranaense (RMP) program in 

gestational syphilis occurrences in the state of Parana, Brazil. The comparison of the proposed linear 

segmented model (lmsegvar+CO) modeling both the average and variance, with the usual segmented 

linear model (lmseg), where just the average is modeled, shows the importance of taking 

heteroscedasticity and autocorrelation into account. 
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Introduction 

In ecological studies of the type before-after design along time, it is necessary to use appropriate statistical 

methods, such as regression models for time series (Draper & Smith, 1981) or ARIMA class models 

(‘autoregressive integrated moving average models’ - Box & Jenkins, 1976). When the evaluation of the 

impact of external effects (also called exogenous variables) is the most important aim, using linear regression 

models for time series instead of ARIMA models can maintain the advantage of the easy interpretation of 

abrupt or gradual changes after intervention occurrences, mainly regarding the trend estimations. 

However, simple regression models like the one introduced by Finlay and Wilkinson (1963) and later 

extended by Eberhart and Russell (1966), do not allow the evaluation of trend changes in the variable of 

interest in moments/periods in time under the occurrence of external factors. In this sense, the segmented 

regression model, initially proposed by Quandt (1958), was developed and used in several ways (Thistlethwaite 

& Campbell, 1960; Ransay, Matowe, Grilli, Grimshaw, & Thomas, 2003). Its approach in the context of time series 

has strengthened the before-after studies in several areas, receiving different specifications and nomenclatures, 

such as interrupted time series analysis, intervention analysis, discontinuous regression analysis, among others 

(Kontopantelis et al., 2015). In health, some recent studies can be cited (Kontopantelis et al., 2015; Taljaard, 

McKenzie, Ramsay, & Grimshaw, 2014; Valsamis, Husband, & Chan, 2019). 

In segmented linear regression models, it is assumed that the mean is linear in the pre- and post-

intervention periods and that the characteristics of the population are maintained in the study period 

(Kontopantelis, Doran, Springate, Buchan, & Reeves, 2015). It is also assumed that the errors are independent 
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and that the variance is constant. If these assumptions are violated, inferences and misinterpretations may 

occur (Chen et al., 2019). 

Unfortunately, assumption verifications have not always been taken into account in the literature, mainly 

in health problems. To instigate the correct use of intervention analysis, we present an extension of the linear 

segmented regression model to model heteroscedasticity and also to correct the serial correlation. For non-

constant variance modeling, while keeping simple regression models, we considered approaches that have 

been discussed in the literature by (Harvey, 1976; Aitkin, 1987; Verbyla, 1993; Nijmeijer & Cator, 2018). 

Regarding the presence of autocorrelation, although more elaborate models can be constructed, we 

considered a simpler possibility using the Cochrane-Orcutt (CO) modification (Cochrane & Orcutt, 1949). 

The proposed model is presented, and to make the verification of the usual model assumptions easy to 

users of non-exact sciences, the descriptions of traditional statistical tests and model comparison measures 

are also kept. 

As an application, we used occurrences of syphilis, which is a public health problem due to difficulties in 

accessing adequate treatment, limited resources, stigma, low quality of health services, and the unsatisfactory 

segment of sexual partners (Sales, Dilts, & Silva, 2019). 

During the gestational period, it is estimated that syphilis presents more than 300,000 fetal and neonatal 

deaths per year in the world and increases the risk of premature death in another 215,000 children (Brasil, 

2018). Studies show that late diagnosis, non-treatment, or inadequate treatment of pregnant women are the 

main difficulties encountered to reduce vertical transmission of syphilis (Araújo,  Andrade, Barros, & 

Bertoncini, 2019). 

In this context, in 2012, the Rede Mãe Paranaense (RMP) Program was implemented, based on the 

conceptual framework of the Health Care Networks (SAN), adopted in Paraná state as a model of attention to 

improve access and quality in actions provided for the population. Thus, we are going to investigate the 

impact of this program in occurrences of gestational syphilis, comparing the traditional linear segmented 

regression, the linear segmented model for non-constant variances (lmsegvar), and also the lmsegvar model 

with CO modification. 

Material and methods 

It is an ecological study of the type before-after design on gestational syphilis with intervention evaluation 

implemented by the RMP program in 2012. 

The gestational syphilis data were obtained from the Department of Informatics of the Brazilian Unified 

Health System (Sinan/Datasus - www2.datasus.gov.br/DATASUS/index.php?area= 0203&id=29878153), from 

January 2008 to December 2018, in the State of Paraná, Brazil. The monthly occurrence rates in pregnant 

women were calculated for every 100,000 women, represented by the ratio:  

𝑆𝑦𝑝ℎ𝑖𝑙𝑖𝑠 𝑖𝑛 𝑃𝑟𝑒𝑔𝑛𝑎𝑛𝑡 𝑊𝑜𝑚𝑒𝑛 𝑝𝑒𝑟 𝑀𝑜𝑛𝑡ℎ

𝐹𝑒𝑚𝑎𝑙𝑒 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
× 100,000 

Because we have only one intervention (RMP Program), we build a segmented regression model with 

two segments separated by one interruption point in January 2012, when the RMP Program began: 

𝑌𝑡 = µ𝑡 + 𝜀𝑡 = 𝛽0 + 𝛽1𝑇𝑡 + 𝛽2𝑋𝑡𝑇𝑡 + 𝜀𝑡 ,      (1) 

where: 

Yt is a random variable for the observed time series with the outcome rate at each t, which varies from 1 

to n = 132 observations, Yt is normally distributed with average µt and variance-covariance matrix Σ, 

Yt 𝑁(µ𝑡 , 𝛴).  

εt is the Gaussian random error, 𝜀𝑡𝑁(0, 𝜎𝜀
2).  

Tt is the time since the beginning of the study in January 2008 considering the months as fractions of the 

years (T1 = 2008.0; T2 = 2008.01; …; Tn = 2018.9),  

Xt is a dummy variable representing the intervention where Xt = 0 in the pre-intervention period (t = 1, 

…, 55) and Xt = 1 after January 2012, (t = 56, …, 132),  

β0 represents the intercept or estimated rate at the beginning of the study (January 2008);  

β1 is the estimated slope or trend of the outcome variable up to the introduction of the intervention 

(January 2012);  
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β2 represents the change in slope or trend of the outcome after the introduction of the intervention up 

to the end of the study.  

In E quation 1, we have a standard segmented linear model for time series,  here called ‘lmseg’, 

which means the matrix Σ is diagonal (Σij = 0 if i ≠ j) and with the same variance for all t, Σij = σ2 if 

i = j. But in the case of nonconstant variance in Yt and, consequently, εt, instead of the standard 

linear model, the diagonal inputs may be different. This means Σ is still a diagonal matrix but each Yt 

has its own variance 𝜎𝑡
2. To take non-constant variances into account, another equation is included 

to model σ regarding Tt.  

In the same way as the expected value vector, µt, is linearly dependent on the values of the 

covariates in the matrix model 𝑋µ𝑡
: µ𝑡𝑋µ𝑡

𝛽µ𝑡
, the vector σt depends on the covariates in the model 

matrix 𝑋𝜎𝑡
 as presented in the equation: 

𝑙𝑜𝑔𝜎𝑡 = 𝑋𝜎𝑡
𝛽𝜎𝑡

,         (2) 

where: 

log σt = (log σ1 , ..., log σn ).  

The logarithm in Equation 2 is the ‘natural’ one, i.e., with basis e. The vectors 𝛽µ𝑡
and 𝛽𝜎𝑡

 have the 

parameters for µ𝑡 and 𝜎𝑡, respectively. Depending on the behavior of the mean and variance, a predictor 

can be included only in Xµ, in Xσ, or in both Xµ and Xσ (Nijmeijer & Cator, 2018). In the time-series 

approach, parameters are included in Xσ only for the period or periods where the variance is not 

constant (heteroscedasticity), which can be only one period of the analysis, pre- or post-intervention, 

or both. In this work, as the heterocedastic period is only after the intervention, just the covariate 

𝑋𝑡𝑇𝑡 is included in 𝑋𝜎𝑡
 while both 𝑇𝑡 and 𝑋𝑡𝑇𝑡 is in Xµ. 

To interpret the trend in the period after the intervention (Xt = 1), the estimated change β2 has 

to be added to the previous period β1, i.e. β1 + β2. The segmented linear regression model for time 

series with nonconstant variance by Equation 1 and 2 was called ‘lmsegvar’. 

To estimate the parameters in this model, the maximum likelihood estimation (MLE) was used, which 

consists of estimating the parameters so that the estimates maximize the likelihood function (equivalent 

to minimizing the log-negative likelihood function). More details of parameter estimation considering 

nonconstant variance in simple regression models can be found in Aitkin (1987), Harvey (1976), Verbyla 

(1993) or even in the description of the lmvar package of R. At the end of this estimation, it is necessary 

to verify the assumptions of the model. 

To verify the need to consider a segmented linear regression model with nonconstant variance, the 

Breusch-Pagan-Godfrey test was performed to test the hypothesis of homoscedasticity of the residuals. 

This test statistic follows approximately a chi-square distribution with (p-1) degrees of freedom 

where p is the number of parameters to be estimated and the null hypothesis that the variances of errors 

are all equal is true. The normal distribution was verified by the Jarque-Bera test, which evaluates both 

the symmetry and the kurtosis of the distribution: 

𝐽𝐵 = 𝑛 (
𝛼̂1

6
+

(𝛼̂2−3)²

24
),        (3) 

where: 

n is the number of observations of the time series and 𝛼1 and 𝛼2correspond to the sample coefficients of 

symmetry and kurtosis. Considering these coefficients must assume values of zero and three, 

respectively, the value of the JB statistic given by 3 is expected to be equal to zero. Under the null 

hypothesis that errors are normally distributed, Jarque and Bera (1987) showed that, asymptotically, 

the statistics given by Equation 3 follows a chi-square distribution with 2 degrees of freedom. Thus, 

we reject the hypothesis of normality of errors if 𝐽𝐵 > 𝑋², where 𝑋²𝑞,𝛼−1
 is the 1 − 𝛼 quantile of the 

distribution 𝑋² with two degrees of freedom. 

The serial autocorrelation was checked from the autocorrelation function (ACF) and partial auto-

correlation function (PACF), besides the Durbin-Watson (DW) and Breusch-Godfrey (BG) tests for 

serial correlation. 

In the DW test, the null hypothesis is that the autocorrelation coefficient ρ in the residuals 𝜀 =

𝑌𝑡 − 𝑌𝑡−1 is zero. Thus, considering the model 𝜀 = 𝜌𝜀𝑡−1 + 𝑣𝑡, νt the Gaussian error, the DW statistics is 

given by:  
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𝑑 =
∑ (𝜀̂𝑡−𝜀̂𝑡−1)2𝑛

𝑡=2

∑ (𝜀|𝑡)²𝑛
𝑡=1 ,

         (4) 

which for n large enough is equivalent to 

𝑑 = 2(1 − 𝑟),         (5) 

varying from zero to four since the correlation coefficient r between 𝜀𝑡 and 𝜀𝑡−1 varies from r = -1 to r 

= 1. Hence d close to zero indicates the existence of positive autocorrelation in errors. If d is close to four, it 

represents the existence of negative autocorrelation in errors (Hoffmann & Vieira, 1987). Because of the 

dependence of any computed DW value on the associated data matrix, exact critical values of d are not tabulated 

for all possible cases. Instead, Durbin and Watson established upper (dU) and lower bounds (dL) for the critical 

values (Durbin & Watson, 1951). An extension of DW test, the Breusch-Godfrey test, was also applied for serial 

correlations larger than 1 (Breusch, 1978; Godfrey, 1978). 

In the presence of autocorrelation, the measures of adjustment quality are overestimated, the trend estimation 

tends to be significant and may lead to interpretation errors. Although more elaborate models can be constructed 

to solve such a problem, a simpler possibility is to use the Cochrane-Orcutt (CO) procedure to estimate the existing 

correlation and to adjust the regression model so that it is more realistic and meets the required assumptions. To 

estimate the existing autocorrelation of order 1 (ρ), for example, one can construct an autoregressive AR (1) model 

for the residual series of the regression model, in which the errors are autocorrelated (Cochrane & Orcutt, 1949). 

For that, we can take the model in the Equation 1 delayed by one order: 

𝑌𝑡−1 = 𝛽0 + 𝛽1𝑇𝑡−1 + 𝛽2𝑋𝑡−1𝑇𝑡−1 + 𝜀𝑡−1      (6) 

Multiplying the Equation 6 by ρ and subtracting from the 1, we get: 

𝑌𝑡 − 𝜌𝑌𝑡−1 = 𝛽0(1 − 𝜌) + 𝛽1(𝑇𝑡 − 𝜌𝑇𝑡−1) + 𝛽2𝑇𝑡 − 𝜌𝑋𝑡−1𝑇𝑡−1 + 𝑢𝑡 ,   (7) 

where: 

𝑢𝑡 = 𝜀𝑡 − 𝜌𝜀𝑡−1. This result of a ‘near-difference’ results in a model without first order serial correlation.  

This CO modification is iteratively implemented until a satisfactory estimate of ρ is obtained, 

determined when in two successive iterations the estimates of ρ do not differ more than a small pre-

established value. 

Finally, the residuals can be converted into standardized residuals (z-scores), i.e., the quotient 

between the residuals and its estimated standard deviation: 

𝑧𝑖 =
𝜀𝑖̂

𝜎̂
𝑖 = 1,2,3, … , 𝑛  (8) 

which are distributed around a zero mean and with unit standard deviation. 

Thus, with the standardized residuals, it is possible to compare them with different models, making 

use of the properties of the z-scores. 

Once the model is estimated and its assumptions verified, possible changes in trends after the 

intervention can be identified and interpreted by checking the significance of β2 at the α = 5% level. 

However, besides verifying the required assumptions, there are other factors to consider when 

evaluating a model (Navarro & Myung, 2004).  
To evaluate the adjustment quality and select the model that best fits the data we used the Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC), and likelihood ratio test (LR).  
Akaike Information Criterion corresponds to a relative measure of the fit quality of a given statistical 

model, so that it evaluates the quality of the parametric model fit, estimated by the maximum likelihood 

method: 

𝐴𝐼𝐶 = −2(𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑙𝑜𝑔) + 2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠), 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿(𝜃) + 2(𝑝)       (9) 

The Bayesian Information Criterion (BIC) is a criterion that evaluates models in terms of 

probability a posteriori. So, be 𝐹(𝑥𝑛|𝜃) the chosen statistical model estimated through the maximum 

likelihood method, then the BIC is represented by: 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐹(𝑥𝑛|𝜃) + 𝑘𝑙𝑜𝑔𝑛       (10) 
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The last used measure to compare the quality of fit of the model was the likelihood ratio (LR) test, 

which compares the logarithm values of the maximized likelihood function without restriction, 

represented by L(β|Y, X), being beta a vector β = (β0, β1, ..., βp) and under H0 represented by L(β0|Y, X). For 

this test, it is advisable to use it, in case of hypothesis regarding many coefficients β′s. If there is a big 

difference, then H0 is rejected. 

The statistics defined for this test are given by: 

𝐿𝑅 = −2𝑙𝑜𝑔𝑒𝜆 = 2[𝑙(𝛽|𝑌, 𝑋) − 𝑙(𝛽0|𝑌, 𝑋)]     (11) 

For sufficiently large samples, H0 is rejected, with a probability level of 100𝛼%, if 𝐿𝑅 > 𝑋²𝑞,1−𝛼. 

The implementation was done in R language using time series packages such as forecast, besides 

the package lmvar. Also, a function was implemented to apply the CO modification to the segmented 

linear model for time series with nonconstant variance (lmsegvar). The implementation is available under 

request to the authors, but an R package is under development for easier reproducibility.  

Results and discussion 

The temporal behavior for the time series of the rates of pregnant women with syphilis can be 

evaluated in Figure 1, where increasing trend and nonconstant variance are observed. 

Although the non-constant variance is clear in Figure 1, in the first moment, the classic lmseg model was 

estimated with confirmation and comparison purposes. The obtained estimates from the lmseg model are 

presented in Table 1. To check the need of including seasonal terms in the model, the autocorrelation functions 

were built and no statistical statistically cyclical/seasonal autocorrelation was detected. To verify the presence of 

nonconstant variance, the Breusch-Pagan test was applied, considering that its null hypothesis is that the errors 

of a classic segmented linear model (lmseg - Equation 1) have constant variance. From this test, p-value < 0.001 

was obtained at a 5% significance level, allowing rejecting the hypothesis of homoscedasticity. Therefore, it is 

confirmed that the assumption of constant variance was not fulfilled.  

 

Figure 1. Rate of gestational syphilis occurrences from 2008 to 2018 including periods before and after the RMP Program. 

Table 1. Estimated parameters, standard errors (SE), and p-values for the lmseg model. 

Parameters Estimate SE p-value 

β0 0.180 0.106 0.090 

β1 0.020 0.003 < 0.001 

β2 0.044 0.004 < 0.001 

β1 + β2 0.064 0.003 0.001 

 

Thus, it is necessary to construct the intervention model considering the nonconstant variance 

(lmsegvar - Equation 1 and 2). Table 2 shows the estimates of the parameters of the lmsegvar model 

while Figure 2 illustrates the estimated model.  
When adjusting the models, the estimated parameter of the nonconstant variance was statistically 

significant (p < 0.0001), as we can see in Table 2. Furthermore, we can also observe an increasing trend 
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that has been statistically significant since the beginning of the study in 2008 (β1 > 0 and β1 + β2 > 0). 

Despite the implementation of the RMP program (intervention), the trend has increased even more (β2 

> 0 and p < 0.0001) after 2012. The average rate increased by about 0.02 per month (0.23 per year) in 

100,000 women and, after the intervention in 2012, when the Program was already in operation, an 

average increase of about 0.06 per month (0.77 per year) was obtained. 
For comparison, Figure 3 presents the standardized residuals for gestational syphilis rates over the 

study period for both lmseg and lmsegvar models. Although both are distributed around zero, the 

residuals for lmseg indicates heteroscedastic errors, so the variance of errors is nonconstant. Applying 

the Breusch-Pagan test for the residuals of lmsegvar model, homoscedasticity is verified, but it was not 

for the traditional linear model lmseg, as presented before. 

Figure 4 shows the standard deviation and the 95% confidence interval (CI) for gestational 

syphilis rates over the study period, from January 2008 to October 2018, highlighting the red line that 

corresponds to the standard deviation of errors that is returned from the classic linear model. 

Thus, considering the constant variation assumption was not verified for the lmseg model, the next 

assumptions evaluations are going to be performed only for the lmsegvar model. 

Table 2. Estimated parameters, standard errors (SE), and p-values for the lmsegvar model. 

Parameters Estimate SE p-value 

β0 0.188 0.062 0.002 

β1 0.019 0.001 < 0.001 

β2 0.045 0.003 < 0.001 

β1 + β2 0.063 0.004 < 0.001 

βσ2 0.015 0.002 < 0.001 

 

 

Figure 2. Rates of gestational syphilis occurrences observed before and after the RMP program     together with the estimated 

intervention model with nonconstant variance (lmsegvar). 

 

Figure 3. Standardized residuals of gestational syphilis rates versus time. 
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Figure 4. Estimated standard deviation and its 95% confidence interval (CI) for lmsegvar+ CO model. The horizontal line 

corresponds to the standard deviation of residuals for the lmseg model. 

To evaluate the assumption of normality for the residuals of the lmsegvar model, the quantile-quantile 

plot (Q-Q plot) was additionally used. Thus, by Figure 5, the configuration of the points in the graph is not far 

from a diagonal line, as expected if the assumption of normality is sustained. To corroborate this statement, 

the Jarque-Bera test was used, in which the evaluation of the normal distribution was verified in the residuals 

and the null hypothesis of normality was not rejected (p-value 0.06). 

Regarding the evaluation of the independence assumption, from DW test, the calculated d was 1.57. 

Considering k = 2 and n = 100, for the tabulated range, d from 1.63 to 1.71 was obtained. Thus, the value of d 

calculated for pregnant women with syphilis is satisfying the following condition d < dL, indicating the 

existence of autocorrelation between errors, which can be positive or negative. In Figure 6, it is observed that 

the autocorrelation functions ACF and PACF corroborate the DW test showing significant autocorrelation of 

order 1. By identifying the autocorrelation in the series of pregnant women with syphilis, the assumption of 

independence of errors is not being satisfied. In this way, the quality measures of the adjustment are 

overestimated, in which the tendency estimate tends to be significant, allowing for interpretation errors. To 

circumvent this scenario, the CO modification (Equation 7) was conducted, in which the existing correlation 

was estimated, adjusting the regression model so that it is closer to the real and meets the required 

assumptions. The obtained estimates are shown in Table 3.  

After the modification of CO (Table 3) for pregnant women with syphilis, a new d calculated for the Durbin 

Watson test was obtained, being 2.05. Thus, considering the same values of k and n, we have for the tabulated 

interval d in the same interval from 1.63 to 1.71, thus fitting the first situation when d > dU , i.e., evidencing 

the absence of autocorrelation of errors. For checking serial correlation of orders up to 5, the BG test also did 

not reject the null hypothesis of absence of autocorrelation. Furthermore, observing the autocorrelation 

functions ACF and PACF (Figure 7) after the CO modification, we confirm the absence of significant 

autocorrelations in the first lags, which were the main concern, especially the first one, taking into 

account the CO modification. The few weak sample autocorrelations that appear are not at relevant lags, 

such as seasonal lags, and are within what one would expect in a sample autocorrelation function 

(approximately 5% can be significant even for a random time series - Chatfield, 2004). 

 

Figure 5. QQ-Plot of the standardized residuals for lmsegvar model. 



Page 8 of 10  Menezes et al. 

Acta Scientiarum. Technology, v. 44, e59513, 2022 

 

Figure 6. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of the residuals of gestational syphilis 

lmsegvar model.  

Table 3. Estimated parameter, standard errors (SE), and p-values for the lmsegvar + CO model. 

Parameters Estimate SE p-value 

β0 0.129 0.059 0.029 

β1 0.020 0.002 < 0.001 

β2 0.043 0.003 < 0.001 

β1 + β2 0.063 0.005 < 0.001 

βσ2 0.016 0.002 < 0.001 

 

 

Figure 7. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of the residuals of gestational syphilis 

lmsegvar + CO model. 

Although from the assumption evaluations, the choice of the adequate model is clear, it is usual to 

use other measures for model adjustment quality comparisons. Thus, with this purpose, some criteria 

were used, such as AIC, BIC, and Likelihood Ratio Test. Consequently, the model that best satisfies 

these criteria will be adopted, in addition to the necessary assumptions.  
Table 4 shows the results of the likelihood ratio test, AIC, and BIC, used for comparing the three 

models. From the likelihood ratio (LR) tests both models (lmsegvar and lmsegvar+CO) obtained p < 0.001, 

so the models offer a significantly better fitting quality compared to the classic linear segmented model 

(lmseg), although the lmsegvar+CO model stood out with the highest LR (23.71). The results of AIC and 

BIC corroborate those of the LR test.  

Table 4. Results of the likelihood ratio test, AIC, and BIC. 

Model  LR (p-value) AIC BIC 

lmsegvar + CO 23.71 (p < 0.001) 79.97 94.27 

Lmsegvar 20.51 (p < 0.001) 91.65 105.98 

Lmseg  - 130.68 142.15 

 

Thus, the lmsegvar + CO model was chosen because all assumptions were fulfilled and it delivered the best 

fit for the gestational syphilis series. 

This study conducted an intervention analysis to assess the trend impact of the RMP Program on the 

occurrence of gestational syphilis in the State of Paraná. Given the characteristics of time series, an extension 

of a segmented linear model to time series was performed to model also the nonconstant variance, i.e., 

to properly consider the presence of heteroscedasticity. 
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The choice for the class of segmented linear models was made by the ease of interpretation of the trend 

and its changes after the occurrence of interventions, the main focus of this study. Although it facilitates 

the interpretation of estimated parameters, this model also requires that errors are not autocorrelated. 

In this sense, the Cochrane-Orcutt (CO) modification was implemented to correct the serial correlation 

of the residuals of the presented model.  
Besides the graphical and hypothesis tests evaluation of the required assumptions, comparisons of 

the adjustment quality were also made from AIC and BIC criteria, as well as the Likelihood Ratio Test. 

After the comparison, the model that presented the best adjustment was the linear segmented model 

with nonconstant variance and CO modification. Furthermore, all necessary assumptions were fulfilled. 

The normal distribution of the residuals was satisfied by the Jarque-Bera test at a significance level of 

5%. Homoscedasticity was verified by the Breusch-Pagan test. To verify the existence of autocorrelation 

of errors, the Durbin-Watson and Breusch-Godfrey tests were performed at a level of 5% of significance, 

in addition to the analysis of partial (PACF) and autocorrelation (ACF) functions. 

Thus, from an adequate model of intervention for time series, it was possible to verify that there has 

been a growing and statistically significant trend since the beginning of the study in 2008. And, despite 

the implementation of the PRM program (intervention), the trends increased even more (p < 0.0001). 

The trend was about 0.02 per month (0.23 per year) in 100,000 women before the intervention and 

increased to 0.06 per month (0.77 per year) after the intervention in 2012.  
This same scenario is present in other regions of Brazil, the study of Rezende and Barbosa (2015), 

conducted in the State of Goiás, from January 2009 to December 2012, shows an increase in the rate of syphilis in 

pregnant women and congenital syphilis from 2011. This shows an effective increase in the number of cases or an 

improvement in information due to the reduction of under-reporting (Alves et al., 2016). 

Although a reduction could be expected, the RMP program was very useful to reach more women to 

be treated. The Program is monitoring, analyzing, and identifying pregnant women with syphilis, 

reducing sub-notification and congenital transmission. 

Conclusion 

From an adequate model of intervention for time series, it was possible to verify that there has been 

a growing and statistically significant trend in the rates of pregnant women with syphilis since the 

beginning of the study in 2008. After the implementation of the RMP Program, the trends increased 

even more, showing it was very useful to reach more women to be treated.   

Further studies are required to continue assessing the efficacy of the program and its current 

protocols. Also, the follow-up and updating of the model after the introduction of new data is essential 

for future guidance regarding the problem in question. 
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