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Introduction and preliminaries 

The notion of statistical convergence reverts to the first edition of Zygmund's monograph in Zygmund 

(1979). The conception of statistical convergence was explicitly presented by Steinhaus (1951) and Fast (1951) 

and reintroduced later by Schoenberg (1959). Statistical convergence also appears as an example of density 

convergence introduced by Buck (1953). 

To solve series summation problems, statistical convergence was studied by many researchers provided 

many statistical convergence results and theories in many spaces and statistical convergence has been 

considered in different setups, and its different speculations, expansions and variations have been 

concentrated by different creators up until now. 

Kizmaz (1981) introduced the notion of spaces of difference sequences in, who examined the difference 

sequence spaces 𝑐(△), 𝑐0(△) and 𝑙∞(△) as 

𝑐(△) = {(𝑥𝑘)  :  |△ 𝑥𝑘 − 𝑙| → 0 as 𝑘 → ∞, for some 𝑙} 

𝑐0(△) = {(𝑥𝑘)  :  |△ 𝑥𝑘| → 0 as 𝑘 → ∞} 

𝑙∞(△) = {(𝑥𝑘)  :   𝑠𝑢𝑝|△ 𝑥𝑘| < ∞}, 

which are Banach spaces with norm  

‖𝑥‖ = |𝑥1| + 𝑠𝑢𝑝|△ 𝑥𝑘| 

where △ 𝑥 = (△ 𝑥𝑘),△ 𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1, 𝑘 ∈ 𝑁 = {1,2,3, . . . }.  

Et and Çolak (1995) further generalized the concept by introducing the spaces 𝑐(△𝑛), 𝑐0(△𝑛) and 𝑙∞(△𝑛).  

Nakano (1953) was introduced the concept of the modulus function in 1953 and subsequently Ruckle 

(1973), Maddox (1987) and many researchers used a modulus function to construct some sequence spaces. 

Some mathematicians have studied statistical boundedness and some generalizations such as Kayan et al. 

(2018). 

Aizpuru et al. (2014) defined a new concept of density with the help of an unbounded modulus function 

and as a consequence, they got a new non - matrix convergence concept, in other words, 𝑓 - statistical 

convergence that is intermediate between statistical convergence and ordinary convergence and agrees with 

statistical convergence in the case identity mapping which is a modulus function. 

Now, we will recall some concepts and definitions which are needful in the study. 

Let 𝑁 be the set of positive integers. The natural density of a set 𝑉 ⊆ 𝑁 is defined by 

𝑑(𝑉) = lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝑉}| 
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where |{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝑉}| denotes the number of elements of 𝑉  not exceeding 𝑛. Obviously, if 𝑉 is finite subset 

of 𝑁 , then 𝑑(𝑉) = 0 and 𝑑(𝑉𝑐) = 1 − 𝑑(𝑉). The set 𝑉  is said to be statistically dense if 𝑑(𝑉) = 1.  

A modulus 𝑓 is a function from [0, ∞) to [0, ∞) such that 

𝑖) 𝑓(𝑥) = 0 if and only if 𝑥 = 0 , 

𝑖𝑖) 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) for every 𝑥, 𝑦 ≥ 0 , 

𝑖𝑖𝑖) 𝑓 is increasing, 

𝑖𝑣) 𝑓 is continuous from the right at 0 . 

It is clear that any modulus 𝑓 must be continuous everywhere on [0, ∞). A modulus may be unbounded or 

bounded. For example, 𝑓(𝑥) = 𝑥𝑝 (0 < 𝑝 ≤ 1) is unbounded, but 𝑓(𝑥) =  
𝑥

𝑥+1
  is bounded. 

Aizpuru et al. In [1] defined the 𝑓 -density of a set  . The 𝑓 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 of a set 𝑉 ⊆ 𝑁 is defined by  

𝑑𝑓(𝑉) = lim
𝑛→∞

1

𝑓(𝑛)
𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝑉}|), 

whenever the limit exists, where 𝑓  is an unbounded modulus function. 

When (𝑥) = 𝑥 , the concept of 𝑓 -density reduces to the natural density. It is well known that 𝑑(𝑉) +

𝑑(𝑁 − 𝑉) = 1 in case of natural density. But in case of 𝑓 -density, i.e., 𝑑𝑓 (𝑉) + 𝑑𝑓 (𝑁 − 𝑉) = 1 does not 

hold generally, this result is no longer true. 𝑑𝑓 (𝑉)  =  𝑑𝑓 (𝑁 − 𝑉) = 1 when we take 𝑓(𝑥) = 𝑙𝑜𝑔(𝑥 +  1) and 

𝑉 =  {2𝑛 ∶ 𝑛 ∈ 𝑁} . In case of 𝑓 -density, we can assert that if 𝑑𝑓(𝑉)  =  0 then 𝑑𝑓 (𝑁 − 𝑉) = 1. As in the case 

of natural density, finite sets also have zero 𝑓 -density and so for any finite set, 𝑑𝑓 (𝑉) + 𝑑𝑓 (𝑁 − 𝑉) = 1. 

For any unbounded modulus 𝑓 and ⊂ 𝑁 , if 𝑑𝑓 (𝑉) = 0 implies that 𝑑(𝑉) = 0 . But converse may not be true 

in the sense that a set having zero natural density may have non-zero 𝑓 -density with respect to some 

unbounded modulus 𝑓. When we take 𝑓(𝑥) = 𝑙𝑜𝑔(𝑥 + 1) and = {1,4,9, . . . } , then 𝑑(𝑉) = 0 but 𝑑𝑓 (𝑉) =
1

2
 . In 

case of any finite set ⊂ 𝑁 , However, 𝑑(𝑉) = 0 implies 𝑑𝑓 (𝑉) = 0 is always true, regardless of the selection of 

unbounded modulus 𝑓. 

In this paper we discuss the relations between 𝑆𝑓(△) and 𝑆𝑔(△) , 𝑆𝑓(𝛥) and 𝑆(△) , 𝐵𝑆𝑓(△) and 𝐵𝑆𝑔(△) , 

𝐵𝑆𝑓(△) and 𝐵𝑆(△) , 𝑆𝑓(△) and 𝐵𝑆𝑔(△) for different modulus functions 𝑓 and 𝑔 under certain conditions. 

Main results 

In this section we will give the main definitions and results of this paper. 

In the sequel, we need the following fact. 

Lemma 2.1 [Maddox,1987]. The limit lim
𝑡→∞

𝑓(𝑡)

𝑡
= 𝛽 exists for any modulus  . 

The relation between 𝑓 − densities of a set of positive integers for different modulus functions is given in 

the following Theorem given by Çolak (2020). This helps us to establish the relations between △ − statistically 

convergent and △ − statistically bounded sequence sets defined by modulus functions. 

Theorem 2.2 [Çolak ,2020]. Let 𝑓 and 𝑔 be two unbounded modulus functions. Then for a set 𝑉 ⊆ 𝑁  

(𝑖) if  

lim
𝑡→∞

𝑓(𝑡)

𝑔(𝑡)
> 0             (1) 

then 𝑑𝑔(𝑉) = 0 implies 𝑑𝑓(𝑉) = 0 whenever the limit exists, 

(𝑖𝑖) if  

0 < lim
𝑡→∞

𝑓(𝑡)

𝑔(𝑡)
= 𝛼 < ∞            (2) 

then 𝑑𝑔(𝑉) = 0 ⇔ 𝑑𝑓(𝑉) = 0 whenever the limit exists. 

Corollary 2.3 [Çolak ,2020]. For any 𝑉 ⊆ 𝑁 and any unbounded modulus 𝑓 providing  

lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0             (3) 

we have 𝑑𝑓(𝑉) = 0 ⇔ 𝑑(𝑉) = 0.  

Now we give the following definitions by using 𝑓 - density. 

Definition 2.4. Let 𝑓 be an unbounded modulus function. Then a sequence (𝑥𝑘) is said to be  

△𝑓 -statistically convergent to 𝑙, if for each 𝜀 > 0  
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𝑑𝑓 ({𝑘 ∈ 𝑁  :  |△ 𝑥𝑘 − 𝑙| ≥ 𝜀 }) = 0, 

i.e., 

lim
𝑛→∞

1

𝑓(𝑛)
𝑓({𝑘 ≤ 𝑛  :  |△ 𝑥𝑘 − 𝑙| ≥ 𝜀 }) = 0. 

In this case we write 𝑆𝑓(△) − lim
𝑛→∞

𝑥𝑘 = 𝑙  or 𝑥𝑘 → 𝑙(𝑆𝑓(△)) . 

The set of △𝑓− statistically convergent sequences will be denoted by 𝑆𝑓(△). 

Definition 2.5. Let 𝑓 be an unbounded modulus function. Then a sequence (𝑥𝑘) is said to be 

△𝑓 -statistically Cauchy, if there exists a number 𝑁 = 𝑁(𝜀) such that  

𝑑𝑓({𝑘 ∈ 𝑁 ∶ |△ 𝑥𝑘 −△ 𝑥𝑁| ≥ 𝜀}) = 0, 

i.e., 

lim
𝑛→∞

1

𝑓(𝑛)
𝑓({𝑘 ≤ 𝑛 ∶ |△ 𝑥𝑘 −△ 𝑥𝑁| ≥ 𝜀 }) = 0 

for every 𝜀 ≥ 0. 

Definition 2.6. Let 𝑓 be an unbounded modulus function. Then a sequence (𝑥𝑘) is said to be △𝑓  - 

statistically bounded if there exists a number 𝑀 > 0 such that 

𝑑𝑓({𝑘 ∈ 𝑁 ∶ |△ 𝑥𝑘| > 𝑀 }) = 0, 

i.e., 

lim
𝑛→∞

1

𝑓(𝑛)
𝑓(|{𝑘 ≤ 𝑛  :  |△ 𝑥𝑘| > 𝑀}|) = 0. 

The set of △𝑓− statistically bounded sequences will be denoted by 𝐵𝑆𝑓(△). 

Theorem 2.7. Let 𝑓 and 𝑔 be two unbounded modulus functions. Then  

(𝑖) if (1) holds then a sequence (𝑥𝑘) is △𝑓− statistically convergent (with same limit) if it is △𝑔− 

statistically convergent, that is 𝑆𝑔(△) ⊆ 𝑆𝑓 (△) . 

(𝑖𝑖) if (2) holds then a sequence (𝑥𝑘) is △𝑓− statistically convergent if and only if it is △𝑔− statistically 

convergent, that is 𝑆𝑔(△) = 𝑆𝑓(△) . 

Proof (𝑖) Suppose (𝑥𝑘) is △𝑔− statistically convergent to 𝑙, that is 𝑆𝑔(△) − 𝑙𝑖𝑚 𝑥𝑘 = 𝑙. Define 𝑉 =

{𝑘 ∈ 𝑁  :  |△ 𝑥𝑘 − 𝑙| ≥ 𝜀}. Then 

𝑑𝑔(𝑉) = lim
𝑛→∞

𝑔(|{𝑘 ≤ 𝑛 ∶ |△ 𝑥𝑘 − 𝑙| ≥ 𝜀}|)

𝑔(𝑛)
= 0 

and this implies  

𝑑𝑓(𝑉) = lim
𝑛→∞

𝑓(|{𝑘 ≤ 𝑛 ∶ |△ 𝑥𝑘 − 𝑙| ≥ 𝜀}|)

𝑓(𝑛)
= 0 

if (1) holds by Theorem 2.2 (𝑖) . 

The Proof of (𝑖𝑖) follows from the Theorem 2.2 (𝑖𝑖).  

Corollary 2.8. Let 𝑓 be an unbounded modulus function. If (3) holds then 𝑆𝑓(△) = 𝑆(△).  

Proof Let the sequence (𝑥𝑘) be △𝑓 -statistically convergent to 𝑙. Then 𝑑𝑓 (𝑉) = 0 if we choose 𝑉 =

{𝑘 ∈ 𝑁 ∶ |△ 𝑥𝑘 − 𝑙| ≥ 𝜀 }. Now the proof follows from the fact for any 𝑉 ⊆ 𝑁 and any modulus 𝑓 , 𝑑𝑓 (𝑉) = 0 

implies that 𝑑(𝑉) = 0. then 𝑆𝑓(△) ⊆ 𝑆(△).  

To show that 𝑆(△) ⊆ 𝑆𝑓(△), Assume that lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0 and let the sequence (𝑥𝑘) be △ −statistically 

convergent to 𝑙. Then we have 

lim
𝑛→∞

(|{𝑘 ≤ 𝑛  :  |△ 𝑥𝑘 − 𝑙| ≥ 𝜀 }|)

𝑛
= 0 

for every 𝜀 > 0. Now we may write  

𝑓(|{𝑘 ≤ 𝑛  :  |△ 𝑥𝑘 − 𝑙| ≥ 𝜀 }|)

𝑓(𝑛)
≤

(|{𝑘 ≤ 𝑛  :  |△ 𝑥𝑘 − 𝑙| ≥ 𝜀 }|)𝑓(1)

𝑛
⋅

𝑛

𝑓(𝑛)
. 
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Since lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0, the right-hand side of above inequality tends to 0 and this implies that the left-hand 

side tends to 0 as 𝑛 → ∞. Therefore the sequence (𝑥𝑘) is △𝑓 -statistically convergent. 

Theorem 2.9. Let 𝑓 and 𝑔 be two unbounded modulus functions. Then 

(𝑖) if the limit exists and (1) holds then a △𝑔− statistically Cauchy sequence is △𝑓− statistically Cauchy 

sequence, 

(𝑖𝑖) if the limit exists and (2) holds then a sequence (𝑥𝑘) is △𝑔− statistically Cauchy sequence if and only 

if it is △𝑓 -statistically Cauchy sequence. 

Taking 𝑉 = {𝑘 ∈ 𝑁  :   |△ 𝑥𝑘 −△ 𝑥𝑁| ≥ 𝜀} the proof of (𝑖) and (𝑖𝑖) follows from Theorem 2.2 (𝑖) and (𝑖𝑖) , 

respectively. 

It is easy to show that a △𝑓 - statistically convergent is △𝑓 -statistically Cauchy sequence. 

Theorem 2.10. Let 𝑓 be an unbounded modulus function. Then a sequence of real numbers is △𝑓 - 

statistically convergent if and only if it is a △𝑓 -statistically Cauchy sequence. 

Proof In order to prove that a △𝑓 -statistically Cauchy sequence is △𝑓 - statistically convergent we may use 

the technique given in the proof of Theorem 3.3 in [Aizpuru et al.(2014)]. 

Lemma 2.11 [1]. If 𝑉 ⊂ 𝑁 is infinite, then there exists an unbounded modulus 𝑓 such that  𝑑𝑓(𝑉) = 1. 

We may give the following result by using Theorem 40 in [Bhardwaj et al. (2016)]].  

Theorem 2.12. If for every unbounded modulus 𝑓, (𝑥𝑘) ∈ 𝐵𝑆𝑓(△), then (𝑥𝑘) ∈ ℓ∞(△).  

Proof Let (𝑥𝑘) ∈ 𝐵𝑆𝑓(△). Suppose, if possible, (𝑥𝑘) ∉ ℓ∞(△) . Then for every 𝑀 > 0, we have that 𝑉 =

{𝑘 ∈ 𝑁  :  |△ 𝑥𝑘| > 𝑀 } is an infinite set and so by Lemma 2.11 there exists an unbounded modulus 𝑓such that 

𝑑𝑓(𝑉) = 1 which contradicts the assumption that (𝑥𝑘) ∈ 𝐵𝑆𝑓(△) for every modulus 𝑓. 

Theorem 2.13. Let 𝑓 and 𝑔 be two unbounded modulus functions. Then 

(𝑖) if (1) holds then a △𝑔− statistically bounded sequence is △𝑓− statistically bounded, that is 𝐵𝑆𝑔(△) ⊆

𝐵𝑆𝑓 (△) , 

(𝑖𝑖) if (2) holds then a sequence is △𝑔− statistically bounded if and only if it is △𝑓− statistically bounded, 

that is 𝐵𝑆𝑔(△) = 𝐵𝑆𝑓 (△).  

Proof Let the sequence (𝑥𝑘) be △𝑔− statistically bounded. Then there exists a real number 𝑀 > 0 such that 

𝑑𝑔({𝑘 ∈ 𝑁 ∶ |△ 𝑥𝑘| > 𝑀}) = 0. Taking 𝑉 = {𝑘 ∈ 𝑁 : |△ 𝑥𝑘| > 𝑀} the proof follows from Theorem 2.2 (𝑖) and (𝑖𝑖).  

Corollary 2.14. For any unbounded modulus 𝑓 we have 
(𝑖) 𝐵𝑆𝑓(△) ⊆ 𝐵𝑆(△),  

(𝑖𝑖) if (3) holds 𝐵𝑆𝑓(△) = 𝐵𝑆(△) . 

Proof Let the sequence (𝑥𝑘) be △𝑓 -statistically bounded . Then 𝑑𝑓 (𝑉) = 0 if we choose 𝑉 =

{𝑘 ∈ 𝑁 ∶ |△ 𝑥𝑘| > 𝑀 } for an 𝑀 large enough. Now the proof (𝑖) follows from the fact " for any 𝑉 ⊆ 𝑁 and any 

modulus 𝑓 , 𝑑𝑓 (𝑉) = 0 implies that 𝑑(𝑉) = 0 "  and (𝑖𝑖) follows from the Corollary 2.3. 

Theorem 2.15. Let 𝑓 and 𝑔 be two unbounded modulus functions. If (1) holds then a △𝑔− statistically 

convergent sequence is △𝑓− statistically bounded, that is 𝑆𝑔(△) ⊆ 𝐵𝑆𝑓(△) . 

Proof Suppose that the sequence (𝑥𝑘) is △𝑔− statistically convergent to 𝑙. Let 𝜀 > 0 be given and define 

𝑉(𝑛) = {𝑘 ≤ 𝑛 ∶ |△ 𝑥𝑘 − 𝑙| ≥ 𝜀} and 𝑄(𝑛) = {𝑘 ≤ 𝑛 ∶ |△ 𝑥𝑘 − 𝑙| > 𝑀} for a number 𝑀 > 𝜀 large enough. Now 

since clearly |𝑉(𝑛)| ≥ |𝑄(𝑛)| for every 𝑛 ∈ 𝑁 we have that 𝑑𝑔(𝑉) ≥ 𝑑𝑔(𝑄) and so that 𝑑𝑔(𝑉) = 0 implies 

𝑑𝑔(𝑄) = 0. If (1) holds then 𝑑𝑔(𝑄) = 0 implies 𝑑𝑓(𝑄) = 0 by Theorem 2.2 (𝑖). This means that (𝑥𝑘) is △𝑓− 

statistically bounded. 

Conclusion 

In this study, considering any modulus function f we first defined △𝑓  - statistical convergence and △𝑓  - 

statistical boundedness of a number sequence and then defined a △𝑓  - statistically Cauchy sequence. Then 

under some conditions on the modulus functions f and g, including the modulus f(x)=x, we established the 

relations between the sets 𝑆𝑓(△) and 𝑆𝑔(△), the relations between the sets 𝐵𝑆𝑓(△) and 𝐵𝑆𝑔(△) and the 

relations between the sets 𝑆𝑓(△) and 𝐵𝑆𝑔(△) which are constructed via modulus functions f and g. 

Furthermore, under some conditions, it is also given that it is equivalent for a sequence to be △𝑔  - statistically 

Cauchy sequence or to be △𝑓  - statistically Cauchy sequence. The subject of difference sequences and their 

generalizations has been studied intensively since 1981. This study contributes to the subject and constitutes 

a resource that can provide important contributions to those who will work in this field. 
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