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ABSTRACT. The scope of the work involves reinforced concrete frame structures with variations in 

structural design conception for columns with biaxial bending or uniaxial bending. The beams are designed 

with simple bending criteria for singly or doubly reinforced beams, or uniaxial bending. The analysis and 

design criteria are according to NBR 6118:2014. Structure analysis in elastoplastic regimen with the 

incremental analysis method is performed to detect plastic hinge formation order, collapse load factor, 

displacements, and rotation capacity of cross sections with the criteria established in the current building 

codes. The study evaluates the influence of the defined concepts on the structure’s elastoplastic behavior. 

The biaxial and uniaxial bending method is presented as an important formulation for obtaining the 

collapse load factor using the elastic stiffness matrix with modifications. The algorithms presented enable 

the development of research without the need for expensive commercial software licenses.  
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Introduction 

The method of incremental elastoplastic analysis determines the collapse load factor by successive elastic 

analyses, where for each increment the formation order of the hinges and their respective sections is verified. 

The appearance of each hinge changes the stiffness of the element, that is, the matrix K will have the same 

size, but with some altered properties. However, equilibrium matrices L and rotation R are not changed. The 

stiffness methods of analysis presented, for instance, in Harrison (1973) enable changes to be made without 

difficulty.  

The approach of the present study was designed for reinforced concrete structures and based on the idea 

proposed by Mello (2003) for uniaxial and biaxial bending but applied according to NBR 6118 (Associação 

Brasileira de Normas Técnicas [ABNT], 2014). 

There are many methods for studying the formation process of plastic hinges that use backward 

algorithms, such as Backward Euler method, and interaction surfaces. (Silva, 2004) performs first-order 

elastoplastic analysis of steel structures using a predictor/corrector scheme to maintain sectional efforts over 

an interaction surface that defines the ultimate limit state of the cross section. Vieira and Silva (2013) use 

multiple linear regression to treat the resultant efforts of several analyses for obtaining a yielding surface 

with the combined efforts of a space frame analysis. Orbison, McGuire, and Abel (1982) presented ‘a model in 

which material nonlinearity is simulated by the formation of plastic zones of zero length at the ends of the 

elements. Second order elastic effects are incorporated through a geometrical stiffness matrix. An updated 

Lagrangian approach is employed’. Their method uses plastic zones of zero length at the ends of the elements 

too and the ‘development of a scheme for controlling the movement of a plastified force point over the yield 

surface in an approximate but satisfactory manner’.  

Barham, Aref, and Dargush (2005) presented ‘the derivation and implementation of a flexibility-based 

large increment method (LIM) for solving nonlinear structural problems. The finite element displacement and 

force approaches have been developed for solving nonlinear structural problem. The displacement-based 

finite element method requires a step-by-step approach for material nonlinear analysis that depends on flow 

theory. Furthermore, significant mesh refinement is often required in plastic zones’.  

Inel and Ozmen (2006) explain a method of pushover analysis in which ‘the plastic hinge length and 

transverse reinforcement spacing are assumed to be effective parameters in the user-defined hinge 
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properties. Observations show that plastic hinge length and transverse reinforcement spacing have no 

influence on the base shear capacity, while these parameters have considerable effects on the displacement 

capacity of the frames. Comparisons point out that an increase in the amount of transverse reinforcement 

improves the displacement capacity’. Patel (2014) and Inel and Ozmen (2006) use the SAP2000 program 

(Computers & Structures, Inc, 2022). This method is a much simpler process for obtaining plastic hinges and 

their load factors without the use of reduced stiffness matrix or mesh refinement or plastic hinge length 

methods as, for example in the processes proposed by Silva (2004), Barham et al. (2005) and Inel and Ozmen 

(2006). 

Salihovic and Ademovic (2017) worked with ‘distributed plasticity models or so-called fiber section 

models, used to simulate the spread of plasticity along the member length and across the section. Fiber hinges 

are used to define the coupled axial force and bending behavior at locations along the length of a frame 

element. The cross section is discretized into a series of representative axial fibers which extend 

longitudinally along the hinge length. These hinges are elastic-plastic and consist of a set of material points, 

each representing a portion of the frame cross-section having the same material’. 

The method is based on the criterion of the Minimum Euclidean norm with property changes of the elastic 

stiffness matrix. The advantage of this method is that it uses elastic analysis in each phase of the plastic hinge 

formation process with property changes in the stiffness matrix for space frames without the use of mesh or 

integration over the cross section generally used in MEF models, as in Salihovic and Ademovic (2017) or 

Hanganu (1997).  

This method introduces a simplicity into the design of perfectly plastic structures which parallels that of 

the analysis of linear elastic models. This study involves the concepts of structural design, and models of 

structural dimensioning with theories of singly reinforced or doubly reinforced bending beams, and columns 

with uniaxial or biaxial bending. The method has proved to be effective in the process of detecting plastic 

hinges, of obtaining the load factor of the structure’s plastic collapse and permitting the choice of a less costly 

design conception. 

Material and methods 

The research was developed based on the formulations presented in the sections and on 2 (two) case 

studies also presented. 

Static and elastic analysis 

Problem solution in structural mechanics requires the application of three basic sets of laws: Statics, 

kinematics, and the material’s constitutive relations. Two distinct ways can be used to describe such laws, 

namely, the mesh and the nodal descriptions. Below the relation between them is presented as, for instance, 

in Harrison (1973). 

𝑎 = 𝐿 ⋅ 𝑚;           (1a) 

𝜃 = 𝐿𝑇 ⋅ 𝛿           (1b) 

where: 

𝑎 is the external nodal loads vector; 𝐿 is the equilibrium matrix of the element; 𝑚 is the sectional stresses 

vector; 𝜃 represents the cross-section strains associated with the nodal loads vector; and 𝛿 is the structure 

displacements vector. 

The equilibrium matrix 𝐿 is only determined for a structure where no link (internal or external) is violated 

in its obtention. The same is presented in the formulation of the stiffness methods of analysis used in Harrison 

(1973).  

The method employed in this study was the stiffness method of analysis that uses the member stiffness 

matrices 𝐾, equilibrium 𝐿, and rotation 𝑅 for each unconnected element as in Harrison (1973). 

The member stiffness matrix 𝑆 of the structure is: 

𝑆 = 𝑅 ⋅ 𝐿 ⋅ 𝐾 ⋅ 𝐿𝑇 ⋅ 𝑅𝑇          (2) 

The stiffness method of analysis was employed because the matrix 𝐾 is fundamental for the use of the 

incremental analysis method. The discretization of the continuum in bar elements in the system of local axes 

(m) follows a formulation based on Harrison (1973). 
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Elastoplastic analysis – incremental method 

The method of incremental elastoplastic analysis determines the collapse load factor by successive elastic 

analysis, where for each increment the formation order of the hinges and their respective sections is verified. 

The formation of each hinge modifies the stiffness of the element for the proposed method. It means that the 

matrix 𝐾 will have the same size, but with some altered elements. Following this method, when the element 

loses its resistance capacity, the member stiffness matrix 𝐾 changes Equation 3 (Figure 1) until 6 is in 

accordance with the hinge formation process.  

In this case, the resistance capacity of the axial stiffness is applied as the last value of the section in order 

that the matrix does not become an identity (𝐼) completely. The equilibrium matrices 𝐿 and the rotation 𝑅 

remain unchanged. The direct stiffness method of analysis (Harrison, 1973), allows for modifications in the 

stiffness matrix of the element to be made without difficulty. 

The elastoplastic model disregards the curved section relationships of moment and curvature, being elastic 

until it reaches the plastic moment (𝑀𝑝), and perfectly plastic for curvature increments (𝐾). 

The stiffness matrix 𝐾 of the unconnected element for the incorporation of hinges, before and during the 

plastic phase of the structure, has the following possible cases: 

Unconnected element with both ends fixed 

 

Figure 1. Unconnected element with fixed-fixed ends. 

The corresponding member stiffness matrix is Equation 3: 

where: 

𝜃 is the sectional strains vector; 𝑒, 𝜙 and 𝛽 are member strains; 𝑇𝑚 is the axial tension force; 𝑀𝐴𝐵𝑧𝑚 is the 

moment applied at joint A in z-axis; 𝑀𝐵𝐴𝑧𝑚 is the moment applied at joint B in z-axis; 𝑀𝐴𝐵𝑦𝑚 is the moment 

applied at joint A in y-axis; 𝑀𝐵𝐴𝑦𝑚 is the moment applied at joint B in y-axis; 𝑄𝑚 is the twisting moment in 

x-axis; 𝑉𝐴𝐵𝑦𝑚 is the normal shear force at joint A in y-axis; 𝑉𝐵𝐴𝑦𝑚 is the normal shear force at joint B in y-

axis; 𝑉𝐴𝐵𝑧𝑚 is the normal shear force at joint A in z-axis; 𝑉𝐵𝐴𝑧𝑚 is the normal shear force at joint B in z-axis; 

𝐿 is the member length; 𝐸 is the elastic modulus; 𝐺 is the shear modulus; 𝐴 is the cross-section area; 𝐼𝑧 is the 

inertia moment in z-axis; 𝐼𝑦 is the inertia moment in y-axis; and 𝐼𝑥 is the torsion constant.  

Unconnected element with the left end hinged, and the right end fixed 

 

Figure 2. Unconnected element with hinged and fixed ends. 
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The modified member stiffness matrix is presented in Equation 4 (Figure 2). 

Unconnected element with right end hinged, and left end fixed 

 

Figure 3. Unconnected element with fixed and hinged end. 

The member stiffness matrix in this case is Equation 5 (Figure 3). 

Unconnected element with hinged-hinged ends 

 

Figure 4. Unconnected element with hinged-hinged ends. 

The member stiffness matrix in this case is Equation 6 (Figure 4). 

In the incremental analysis the following basic criteria were adopted: 

• When the formation of the plastic hinge occurs due to one of the working moments in the section, we 

assume that it has formed in all directions of the section in the case of bending with single or double 

reinforcement and uniaxial bending; 

• During the formation of the plastic hinge, there are two interaction situations between the normal 

stress and the moments: 1) taking normal stress into account, testing the variation in its numerical value at 

each phase of the formation of plastic hinges (this is the method used here); or 2) not considering its 

numerical value, removing it from the member stiffness matrix together with the moments; 

• In the verification of the plastic rotation capacity, the total plastic rotation of the section was adopted 

as a limit value, without deducting the elastic rotation. The formulation is compatible with NBR 6118 (ABNT, 

2014). Other methods can be seen in Orozco (2015); 

• The method in this article is simpler in relation to the method proposed in Salihovic and Ademovi 

(2017) applied in a space frames analysis. 

Uniaxial bending 

Based on the formulation Mello (2003) proposed, the equilibrium equations of sections with reinforcement 

will be presented in this section with a focus on NBR 6118 (ABNT, 2014). The reinforcement arrangement is 

presented together with the applied axial loads and moment in Figure 5. 

The equilibrium relations have the following definitions: 

𝐴𝑐𝑐 = 𝑏 ∙ 𝑢; 𝑞 = 𝑏 ⋅ 𝜎𝑐𝑑; 𝑅𝑐 = 𝐴𝑐𝑐 ⋅ 𝜎𝑐𝑑  = 𝑞 ⋅ 𝑢;  𝛼 =
𝑢

ℎ
;   (7a) 

𝑎1 = 𝑎0 + 𝑧; 𝛼0 =
𝑎0

ℎ
; 𝛼1 =

𝑎1

ℎ
; 𝐾𝑧 =

𝑧

ℎ
; 𝑧 = 𝑎1 − 𝑎0      (7b) 

where: 

𝐴𝑐𝑐 is the compressed concrete area; 𝑏 and ℎ are the cross-section dimensions; σcd  =  0.85𝑓𝑐𝑑 (calculated 

stress of the reinforced concrete); 𝑢 is the cross-section compressed area; 𝑞 is the partial uniform load in a 
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rigid beam of height h; 𝑅𝑐 is the compression stresses resultant; α is the relative abscissa of the compressed 

concrete block; 𝑧 is the lever arm; and 𝑎0 is the cover of the section. 

𝑁𝑑 = 𝑞 ∙ 𝑢 with 0 <  𝑢 ≤  ℎ; 𝑀𝑑 =
1

2
 𝑞(ℎ − 𝑢)𝑢;   (8a) 

𝜈𝑑 =
𝑁𝑑

𝑞ℎ
= 𝐹𝜈(𝛼) = 𝛼; 𝜇𝑑 =

8𝑀𝑑

𝑞ℎ2 = 𝐹𝜇(𝛼) = 4(1 − 𝛼)𝛼      (8b) 

where: 

𝑁𝑑 is the calculated applied axial load; 𝑀𝑑 is the calculated applied moment; ν𝑑 is the calculated relative 

normal working stress; and μd is the calculated relative bending working stress. 

When requests (ν𝑑 and μd) occur outside the statically permissible region, the use of reinforcements is 

necessary, with more details in Mello (2003). In the arrangement of reinforcements shown in Figure 5, the 

forces 𝑅𝑛 actuate for the equilibrium of 𝑁𝑑, and the binary in 𝑧 of 𝑅𝑚 , for the equilibrium of 𝑀𝑑. 

The conditions of equilibrium will be: 

∑ 𝐹𝑣 = 0;  2𝑅𝑛 = 𝑁𝑑 − 𝑞 ⋅ 𝑢; ∑ 𝑀 = 0; 𝑅𝑚 = 𝑀𝑑 −
1

2
 𝑞(ℎ − 𝑢)𝑢     (9) 

In the dimensionless form:  

𝑅𝑛 =
1

2
𝑞ℎ[𝜈𝑑 − 𝐹𝜈(𝛼)]; 𝑅𝑚 =

1

2
𝑞ℎ

[𝜇𝑑−𝐹𝑢(𝛼)]

4𝐾𝑧
       (10) 

The terms applied in the computer program developed in Python Software Foundation (2021), version 3.8, 

are: 

𝑒0𝑑 = 𝜈𝑑 +
𝜇𝑑

4𝐾𝑧
; 𝑒1𝑑 = 𝜈𝑑 −

𝜇𝑑

4𝐾𝑧
; 𝐹𝑒0(𝛼) = 𝛼 +

4(1−𝛼)𝛼

4𝐾𝑧
=

(2𝛼1−𝛼)𝛼

𝐾𝑧
;   (11a) 

𝐹𝑒1(𝛼) = 𝛼 −
4(1−𝛼)𝛼

4𝐾𝑧
=

(𝛼−2𝛼0)𝛼

𝐾𝑧
         (11b) 

where: 

𝑒0𝑑 and 𝑒1𝑑 are equivalent actions; 𝐹𝑒0 and 𝐹𝑒1 are equivalent resistance functions.  

 

Figure 5. Statics of the reinforced section. 

The expressions of Equation 11a-b can be seen graphically with more details in Mello (2003). 

The resultant forces of Figure 5 are represented in relation to the terms 𝑅0 and 𝑅1 as 

𝑅0 =
1

2
𝑞ℎ[𝑒0𝑑 − 𝐹𝑒0(𝛼)] = 𝑅𝑛 + 𝑅𝑚; 𝑅1 =

1

2
𝑞ℎ[𝑒1𝑑 − 𝐹𝑒1(𝛼)] = 𝑅𝑛 − 𝑅𝑚    (12) 

According to what has been described by Mello (2003), the properties of 𝑅0 and 𝑅1 cancel each other if: 

𝑒0𝑑 = 𝐹𝑒0(α); 𝑒1𝑑 = 𝐹𝑒1(α)         (13) 

The solution of the two cases of Equation 13 leads to the solutions of second-degree equations for ‘α’, as 

follows: 

𝛼2 − 2𝛼1𝛼 + 𝐾𝑧𝑒0𝑑 = 0; 𝛼2 − 2𝛼0𝛼 − 𝐾𝑧𝑒1𝑑 = 0       (14) 
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The solutions are: 

𝛼𝑅0 = 𝛼1 (1 ± √1 −
𝑒0𝑑

𝐹𝑒0(𝛼1)
); 𝛼𝑅1 = 𝛼0 (1 ± √1 −

𝑒1𝑑

𝐹𝑒1(𝛼0)
)      (15) 

Due to the many possible values for 𝛼, the reading of the evaluations made by Mello (2003) is recommended. 

Neutral axis 

The mechanisms of plastic collapse for the calculation of the cross-section curvature and the deformations 

in the reinforcements can be best studied in Mello (2003). The equivalent rectangular diagram from NBR 6118 

(ABNT, 2014) is used for reinforced concrete with classes up to C50 (50 MPa) in this study.  

The position of the neutral axis (α𝑥) is necessary to define the strain state of the evaluated element’s cross-

section. Then, 

𝑢 = 0.8𝑥;  𝛼 = 0.8𝛼𝑥          (16) 

where: 

𝑥 is the position of the neutral axis; and 𝛼𝑥 is the relative position of the neutral axis (α𝑥 =
𝑥

ℎ
). 

According to the variation of the neutral axis 𝛼𝑥 , the actions and the equivalent resistances are determined 

in 𝑅0 and 𝑅1. The mechanisms defined according to the position of the neutral axis belong to the domain of 

α ∈ [−∞; +∞]. 

The values defined by the Mello (2003) model for the neutral axis are: 

• if α𝑥 ≥
5

4
 , then α = 1 (uniformly compressed section) is adopted; if 0 <  𝛼𝑥 ≤

5

4
 , then 𝛼 =

5

4
 (partially 

compressed section); if 𝛼𝑥 ≤ 0 then 𝛼 = 0 (resistance to traction is neglected) is adopted. 

In the computer program, the inferior limit range ‘l’ and the superior ‘r’, intervals of α𝑥𝑙 ≤ 𝛼𝑥 ≤ α𝑥𝑟 were adopted, 

according to the algorithm criteria in Figure 1. Table 1 is part of the FOB, FNC and FSA routines of Figure 7. 

Table 1. Interval definition algorithm of 𝜶𝒙 . 

Algorithm 1 
1. If 𝑒0𝑑 >= 0 and 𝑒0𝑑 ≤ 𝐹𝑒0(α1), then: 

If 𝑒0𝑑 >= 1, then: 
Choose one of αR0 from Equation 15. 

If not, then: 
Choose the αR0 of negative sign (−) of the Equation 15. 

Select 𝛼𝑥2 =
5

4
αR0; 𝑐𝑡1 = 1 (control parameter) 

2. If 𝑒1𝑑 ≥ 𝐹𝑒1(𝛼0) and 𝑒1𝑑 ≤ 1, then: 
If 𝑒1𝑑 ≤ 0 

Choose one of αR1 from Equation 15 

If not, then: 
Choose the αR1 of negative sign (−) of Equation 15 

Select 𝛼𝑥3 =
5

4
αR1; 𝑐𝑡2 = 1 (control parameter) 

The intervals that have been tested are: 
3. If 𝑒0𝑑 >= 0, then: 

𝛼𝑥𝑙0 = 𝛼0; 𝛼𝑥𝑟0 = +∞ 
 If not, then: 

𝛼𝑥𝑙0 = −∞; 𝛼𝑥𝑟0 = 𝛼0 
4. If 𝑒1𝑑 >= 0, then: 

𝛼𝑥𝑙1 = 𝛼1; 𝛼𝑥𝑟1 = +∞ 
 If not, then: 

𝛼𝑥𝑙1 = −∞; 𝛼𝑥𝑟1 = 0.98𝛼0 

Source: The authors. 

Deformation mechanism 1 

The position of the neutral relative axis 𝛼𝑥 is in the domain αx ∈ [1; +∞]. The shortening of the concrete 

will be defined by the value of 𝜀𝑝  =  2 𝑚𝑚/𝑚. The position of α𝑝 will be equal to 3/7; the deformations in the 

reinforcing bars (rebars) and Curvature 𝐾1 are defined in Mello (2003).  

Deformation mechanism 2 

The position of the neutral relative axis α𝑥 is in the domain αx ∈ [(7/27)α1; 1]. It includes the domains of 

limit-stage 3 to 4 of NBR 6118 (ABNT, 2014), and, depending on the reinforcement’s arrangement, a small 

domain section 2, according to Mello (2003). The hypotheses are bending with α𝑝 = 0 and ε𝑝 = ε𝑐0 =

3.5 𝑚𝑚/𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. The inferior limit of 𝛼𝑥 is obtained with the proviso that the relative elongation does 

not exceed 10 𝑚𝑚/𝑚. Then, 𝛼𝑥 = (7/27)α1. 

Deformation mechanism 3 

The position of the neutral relative axis 𝛼𝑥 is in the domain αx ∈ [−∞; (7/27)α1]. It includes the domains 

of last limit-stages 1 and 2 of NBR 6118 (ABNT, 2014), according to Mello (2003). The hypotheses have α𝑝 =

α1 and ε𝑝 = ε𝑠1 = −10 𝑚𝑚/𝑚. The inferior limit of 𝛼𝑥 is obtained with the proviso that the relative elongation 

does not exceed 10 𝑚𝑚/𝑚. 
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Relative stress-strain diagram of the steel 

The criteria of steel deformation for the last limit stage follows the NBR 6118 (ABNT, 2014), according to 

calculated deformation (𝜀𝑠).  

The calculated strain is represented as: 

𝜀𝑦𝑑 =
𝑓𝑦𝑑

𝐸𝑠
           (17) 

• if 𝜀𝑠 < 𝜀𝑦𝑑 then 𝜎𝑠 = 𝜀𝑠𝐸𝑠 is adopted; if 𝜀𝑠 ≥ 𝜀𝑦𝑑 then 𝜎𝑠 = 𝑓𝑦𝑑 is adopted with the deformation sign 𝜀𝑠. 

According to Mello (2003) the criteria used in the computer program depend on 𝐾𝑦, which is defined as: 

𝐾𝑦𝑖 =
𝜎𝑠𝑖

𝑓𝑦𝑑
=  

𝜀𝑠𝑖

𝜀𝑦𝑑
 with 𝑖 ∈  [0; 1]         (18) 

• Conditions:  

1) if |𝜀𝑠𝑖|/𝜀𝑦𝑑 < 1 then 𝐾𝑦 = 𝜀𝑠𝑖/ε𝑦𝑑 is adopted; 2) if |𝜀𝑠𝑖|/𝜀𝑦𝑑  ≥ 1 then 𝐾𝑦 = ±1 is adopted. 

where: 

𝐸𝑠 is longitudinal elastic modulus of steel; 𝑓𝑦𝑑 is the calculated stress; and ε𝑦𝑑 is the calculated strain. 

Reinforcements mechanical ratio 

The reinforcements obtained follow the criteria of resistance conditions, according to Equation 19. That 

means that actuating forces 𝑅0 and 𝑅1 cannot be greater than the structure’s resistance capacity.  

𝐴𝑠0 ⋅ 𝜎𝑠0 ≥ 𝑅0; 𝐴𝑠1 ⋅ 𝜎𝑠1 ≥ 𝑅1         (19) 

With 

𝜎𝑠0 =
𝑓𝑦𝑑0

𝑓𝑐𝑑
; 𝜎𝑠1 =

𝑓𝑦𝑑1

𝑓𝑐𝑑
; 𝑇0 = 𝐴𝑠0 ⋅ 𝜎𝑠0; 𝑇1 = 𝐴𝑠1 ⋅ 𝜎𝑠1       (20) 

where: 

𝜎𝑠0 and 𝜎𝑠1 are the applied stresses in the positions ‘0’ and ‘1’ of Figure 5; 𝐴𝑠0 and 𝐴𝑠1 are the reinforcements 

obtained due to the applied loads; 𝑅0 and 𝑅1 are the applied forces in the section; and 𝑇0 and 𝑇1 are the 

resistance equivalent forces of the section. 

By replacing 𝑅0 and R1 in Equation 19, with 𝑅0 and R1 from Equation 12 divided by 𝑞ℎ, the following is 

obtained: 

𝐴𝑠0

𝑏ℎ

𝑓𝑦𝑑0

𝑓𝑐𝑑
𝐾𝑦0 ≥

0.85

2
[𝑒0𝑑 − 𝐹𝑒0(𝛼)]; 

𝐴𝑠1

𝑏ℎ

𝑓𝑦𝑑1

𝑓𝑐𝑑
𝐾𝑦1 ≥

0.85

2
[𝑒1𝑑 − 𝐹𝑒1(𝛼)]     (21) 

By defining geometric (ρ𝑖) and mechanical (ωi) ratios as 

𝜌𝑖 =
𝐴𝑠𝑖

𝑏ℎ
 with 𝑖 ∈  [0; 1]; 𝜔𝑖 = 𝜌𝑖

𝑓𝑦𝑑𝑖

𝑓𝑐𝑑
        (22) 

and replacing the terms in Equation 21, the following is obtained: 

𝜔0𝐾𝑦0 ≥
0.85

2
[𝑒0𝑑 − 𝐹𝑒0(𝛼)]; 𝜔1𝐾𝑦1 ≥

0.85

2
[𝑒1𝑑 − 𝐹𝑒1(𝛼)]      (23) 

Adopting the proposal according to Mello (2003) where by: 

𝐹𝑠0 ≥
2𝐾𝑦0

0.85
; 𝐹𝑠1 ≥

2𝐾𝑦1

0.85
          (24) 

Then: 

𝜔0𝐹𝑠0 + 𝐹𝑒0(𝛼) ≥ 𝑒0𝑑; 𝜔1𝐹𝑠1 + 𝐹𝑒1(𝛼) ≥ 𝑒1𝑑       (25) 

Equation 25 are used as a base to obtain the plastic collapse load factor.  

Plastic collapse load factor 

The formulation involves the bending beam theory for singly or doubly reinforced beams, and columns 

with uniaxial or biaxial bending, proposed by Mello (2003) and adapted to NBR 6118 (ABNT, 2014) in this 

study. The part involving Equation 26 to 30 is distinct from the model proposed by (Mello, 2003). 

Taking Equation 11a-b in which the terms of the applied actions receive a load factor γ𝑖, then: 

𝛾0𝑒0𝑑 = 𝛾0 (𝜈𝑑 +
𝜇𝑑

4𝐾𝑧
); 𝛾1𝑒1𝑑 = 𝛾1 (𝜈𝑑 −

𝜇𝑑

4𝐾𝑧
)       (26) 
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Replacing terms in Equation 26 with those from 25, it is possible to obtain the terms for the load factors 

in the section. 

𝜔0𝐹𝑠0 + 𝐹𝑒0(𝛼) ≥ 𝛾0𝑒0𝑑; 𝜔1𝐹𝑠1 + 𝐹𝑒1(𝛼) ≥ 𝛾1𝑒1𝑑       (27) 

Then: 

𝛾0 ≤
𝜔0𝐹𝑠0+𝐹𝑒0(𝛼)

𝑒0𝑑
; 𝛾1 ≤

𝜔1𝐹𝑠1+𝐹𝑒1(𝛼)

𝑒1𝑑
        (28) 

The section load factor is the least value of the values obtained: 

𝛾𝑠𝑒çã𝑜 = 𝑚𝑖𝑛 (𝛾0; 𝛾1)          (29) 

The load factor in each increment is obtained with the least factor for all the sections analyzed. 

𝛾𝑗 = 𝑚𝑖𝑛 (𝛾𝑠𝑒çã𝑜1; 𝛾𝑠𝑒çã𝑜2; ⋯ ; 𝛾𝑠𝑒çã𝑜𝑛)        (30) 

where: 

𝑗 is the number of increments in the analysis; and 𝑛 is the number of sections analyzed in the structure. 

The load factor involves the axial and bending moment efforts in y-axis and z-axis directions of the cross-

section for singly or doubly reinforced beams and columns with uniaxial bending. In the case of columns with 

biaxial bending, the biaxial bending method is used.  

For the obtention of the collapse load factor (γ𝑗) the following possibilities were considered based on 

information provided by Table 1. Table 2 is part of the FOB, FNC and FSA routines of Figure 7. 

Table 2. Tests of 𝛄𝒋. 

 
Source: The authors. 

Algorithm 2 

1st Phase: test to verify if a minimum reinforcement is necessary. 

1. Calculation of 𝑣𝑠 = 4𝑣𝑑 (1 − 𝑣𝑑 ) with 𝑣𝑑  (Equation 8b) and μd  (Equation 

8b). 

If μd ≤ 𝑣𝑠, then: 

Adopt minimum reinforcement. 

γ0 = +∞ and 𝛾1 = +∞ 

Exit 

2nd Phase: tests for γ0  = 𝛾1 

1. Adopt 𝛼𝑥𝑙 = −∞; 𝛼𝑥𝑟 = +∞ 

2. Use 𝜔𝑠0 and 𝜔𝑠1 = arbitrated reinforcements (doubly reinforced section) 

3. Obtain by root isolation the 𝛼𝑥  for γ0  = 𝛾1 

4. To 𝛼𝑥  obtain 𝑅0; 𝑅1; 𝑇0 = 𝑅0 × 𝜎𝑠0; 𝑇1 = 𝑅1 × 𝜎𝑠1; 𝜎𝑠0; 𝜎𝑠1 

5. Check parity: 

If 𝑇0  ≥ 0 and 𝑇1 ≥ 0 and γ0 ≥ 0 and 𝛾1 ≥ 0, then: 

γ0 and 𝛾1 are possible solutions. 

Exit 

If not, then: 

If 𝑐𝑡1 = 1 and 𝑐𝑡2 = 1, then: 

𝜔𝑠0 = 0 and 𝜔𝑠1 = 0 (section without reinforcement) 

If 𝛼𝑥2 ≥ 𝛼𝑥3 

𝛼𝑥𝑙 = 𝛼𝑥2; 𝛼𝑥𝑟 = 𝛼𝑥3 

If not, then: 

𝛼𝑥𝑙 = 𝛼𝑥3; 𝛼𝑥𝑟 = 𝛼𝑥2 

Repeat step 5. 

If 𝑐𝑡1 = 1 and 𝑐𝑡2 = 0, then: 

Use 𝜔𝑠0 = 0 and 𝜔𝑠1 = arbitrated value (simple bending 

section) 

𝛼𝑥𝑙 = 𝛼𝑥𝑙0; 𝛼𝑥𝑟 = 𝛼𝑥2 

Repeat steps 3. to 5. 

If 𝑐𝑡1 = 0 and 𝑐𝑡2 = 1, then: 

𝜔𝑠0 = arbitrated value and 𝜔𝑠1 = 0 (simple bending section) 

𝛼𝑥𝑙 = 𝛼𝑥𝑙1; 𝛼𝑥𝑟 = 𝛼𝑥3 

Repeat steps 3 to 5 

3rd Phase: tests to γ0 ≠ 𝛾1 

1. test = 0 

2. While 𝑡𝑒𝑠𝑡 ≤ 3, do: 

If 𝑡𝑒𝑠𝑡 = 0, then: 

Use 𝜔𝑠0 and 𝜔𝑠1 = arbitrated reinforcement 

Obtain the minimum root (𝛼𝑥𝑚 ) in the intervals: 

𝛼𝑥𝑙 = 𝛼𝑥𝑙1; 𝛼𝑥𝑟 = 𝛼𝑥𝑟 1 

𝑎) 𝛼𝑥𝑙 = 𝛼𝑥𝑙0; 𝛼𝑥𝑟 = 𝛼𝑥𝑟 0 

To 𝛼𝑥𝑚  obtain 𝑅0; 𝑅1; 𝑇0 = 𝑅0 × 𝜎𝑠0; 𝑇1 = 𝑅1 × 𝜎𝑠1; 𝜎𝑠0; 𝜎𝑠1 

Check parity: 

If 𝑇0  ≥ 0 and 𝑇1 ≥ 0 and γ0 ≥ 0 and 𝛾1 ≥ 0, then: 

γ0 and 𝛾1 are possible solutions 
𝛼𝑥 = 𝛼𝑥𝑚   

Exit 

If not, then: 
𝑡𝑒𝑠𝑡 =  𝑡𝑒𝑠𝑡 +  1 

If 𝑡𝑒𝑠𝑡 = 1, then: 

Use 𝜔𝑠0 = 0 and 𝜔𝑠1 = arbitrated reinforcement 

Obtain the minimum root (𝛼𝑥𝑚 ) in the intervals: 

𝑎) 𝛼𝑥𝑙 = 𝛼𝑥𝑙1; 𝛼𝑥𝑟 = 𝛼𝑥𝑟 1 

b) 𝛼𝑥𝑙 = 𝛼𝑥𝑙0; 𝛼𝑥𝑟 = 𝛼𝑥𝑟 0 

To 𝛼𝑥𝑚  obtain 𝑅0; 𝑅1; 𝑇0 = 𝑅0 × 𝜎𝑠0; 𝑇1 = 𝑅1 × 𝜎𝑠1; 𝜎𝑠0; 𝜎𝑠1 

Check parity: 

If 𝑇0  ≥ 0 and 𝑇1 ≥ 0 and γ0 ≥ 0 and 𝛾1 ≥ 0, then: 

γ0 and 𝛾1 are possible solutions 
𝛼𝑥 = 𝛼𝑥𝑚   

Exit 

If not, then: 
𝑡𝑒𝑠𝑡 =  𝑡𝑒𝑠𝑡 +  1 

If 𝑡𝑒𝑠𝑡 = 2, then: 

Use 𝜔𝑠0 = arbitrated reinforcement and 𝜔𝑠1  = 0 

Obtain the minimum root (𝛼𝑥𝑚 ) in the intervals: 

𝑎) 𝛼𝑥𝑙 = 𝛼𝑥𝑙1; 𝛼𝑥𝑟 = 𝛼𝑥𝑟 1 

b) 𝛼𝑥𝑙 = 𝛼𝑥𝑙0; 𝛼𝑥𝑟 = 𝛼𝑥𝑟 0 

To 𝛼𝑥𝑚  obtain 𝑅0; 𝑅1; 𝑇0 = 𝑅0 × 𝜎𝑠0; 𝑇1 = 𝑅1 × 𝜎𝑠1; 𝜎𝑠0; 𝜎𝑠1 

Check parity: 

If 𝑇0  ≥ 0 and 𝑇1 ≥ 0 and γ0 ≥ 0 and 𝛾1 ≥ 0, then: 

γ0 and 𝛾1 are possible solutions 
𝛼𝑥 = 𝛼𝑥𝑚   

Exit 

If not, then: 
𝑡𝑒𝑠𝑡 =  𝑡𝑒𝑠𝑡 +  1 

If 𝑡𝑒𝑠𝑡 = 3, then: 

Use 𝜔𝑠0 = 0 and 𝜔𝑠1  = 0 

Obtain the minimum root (𝛼𝑥𝑚 ) in the intervals: 

a) 𝛼𝑥𝑙 = 𝛼𝑥𝑙1; 𝛼𝑥𝑟 = 𝛼𝑥𝑟 1 

b) 𝛼𝑥𝑙 = 𝛼𝑥𝑙0; 𝛼𝑥𝑟 = 𝛼𝑥𝑟 0 

To 𝛼𝑥𝑚  obtain 𝑅0; 𝑅1; 𝑇0 = 𝑅0 × 𝜎𝑠0; 𝑇1 = 𝑅1 × 𝜎𝑠1; 𝜎𝑠0; 𝜎𝑠1 

Check parity: 

If 𝑇0  ≥ 0 and 𝑇1 ≥ 0 and γ0 ≥ 0 and 𝛾1 ≥ 0, then: 

γ0 and 𝛾1 are possible solutions 
𝛼𝑥 = 𝛼𝑥𝑚   

Exit 

If not, then: 
𝑡𝑒𝑠𝑡 =  𝑡𝑒𝑠𝑡 +  1 

If 𝑡𝑒𝑠𝑡 > 3, then: 

γ0 and 𝛾1 we’re not found with these criteria 

Stop program. 

4th Phase: 

1. To 𝛼𝑥  obtain 𝑅0; 𝑅1; 𝑇0 = 𝑅0 × 𝜎𝑠0; 𝑇1 = 𝑅1 × 𝜎𝑠1; 𝜎𝑠0; 𝜎𝑠1; 

γ0; 𝛾1 

2. Check parity: 

If 𝑇0  ≥ 0 and 𝑇1 ≥ 0 and γ0 ≥ 0 and 𝛾1 ≥ 0 

Print results 
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The biaxial bending model will be the same as that presented by Mello (2003), using an interpolation 

function and reinforcement arrangements as shown in Figure 6 which, however, are only illustrative. 

Obtaining the reinforcement is one of the objectives of the proposed model. 

The angle θ is the result of the relations of the relative eccentricities ξ
𝑏
 and ξ

ℎ
, taking the direction ℎ as a reference. 

𝑡𝑎𝑛(𝜃) =
𝜉𝑏

𝜉ℎ
 with 0 ≤ 𝜃 ≤ 𝜋/2         (31) 

With 

𝜉𝑏 =
𝑒1𝑧

𝑏
;  𝜉ℎ =

𝑒1𝑦

ℎ
          (32) 

where: 

ξ
𝑏
 and 𝜉ℎ are the relative eccentricities; 𝑒1𝑧 and 𝑒1𝑦 are the initial biaxial bending eccentricities of the 1st order. 

The angle φ comes from geometric properties of the section so that 

𝑡𝑎𝑛(𝜑) =
𝑏

ℎ
           (33) 

The function of interpolation 𝑓(θ) for the stress σ𝑐𝑑 has the following description: 

• If the angle θ ≤ φ 

𝑓(𝜃) = 0.85 − 0.05
ℎ

𝑏
𝑡𝑎𝑛(𝜃); 𝑓(𝑡) = 0.85 − 0.05 (

ℎ

𝑏
)

𝜉𝑏

𝜉ℎ
      (34) 

• If the angle θ > φ 

𝑓(𝜃) = 0.85 − 0.05
𝑏

ℎ
𝑡𝑎𝑛(𝜃); 𝑓(𝑡) = 0.85 − 0.05 (

𝑏

ℎ
)

𝜉ℎ

𝜉𝑏
      (35) 

With  

𝑡 = 𝑠𝑖𝑛2(𝜃) with 0 ≤  𝑡 ≤ 1         (36) 

Biaxial bending 

 

Figure 6. Biaxial bending model. 

The applied stress in the angle θ will be calculated in the following manner: 

𝜎𝑐𝑑𝑡 = 𝑓(𝑡)𝜎𝑐𝑑           (37) 

Using the relations of Equation 8a-b and 11a-b expressed expressed for the case of biaxial bending: 

𝜈𝑑𝑡 =
𝑁𝑑

𝑏ℎ𝜎𝑐𝑑𝑡
=

𝑁𝑑

𝑞𝑡ℎ
=

𝑁𝑑

𝐴𝜎𝑐𝑑𝑡
          (38) 

where: 

ν𝑑𝑡 is the calculated relative normal working stress. 

The equivalent actions are presented by Mello (2003) as follows: 

• Direction ℎ 

𝑒0𝑑ℎ = [1 + 2 (
𝑒

𝑧
)

ℎ
] 𝜈𝑑𝑡; 𝑒1𝑑ℎ = [1 − 2 (

𝑒

𝑧
)

ℎ
] 𝜈𝑑𝑡       (39) 

• Direction 𝑏 

𝑒0𝑑𝑏 = [1 + 2 (
𝑒

𝑧
)

𝑏
] 𝜈𝑑𝑡; 𝑒1𝑑𝑏 = [1 − 2 (

𝑒

𝑧
)

𝑏
] 𝜈𝑑𝑡       (40) 
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In function (
𝑒

𝑧
)

𝑡
, in the following manner: 

(
𝑒

𝑧
)

𝑡
= (1 − 𝑡) (

𝑒1𝑦

𝑧
)

ℎ
+ 𝑡 (

𝑒1𝑧

𝑧
)

𝑏
         (41) 

𝑒0𝑑𝑡 = [1 + 2 (
𝑒

𝑧
)

𝑡
] 𝜈𝑑𝑡; 𝑒1𝑑𝑡 = [1 − 2 (

𝑒

𝑧
)

𝑡
] 𝜈𝑑𝑡       (42) 

The working moments follow the same procedures adopted for axial stresses, as  

𝜇𝑑ℎ = 8𝜈𝑑𝑡 (
𝑒1𝑦

ℎ
); 𝜇𝑑𝑏 = 8𝜈𝑑𝑡 (

𝑒1𝑧

𝑏
)         (43) 

The interpolation formula will be based on 𝑡: 

𝜇𝑡 = (1 − 𝑡)𝜇𝑑ℎ + 𝑡𝜇𝑑𝑏          (44) 

where: 

μ𝑑ℎ and μ𝑑𝑏 are the relative applied stresses in directions 𝑦 and 𝑧. 

Equation 41, 42, 43, and 44 are used in the program developed, along with the other relations of  

Equation 31 to 38. 

The other relations used for the formulation, based on Figure 3, are the following: 

𝐾𝑧ℎ =
𝑧ℎ

ℎ
;  𝐾𝑧𝑏 =

𝑧𝑏

𝑏
; 𝐾𝑧𝑡 = (1 − 𝑡) 𝐾𝑧ℎ + 𝑡 𝐾𝑧𝑏       (45) 

𝑞𝑡 = 𝑏𝜎𝑐𝑑𝑡; 𝛼0𝑦 =
𝑎0ℎ

ℎ
; 𝛼1𝑦 =

𝑎1ℎ

ℎ
    (46a) 

𝛼0𝑧 =
𝑎0𝑏

𝑏
; 𝛼1𝑧 =

𝑎1𝑏

𝑏
    (46b) 

𝛼0𝑡 = (1 − 𝑡) 𝛼0𝑦 + 𝑡 𝛼0𝑧; 𝛼1𝑡 = (1 − 𝑡) 𝛼1𝑦 + 𝑡 𝛼1𝑧      (46c) 

The procedures follow the same logic of uniaxial bending, considering the use of the interpolation function 

with ‘𝑡’ in order to direct the angle θ; for more details see Mello (2003). 

The criteria of NBR 6118 (ABNT, 2014) in relation to the rules of uniaxial bending, and biaxial bending, in 

its items 11.3.3.4.3 (minimum bending moment) and 15.8 (isolated elements analysis), were implemented to 

calculate, if necessary, the total moments for columns with slenderness ratio λ ≤ 90. Two approximate 

standard-column methods (standard-column method with approximate rigidity and standard-column 

method with approximate curvature) were used. The values of the two directions of cross-section were 

obtained and the one with the highest total value of moments (𝑀𝑑,𝑡𝑜𝑡) was chosen. Other similar studies are 

those of Sfakianakis (2002), and Al-Ansari and Afzal (2020). 

Schematic diagram of the method 

The summary of procedures for the presented method are described in Figure 7, 8 and 9. 

The input data (INPUT in Figure 7) is as follows: 𝑁𝑁 is total number of nodes; 𝑁𝐸 is the total number of 

elements or bars; 𝑁𝐷𝐹 is the number of degrees of freedom per node; 𝑀𝑆 is the semi-bandwidth of the total 

stiffness matrix; 𝑁𝑁𝐸 is the number of nodes per element; 𝑁𝐿 is the total number of nodal loads; 𝑁𝐶 is the 

total number of boundary conditions; 𝐼𝑇𝐶 is the monitoring node; 𝑇𝐺 is the graphic type; 𝐺𝑐 is the concrete 

reduction factor; 𝐺𝑠 is the steel reduction factor; 𝐺𝐹 is the loads magnification factor; 𝜈 is the Poisson's ratio; 

𝐸𝑐 is the modulus of elasticity of concrete; 𝐸𝑠 is the modulus of elasticity of steel; 𝐸𝑁𝑀 is the plastic hinge 

type; 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 are the nodal coordinate vectors; 𝐶𝑂𝑁 is the element connectivities array; 𝐼𝑅𝑍 is the element 

rigidity conditions vector; 𝑏 is the cross-section width; 𝑑𝑏 is the effective width; ℎ is the cross-section overall 

depth; 𝑑ℎ is the effective depth; 𝑇𝐴 is the steel strength type; 𝑓𝑐𝑘 is the concrete strength; 𝑓𝑦𝑘 is the steel 

yield strength; 𝐴𝐿 is the applied loads vector; the cross-section properties are those seen in Figure 1 and 

Figure 5; ωs1 and ωs0 are the reinforcement rates; and 𝑇𝑏 is the element type as in Figure 7. 

Characterization of cases 

The cases are related to the formulation presented to verify the importance of the design conception and 

the applicability of the formulation to obtain plastic collapse load factors, and their formation trajectory.  

Case 1 is based on space frame data presented by Harrison (1973), with 3 elements and 4 discretized nodes, 

according to Figure 10. 
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Figure 7. General schematic diagram. 

 

Figure 8. Standard procedure (S. P.) schematic diagram. 



Page 12 of 18  Vieira et al. 

Acta Scientiarum. Technology, v. 45, e60188, 2023 

 

Figure 9. Plastic procedure (P. P.) schematic diagram. 

Properties of the space frame (SP): 

 

Figure 10. Space frame – Harrison. 

Table 3. Coordinates of the space frame – Harrison. 

Node 
X 𝑌 𝑍 

(𝑚) (𝑚) (𝑚) 

1 0.000 12.000 0.000 

2 12.000 12.000 0.000 

3 12.000 12.000 12.000 

4 12.000 0.000 12.000 

Table 4. Physical characteristics of the space frame – Harrison 

Elem. Node I Node F (𝑘𝑁 𝑚−2) (𝑘𝑁 𝑚−2) ν 
 

1 1 2 E𝑠 𝐹𝑦𝑘  

   201.037×106 490.335×103 0.20  

2 2 3     

   E𝑐 𝐹𝑐𝑘 𝐿  

3 3 4 31.57×106 19613.40 12 m  

 

The terms of Table 4 have the following description: 𝐸𝑠 is the modulus of elasticity of steel; 𝐸𝑐 is the longitudinal 

modulus of elasticity of the concrete; 𝐺𝑐  =  
𝐸𝑐 

2(1+𝑣)
 (shear modulus of elasticity of concrete); 𝜈 is the Poisson's ratio; 

𝐹𝑦𝑘 is the yield stress of steel; 𝐹𝑐𝑘 𝑖𝑠 𝑡ℎ𝑒 maximum stress of concrete; and L is the span length. 
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Table 5. Material properties of the space frame – Harrison. 

Element Cross-section 

1,2 and 3 

A = 0.18 m2 

b = 0.3 m and h = 0.6 m 

Iz = 5400.00 ×10-6  m4 

Iy = 1350.00 ×10-6  m4 

Ix = 3710.00 ×10-6  m4 

 

where: 

A is the cross-section area; b is the width of the cross-section; h height of the cross-section; 𝐼𝑧 is the moment 

of inertia in the 𝑧 direction; 𝐼𝑦 is the moment of inertia in the 𝑦 direction; and 𝐼𝑥 is the torsion constant. 

Table 6. Applied loads of the space frame – Harrison. 

𝑁𝑜𝑑𝑒 Dir Value (kN) 

2 𝐹𝑦 -9.807 

 

where: 

𝐹𝑦 is the applied force in 𝑦 direction. 

Project conceptions were implemented in 2 (two) types that are described in Table 7. 

Table 7. Project Conceptions – space frame – Harrison. 

Phar1 Phar2 

Elem. 𝜔𝑠1(%) 𝜔𝑠0(%) 𝑇𝑏 𝑎0𝑏 = 𝑎0ℎ (𝑚)  Elem. 𝜔𝑠1(%) 𝜔𝑠0(%) 𝑇𝑏 𝑎0𝑏 = 𝑎0ℎ (𝑚)  

1 1.5 0.75 13 0.015 1 1.5 0.75 12 0.015 

2 1.5 0.75 13 0.015 2 1.5 0.75 12 0.015 

3 1.5 0.75 2 0.015 3 1.5 0.75 21 0.015 

 

where: 

The column (biaxial bending) - Tb  = 2; the column (uniaxial bending) - Tb  = 21; the singly reinforced beam 

- Tb  = 11; the doubly reinforced beam (uniaxial bending) - Tb  = 12; the doubly reinforced beam (biaxial 

bending) - Tb  = 13; and ωs1 and ωs0 are the reinforcement rates. 

Case 2 is based on the space frame with data provided by Gere and Weaver Jr. (1987), according to Figure 11. 

 

Figure 11. Space frame - Gere & Weaver. 

Table 8. Coordinates of the space frame - Gere & Weaver. 

Node 
X 𝑌 𝑍 

(𝑚) (𝑚) (𝑚) 

1 4.000 3.000 2.250 

2 4.000 6.000 0.000 

3 0.000 0.000 0.000 

4 8.000 0.000 0.000 

5 4.000 4.500 1.125 

6 6.000 1.500 1.125 

The properties of the case are presented in Table 8 to Table 10. 
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Table 9. Physical characteristics of the space frame - Gere & Weaver. 

Elem. Node I Node F (𝑘𝑁 𝑚−2) (𝑘𝑁 𝑚−2)  

1 1 5 E𝑠 𝐹𝑦𝑘 ν 

2 5 2 201.037×106 490.335×103 0.2 

3 3 1    

4 1 6 E𝑐 𝐹𝑐𝑘 𝐿 

5 6 4 31.57×106 19613.40 3 m 

Table 10. Material properties of the space frame - Gere & Weaver. 

Element (Elem.) Cross-section 

1 a 5 

A = 0.08 m2 

b = 0.2 m and h = 0.4 m 

Iz = 1066.667×10-6  m4 

Ix = 732.800×10-6  m4 

Iy = 266.667×10-6  m4 

 

The applied loads are the following: 

Table 11. Applied loads of the space frame - Gere & Weaver. 

𝑁𝑜𝑑𝑒 𝐹𝑦(𝑘𝑁) 𝐹𝑧(𝑘𝑁) 𝑀𝑥(𝑘𝑁 ∙ 𝑚) 

1 0.000 -22.2411 0.000 

1 0.000 0.000 -16.6808 

5 0.000 -22.2411 0.000 

6 -22.2411 0.000 0.000 

With 𝑀𝑥 = 𝑃𝐿 4⁄  and 𝐹𝑦 = 𝐹𝑧 = 22.2411. 

Project conceptions were implemented in 3 (three) types that are described in Table 12. 

Table 12. Project Conceptions - space frame - Gere & Weaver. 

PGere&Weaver1 PGere&Weaver3 

Elem. 𝜔𝑠1(%) 𝜔𝑠0(%) 𝑇𝑏 𝑎0𝑏 = 𝑎0ℎ (𝑚)  Elem. 𝜔𝑠1(%) 𝜔𝑠0(%) 𝑇𝑏 𝑎0𝑏 = 𝑎0ℎ (𝑚)  

1 1.5 0.75 12 0.015 1 1.5 0.75 12 0.020 

2 1.5 0.75 12 0.015 2 1.5 0.75 12 0.020 

3 1.5 0.75 12 0.015 3 1.5 0.75 12 0.020 

4 1.5 0.75 12 0.015 4 1.5 0.75 12 0.020 

5 1.5 0.75 12 0.015 5 1.5 0.75 12 0.020 

PGere&Weaver2 

Elem. 𝜔𝑠1(%) 𝜔𝑠0(%) 𝑇𝑏 𝑎0𝑏 = 𝑎0ℎ (𝑚)  

1 1.5 0.75 2 0.015 

2 1.5 0.75 2 0.015 

3 1.5 0.75 2 0.015 

4 1.5 0.75 2 0.015 

5 1.5 0.75 2 0.015 

 

Results and discussion 

The results and discussion of the case studies 1 to 2 are presented in this section. 

Case 1 

The displacements and sectional efforts from the first elastic phase of the program were validated with 

SAP200 v.22 software of the first elastic phase as seen in Table 13 and Table 14. 

Table 13. Displacements - space frame - Harrison.  

SAP2000 v.22 

Node u1 u2 u3 r1 r2 r3 

1 0 0 0 0 0 0 

2 9.198e-8 -0.022169 -0.007638 -0.001947 0.000868 -0.002675 

3 0.008046 -5.533e-6 -0.007640 -0.001375 0.000449 -0.001366 

4 0 0 0 0 0 0 
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The authors 

Node u1 u2 u3 r1 r2 r3 

1 0 0 0 0 0 0 

2 0.000000 -0.022129 -0.007634 -0.001945 0.000868 -0.002676 

3 0.008048 -0.000006 -0.007636 -0.001374 0.000449 -0.001366 

4 0 0 0 0 0 0 

Table 14. Sectional Efforts - space frame - Harrison.  

SAP2000 v.22 

Elem.- Node P V2 V3 T M2 M3 

1-1 -0.044 0.718 7.187 7.5972 81.1294 -7.3918 

1-2 0.044 -0.718 -7.187 -7.5972 5.1112 -1.2276 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

3-3 2.620 0.718 0.044 -1,7503 -5.1112 23.8462 

3-4 -2.620 -0.718 -0.044 1.7503 4.5885 -15.2267 

The authors 

Elem.- Node P V2 V3 T M2 M3 

1-1 -0.043822 0.718125 7.188849 7.593434 81.15150 -7.391445 

1-2 0.043822 -0.718125 -7.188849 -7.593434 5.114685 -1.226050 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

3-3 2.618151 0.718125 0.043822 -1.751909 -5.114685 23.824372 

3-4 -2.618151 -0.718125 -0.043822 1.751909 4.588826 -15.206878 

 

The results of the studies are presented in Table 15 and Figure 12, with the formulations of the proposed 

method. The number of plastic elements varied in the project conceptions adopted, being 2 (two) elements 

for Phar1 and 3 (three) for Phar2. The quantity of hinges was 3 (three) for both conceptions. The hinge 

formation paths are shown in Table 15 and Figure 12. Both conceptions had a clear influence on the structure’s 

resistance capacity, i.e., Phar1 with load factor 2.6643 shows that the dimensioning of doubly reinforced 

beams (biaxial bending) and of columns with biaxial bending is safer than Phar2 with load factor 1.9049, which 

has doubly reinforced beams (uniaxial bending) and columns with uniaxial bending. In this case, the coverings 

were the same. The most important factor for the variation in the collapse load factor was that node 2, at the 

third plastic hinge, obtained parity (see Table 2) with single reinforcement for Phar1 and double reinforcement 

for Phar2. The case where the three (3) elements are dimensioned as columns gives the same result as case Phar1. 

This is because the biaxial bending analyses for columns and beams are similar, except for the issue of equivalent 

columns eccentricities and moments. The rotation angle was verified and did not exceed the limits of NBR 6118 

(ABNT, 2014). The results are as follows: Phar1 and Phar2 with 𝜃𝑚á𝑥  = 0.01144 and 𝜃𝑙𝑖𝑚 = 0.015. 

Table 15. Plastic hinges – space frame - Harrison. 

Phar1 (𝑢𝑦1) Phar2(𝑢𝑦2) 

Plastic Hinge Element Node 𝜆 𝐿𝑖𝑚𝑖𝑡 𝑙𝑜𝑎𝑑 (𝑘𝑁) Plastic Hinge Element Node 𝜆 𝐿𝑖𝑚𝑖𝑡  𝑙𝑜𝑎𝑑 (𝑘𝑁) 

1 2 3 0.9996 

2.6643 

1 3 3 1.0007  

2 1 1 1.8930 2 1 1 1.8940 1.9049 

3 2 2 2.6643 3 2 2 1.9049  

 

 

Figure 12. Applied load versus vertical displacement (u_y) - node 2 – space frame – Harrison. 
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Case 2 

The displacements and sectional efforts from the first elastic phase of the program were validated with 

SAP200 v.22 (Computers & Structures, Inc, 2022)software of the first elastic phase as seen in Table 16 and 17. 

Table 16. Displacements - space frame - Gere & Weaver.  

SAP2000 v.22 

Node u1 u2 u3 r1 r2 r3 

1 -0.000001094 -0.00002 -0.000082 -0.000552 0.000019 -0.000642 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0.000235 -0.00026 -0.000383 0.000155 0.000233 -0.000022 

6 -0.001299 -0.002001 0.000289 0.000043 0.000038 0.000209 

The authors 

Node u1 u2 u3 r1 r2 r3 

1 −0.000001 −0.000020 −0.000082 −0.000541 0.000019 −0.000640 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0.000234 −0.000245 −0.000363 0.000166 0.000234 −0.000020 

6 −0.001284 −0.001972 0.000277 0.000047 0.000037 0.000208 

Table 17. Sectional Efforts - space frame - Gere & Weaver.  

SAP2000 v.22 

Elem.- Node P V2 V3 T M2 M3 

1-1 15.782 0.642 1.788 0.9872 -4.4799 12.0980 

1-5 -15.782 0.642 -1.788 -0.9872 1.1281 13.3015 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

5-6 26.400 -4.661 -10.198 -0.2526 13.3794 -5.6971 

5-4 -26.400 4.661 10.198 0.2526 14.5781 -7.0822 

The authors 

Elem.- Node P V2 V3 T M2 M3 

1-1 15.720715 0.523479 1.795657 0.984185 -4.490467 -12.219558 

1-5 -15.720715 -0.523479 -1.795657 -0.984185 1.123611 13.201081 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

5-6 26.298606 -4.647485 -10.193192 -0.240746 13.370275 -5.655635 

5-4 -26.298606 4.647485 10.193192 0.240746 14.573994 -7.085278 

 

The results of the studies are presented in Table 18 and Figure 13. The number of elements with plastic 

hinges varied in the design conceptions adopted, being 2 (two) elements for PGere&Weaver1, 4 (four) for 

PGere&Weaver2, and 3 (three) for PGere&Weaver3. The hinge formation paths are shown in the table 

and the figure mentioned above. The design conceptions PGere&Weaver1 and PGere&Weaver3 are 

similar for doubly reinforced beams (uniaxial bending) but have distinct covers. The adoption of different 

cover thicknesses changes the load factor obtained because it interferes with the steel reinforcement. 

There was an increase in the load factor for PGere&Weaver3 in which the cover was greater than in 

PGere&Weaver1. PGere&Weaver2 has the column concept (biaxial bending). The design conception that 

permitted a higher load factor was PGere&Weaver2, with a load factor of 3.9989. The design concept as 

a column for this type of space frame was more appropriate in order to have a structure with better 

resistant capacity. This case of a space frame with its geometry can generate doubts about which would 

be the best way to execute it, i.e., as a beam or a column. However, the method presented makes it 

possible to evaluate which is the best execution process. It should be noted that mixed beam and column 

configurations were also tested, but load factors that met the parity criteria of Table 2 were not obtained. 

It is possible to use the option uniaxial bending for beam and/or column with minor quantities of 

reinforcement and less cost, but this method does not perform automatic optimization. The rotation 

angles were verified and did not exceed the limits of NBR 6118 (ABNT, 2014). The results were as follows: 

PGere&Weaver1 with 𝜃𝑚á𝑥  = 0.010878 and 𝜃𝑙𝑖𝑚 = 0.015; PGere&Weaver2 with 𝜃𝑚á𝑥  = 0.013684 and 𝜃𝑙𝑖𝑚 =

0.015; PGere&Weaver3 with 𝜃𝑚á𝑥  = 0.011931 and 𝜃𝑙𝑖𝑚 = 0.015. 
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Table 18. Plastic hinges – space frame - Gere & Weaver. 

PGere&Weaver1 (𝑢𝑦1) PGere&Weaver3 (𝑢𝑦3) 

Plastic Hinge Element Node 𝜆 𝐿𝑖𝑚𝑖𝑡 𝑙𝑜𝑎𝑑 (𝑘𝑁) Plastic Hinge Element Node 𝜆 𝐿𝑖𝑚𝑖𝑡 𝑙𝑜𝑎𝑑 (𝑘𝑁) 

1 4 1 0.1321 
0.7368 

1 4 6 0.3965  

2 5 6 0.7368 2 1 1 0.5672 1.3994 

 3 5 4 1.3994  

PGere&Weaver2 (𝑢𝑦2) 

Plastic Hinge Element Node 𝜆 𝐿𝑖𝑚𝑖𝑡  𝑙𝑜𝑎𝑑 (𝑘𝑁) 

1 5 6 0.9997 3.9989 

2 2 5 1.9994  

3 3 3 2.9991  

4 1 1 3.9989  

 

 

Figure 13. Applied load versus vertical displacement (𝒖𝒚) – node 6 - space frame - Gere & Weaver. 

Conclusion 

• Based on the results presented, designers should have comprehensive knowledge on structural safety 

to define a good design that makes projects safer in their implementation for several design conceptions. The 

better conception for a space frame – Harrison – should be dimensioned with doubly reinforced beam (biaxial 

bending) and column (biaxial bending). For the space frame conception of Gere & Weaver, it is better to use 

the column (biaxial bending). There is also the possibility of using the uniaxial bending option for beam 

and/or column with minor quantities of reinforcement and lower cost, but this method does not perform 

automatic optimization. 

• Based on Melo's formulation, the present method is able to work with the design criteria of NBR 6118 

(ABNT, 2014) to successfully obtain load factors, plastic collapse, and design according to the criteria of 

Vieira. It is a much simpler process for obtaining plastic hinges and their load factors without the use of 

methods with a reduced stiffness matrix or mesh refinement or plastic hinge length. The purpose of having a 

code for research development without the need for commercial software licenses has been achieved. 

• The method suggested in this study is simpler than working with surface interaction for controlling 

the movement of a plastic force point over the yield surface or reduced stiffness matrix methods. Hence, it 

seems to be a viable technique for obtaining collapse load factors using elastic analysis and stiffness matrix’s 

propriety changes for space frames. 

• The present method shows that good safe designs for structural systems can be obtained using the 

project criteria of NBR 6118 (ABNT, 2014), according to the analysis carried out. It is necessary to test more 

examples for better conclusions, but the method presented in this study is an alternative technique for 

elastoplastic analysis.  
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