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ABSTRACT. The scope of the work involves reinforced concrete frame structures with variations in
structural design conception for columns with biaxial bending or uniaxial bending. The beams are designed
with simple bending criteria for singly or doubly reinforced beams, or uniaxial bending. The analysis and
design criteria are according to NBR 6118:2014. Structure analysis in elastoplastic regimen with the
incremental analysis method is performed to detect plastic hinge formation order, collapse load factor,
displacements, and rotation capacity of cross sections with the criteria established in the current building
codes. The study evaluates the influence of the defined concepts on the structure’s elastoplastic behavior.
The biaxial and uniaxial bending method is presented as an important formulation for obtaining the
collapse load factor using the elastic stiffness matrix with modifications. The algorithms presented enable
the development of research without the need for expensive commercial software licenses.

Keywords: analytic method; reinforced concrete; elastoplastic analysis; incremental analysis; design conception.

Received on July 20, 2021.
Accepted on March 4, 2022.

Introduction

The method of incremental elastoplastic analysis determines the collapse load factor by successive elastic
analyses, where for each increment the formation order of the hinges and their respective sections is verified.
The appearance of each hinge changes the stiffness of the element, that is, the matrix K will have the same
size, but with some altered properties. However, equilibrium matrices L and rotation R are not changed. The
stiffness methods of analysis presented, for instance, in Harrison (1973) enable changes to be made without
difficulty.

The approach of the present study was designed for reinforced concrete structures and based on the idea
proposed by Mello (2003) for uniaxial and biaxial bending but applied according to NBR 6118 (Associagdo
Brasileira de Normas Técnicas [ABNT], 2014).

There are many methods for studying the formation process of plastic hinges that use backward
algorithms, such as Backward Euler method, and interaction surfaces. (Silva, 2004) performs first-order
elastoplastic analysis of steel structures using a predictor/corrector scheme to maintain sectional efforts over
an interaction surface that defines the ultimate limit state of the cross section. Vieira and Silva (2013) use
multiple linear regression to treat the resultant efforts of several analyses for obtaining a yielding surface
with the combined efforts of a space frame analysis. Orbison, McGuire, and Abel (1982) presented ‘a model in
which material nonlinearity is simulated by the formation of plastic zones of zero length at the ends of the
elements. Second order elastic effects are incorporated through a geometrical stiffness matrix. An updated
Lagrangian approach is employed’. Their method uses plastic zones of zero length at the ends of the elements
too and the ‘development of a scheme for controlling the movement of a plastified force point over the yield
surface in an approximate but satisfactory manner’.

Barham, Aref, and Dargush (2005) presented ‘the derivation and implementation of a flexibility-based
large increment method (LIM) for solving nonlinear structural problems. The finite element displacement and
force approaches have been developed for solving nonlinear structural problem. The displacement-based
finite element method requires a step-by-step approach for material nonlinear analysis that depends on flow
theory. Furthermore, significant mesh refinement is often required in plastic zones’.

Inel and Ozmen (2006) explain a method of pushover analysis in which ‘the plastic hinge length and
transverse reinforcement spacing are assumed to be effective parameters in the user-defined hinge
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properties. Observations show that plastic hinge length and transverse reinforcement spacing have no
influence on the base shear capacity, while these parameters have considerable effects on the displacement
capacity of the frames. Comparisons point out that an increase in the amount of transverse reinforcement
improves the displacement capacity’. Patel (2014) and Inel and Ozmen (2006) use the SAP2000 program
(Computers & Structures, Inc, 2022). This method is a much simpler process for obtaining plastic hinges and
their load factors without the use of reduced stiffness matrix or mesh refinement or plastic hinge length
methods as, for example in the processes proposed by Silva (2004), Barham et al. (2005) and Inel and Ozmen
(2006).

Salihovic and Ademovic (2017) worked with ‘distributed plasticity models or so-called fiber section
models, used to simulate the spread of plasticity along the member length and across the section. Fiber hinges
are used to define the coupled axial force and bending behavior at locations along the length of a frame
element. The cross section is discretized into a series of representative axial fibers which extend
longitudinally along the hinge length. These hinges are elastic-plastic and consist of a set of material points,
each representing a portion of the frame cross-section having the same material’.

The method is based on the criterion of the Minimum Euclidean norm with property changes of the elastic
stiffness matrix. The advantage of this method is that it uses elastic analysis in each phase of the plastic hinge
formation process with property changes in the stiffness matrix for space frames without the use of mesh or
integration over the cross section generally used in MEF models, as in Salihovic and Ademovic (2017) or
Hanganu (1997).

This method introduces a simplicity into the design of perfectly plastic structures which parallels that of
the analysis of linear elastic models. This study involves the concepts of structural design, and models of
structural dimensioning with theories of singly reinforced or doubly reinforced bending beams, and columns
with uniaxial or biaxial bending. The method has proved to be effective in the process of detecting plastic
hinges, of obtaining the load factor of the structure’s plastic collapse and permitting the choice of a less costly
design conception.

Material and methods

The research was developed based on the formulations presented in the sections and on 2 (two) case
studies also presented.

Static and elastic analysis

Problem solution in structural mechanics requires the application of three basic sets of laws: Statics,
kinematics, and the material’s constitutive relations. Two distinct ways can be used to describe such laws,
namely, the mesh and the nodal descriptions. Below the relation between them is presented as, for instance,
in Harrison (1973).

a=1L-m; (1a)
0=1LT-§ (1b)
where:

a is the external nodal loads vector; L is the equilibrium matrix of the element; m is the sectional stresses
vector; 6 represents the cross-section strains associated with the nodal loads vector; and § is the structure
displacements vector.

The equilibrium matrix L is only determined for a structure where no link (internal or external) is violated
in its obtention. The same is presented in the formulation of the stiffness methods of analysis used in Harrison
(1973).

The method employed in this study was the stiffness method of analysis that uses the member stiffness
matrices K, equilibrium L, and rotation R for each unconnected element as in Harrison (1973).

The member stiffness matrix S of the structure is:

S=R-L-K-LT-RT 2)

The stiffness method of analysis was employed because the matrix K is fundamental for the use of the
incremental analysis method. The discretization of the continuum in bar elements in the system of local axes
(m) follows a formulation based on Harrison (1973).
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Elastoplastic analysis — incremental method

The method of incremental elastoplastic analysis determines the collapse load factor by successive elastic
analysis, where for each increment the formation order of the hinges and their respective sections is verified.
The formation of each hinge modifies the stiffness of the element for the proposed method. It means that the
matrix K will have the same size, but with some altered elements. Following this method, when the element
loses its resistance capacity, the member stiffness matrix K changes Equation 3 (Figure 1) until 6 is in
accordance with the hinge formation process.

In this case, the resistance capacity of the axial stiffness is applied as the last value of the section in order
that the matrix does not become an identity (I) completely. The equilibrium matrices L and the rotation R
remain unchanged. The direct stiffness method of analysis (Harrison, 1973), allows for modifications in the
stiffness matrix of the element to be made without difficulty.

The elastoplastic model disregards the curved section relationships of moment and curvature, being elastic
until it reaches the plastic moment (M,), and perfectly plastic for curvature increments (K).

The stiffness matrix K of the unconnected element for the incorporation of hinges, before and during the
plastic phase of the structure, has the following possible cases:

Unconnected element with both ends fixed
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Figure 1. Unconnected element with fixed-fixed ends.

The corresponding member stiffness matrix is Equation 3:

where:

0 is the sectional strains vector; e, ¢ and 8 are member strains; T, is the axial tension force; MAB,,, is the
moment applied at joint A in z-axis; MBA,,, is the moment applied at joint B in z-axis; MAB,),, is the moment
applied at joint A in y-axis; MBA,,,, is the moment applied at joint B in y-axis; Q,, is the twisting moment in
x-axis; VAB,,, is the normal shear force at joint A in y-axis; VBA,,, is the normal shear force at joint B in y-
axis; VAB,,, is the normal shear force at joint A in z-axis; VBA,,, is the normal shear force at joint B in z-axis;
L is the member length; E is the elastic modulus; G is the shear modulus; A is the cross-section area; I, is the
inertia moment in z-axis; I, is the inertia moment in y-axis; and I, is the torsion constant.

Unconnected element with the left end hinged, and the right end fixed
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Figure 2. Unconnected element with hinged and fixed ends.
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The modified member stiffness matrix is presented in Equation 4 (Figure 2).

Unconnected element with right end hinged, and left end fixed
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Figure 3. Unconnected element with fixed and hinged end.
The member stiffness matrix in this case is Equation 5 (Figure 3).
Unconnected element with hinged-hinged ends
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Figure 4. Unconnected element with hinged-hinged ends.

The member stiffness matrix in this case is Equation 6 (Figure 4).

In the incremental analysis the following basic criteria were adopted:

e  When the formation of the plastic hinge occurs due to one of the working moments in the section, we
assume that it has formed in all directions of the section in the case of bending with single or double
reinforcement and uniaxial bending;

¢  During the formation of the plastic hinge, there are two interaction situations between the normal
stress and the moments: 1) taking normal stress into account, testing the variation in its numerical value at
each phase of the formation of plastic hinges (this is the method used here); or 2) not considering its
numerical value, removing it from the member stiffness matrix together with the moments;

e Inthe verification of the plastic rotation capacity, the total plastic rotation of the section was adopted
as a limit value, without deducting the elastic rotation. The formulation is compatible with NBR 6118 (ABNT,
2014). Other methods can be seen in Orozco (2015);

e The method in this article is simpler in relation to the method proposed in Salihovic and Ademovi
(2017) applied in a space frames analysis.

Uniaxial bending

Based on the formulation Mello (2003) proposed, the equilibrium equations of sections with reinforcement
will be presented in this section with a focus on NBR 6118 (ABNT, 2014). The reinforcement arrangement is
presented together with the applied axial loads and moment in Figure 5.

The equilibrium relations have the following definitions:
Acczb'u;qzb'acd;Rc:Acc'acdZQ'u;az%; (7a)

a; =ay+z; a0=%;a1=%;l(z=%;z=a1—ao (7b)
where:
A, is the compressed concrete area; b and h are the cross-section dimensions; o4 = 0.85f.; (calculated

stress of the reinforced concrete); u is the cross-section compressed area; q is the partial uniform load in a
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rigid beam of height h; R, is the compression stresses resultant; « is the relative abscissa of the compressed
concrete block; z is the lever arm; and a, is the cover of the section.

Nd=q-uwith0<uSh;Md=%q(h—u)u; (8a)
Ve == Fr(@) = &; gy = 32 = Fu(e) = 4(1 - da (8b)
where:

N, is the calculated applied axial load; M, is the calculated applied moment; v, is the calculated relative
normal working stress; and p4 is the calculated relative bending working stress.

When requests (v, and pq) occur outside the statically permissible region, the use of reinforcements is
necessary, with more details in Mello (2003). In the arrangement of reinforcements shown in Figure 5, the
forces R,, actuate for the equilibrium of N,;, and the binary in z of R,,,, for the equilibrium of M.

The conditions of equilibrium will be:

Y F,=0; 2Ry = Ng —q - u; £ M = 0; Ry = Mg — 5 q(h — wu 9)
In the dimensionless form:
1 1 [g—Fu(@)]
Ry =3 qh[va = F()]; Ry = 5 qh =255 (10)

The terms applied in the computer program developed in Python Software Foundation (2021), version 3.8,
are:

Uq . Uq . 4(1-a)a a;-a)a,
€a =Va t+ é, €1a =Va — 4—152, Feo(a) = a+ e ;Z ; (11a)
Fe,(a) = a — 4(:(‘:)“ - W‘ZO” (11b)
where:

eoq and e, 4 are equivalent actions; Fe, and Fe; are equivalent resistance functions.
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Figure 5. Statics of the reinforced section.

The expressions of Equation 11a-b can be seen graphically with more details in Mello (2003).
The resultant forces of Figure 5 are represented in relation to the terms R, and R, as

Ro = qhlega — Feo(@)] = Ry + Ry Ry = > qhle;q — Fey(@)] = Ry — Ry (12)
According to what has been described by Mello (2003), the properties of R, and R, cancel each other if:
eoqa = Feg(a); e14 = Fey(a) (13)

The solution of the two cases of Equation 13 leads to the solutions of second-degree equations for ‘a’, as
follows:

a? =20 + Kyegq = 0; a? — 2aqa — Kye.4 = 0 (14)
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The solutions are:

_ _ __€od . _ __€ia
%ro = o1 (1 + \’ 1 Feo((h))’ Tr1 = %o (1 t \j 1 Fel(ao)) (15)

Due to the many possible values for «, the reading of the evaluations made by Mello (2003) is recommended.

Neutral axis

The mechanisms of plastic collapse for the calculation of the cross-section curvature and the deformations
in the reinforcements can be best studied in Mello (2003). The equivalent rectangular diagram from NBR 6118
(ABNT, 2014) is used for reinforced concrete with classes up to C50 (50 MPa) in this study.

The position of the neutral axis (a,) is necessary to define the strain state of the evaluated element’s cross-
section. Then,

u = 0.8x; a = 0.8a, (16)
where:

x is the position of the neutral axis; and a,, is the relative position of the neutral axis (a, = %).

According to the variation of the neutral axis a, the actions and the equivalent resistances are determined
in R, and R;. The mechanisms defined according to the position of the neutral axis belong to the domain of
o € [—oo; +00].

The values defined by the Mello (2003) model for the neutral axis are:

o ifa, = Z , then o = 1 (uniformly compressed section) is adopted; if 0 < a, < % , then a = Z (partially
compressed section); if a, < 0 then a = 0 (resistance to traction is neglected) is adopted.

In the computer program, the inferior limit range ‘I’ and the superior v, intervals of a,; < a, < a,, were adopted,
according to the algorithm criteria in Figure 1. Table 1 is part of the FOB, FNC and FSA routines of Figure 7.

Table 1. Interval definition algorithm of a, .

Algorithm 1 If not, then:
1.1fegg >= 0and eyq < Fey(ay), then: Choose the ag, of negative sign (=) of Equation 15
Ifegq >= 1, then: Select a3 = EotRl; ct2 = 1 (control parameter)
Choose one of ag, from Equation 15. 4

The intervals that have been tested are:
3.If egqg >= 0, then:
QAxip = QAg; Ayrg = T

If not, then:
Choose the oy, of negative sign (—) of the Equation 15.

Select a,, = ;aRO; ctl = 1 (control parameter) If not, then:
2.1fe;q = Fey(ap) and e4 < 1, then: Aypo = —90; Ayrg = Qg
Ife;u <0 4.1fe;q4 >= 0, then:
Choose one of ag; from Equation 15 Ay = QA5 Ay = +0
If not, then:
Xypy = =% Aypg = 0.98a,

Source: The authors.

Deformation mechanism 1

The position of the neutral relative axis «a, is in the domain a, € [1; +]. The shortening of the concrete
will be defined by the value of e, = 2 mm/m. The position of a, will be equal to 3/7; the deformations in the
reinforcing bars (rebars) and Curvature K; are defined in Mello (2003).

Deformation mechanism 2

The position of the neutral relative axis a, is in the domain a, € [(7/27)ay; 1]. It includes the domains of
limit-stage 3 to 4 of NBR 6118 (ABNT, 2014), and, depending on the reinforcement’s arrangement, a small
domain section 2, according to Mello (2003). The hypotheses are bending with o, =0 and ¢, =g, =
3.5 mm/m = constant. The inferior limit of a, is obtained with the proviso that the relative elongation does
not exceed 10 mm/m. Then, a,, = (7/27)q;.

Deformation mechanism 3
The position of the neutral relative axis «, is in the domain ay € [—o0; (7/27)a,]. It includes the domains
of last limit-stages 1 and 2 of NBR 6118 (ABNT, 2014), according to Mello (2003). The hypotheses have a,, =
o, and g, = g5; = —10 mm/m. The inferior limit of a, is obtained with the proviso that the relative elongation
does not exceed 10 mm/m.
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Relative stress-strain diagram of the steel

The criteria of steel deformation for the last limit stage follows the NBR 6118 (ABNT, 2014), according to
calculated deformation (g).

The calculated strain is represented as:

f

ey =22 (17)
o ife; < g4 thenog = gE; is adopted,; if &5 > ¢, then g5 = f,, is adopted with the deformation sign &;.
According to Mello (2003) the criteria used in the computer program depend on K,,, which is defined as:
=2l = Stywithi € [0;1] (18)

fya Eyd
e Conditions:
1) if |egl/eyq < 1then K, = g5/¢,4 is adopted; 2) if |e5;|/e,q = 1 then K, = £1 is adopted.
where:
E; is longitudinal elastic modulus of steel; f,; is the calculated stress; and ¢, is the calculated strain.

yi

Reinforcements mechanical ratio

The reinforcements obtained follow the criteria of resistance conditions, according to Equation 19. That
means that actuating forces R, and R; cannot be greater than the structure’s resistance capacity.

Aso 050 2 Ro3 Ag1 051 2 Ry (19)
With
_ fydo, _ Sfyar . — . _ 2
050_f_7051__!T0_ASO'UsO,T1_Asl'osl (20)
cd fea
where:

05 and o, are the applied stresses in the positions ‘0’ and ‘1’ of Figure 5; A, and A, are the reinforcements
obtained due to the applied loads; R, and R, are the applied forces in the section; and T, and T, are the
resistance equivalent forces of the section.

By replacing R, and R, in Equation 19, with R, and R, from Equation 12 divided by qh, the following is
obtained:

Aso [ 0.85 As1 [ 0.85
ZSs0_ydo = - [eoa — Feo(a)]; b—hl ;;1 Kyl = - [e1q — Fe (a)] 21)

bh fea V0T
By defining geometric (p;) and mechanical (w;) ratios as
Agi _ . . . fyai
pi=2twithi € [0;1]; 0, = pi% (22)
and replacing the terms in Equation 21, the following is obtained:

woKyo = 22 ey — Feo(@)]; 1Ky 2 22 [e14 — Fey ()] (23)

Adopting the proposal according to Mello (2003) where by:

2Ky 2Ky

FSO 2 0.85 Py F51 2 m (24)
Then:

woFsy+ Feg(a) = epq; wiFs; + Fe () = eqq (25)

Equation 25 are used as a base to obtain the plastic collapse load factor.

Plastic collapse load factor

The formulation involves the bending beam theory for singly or doubly reinforced beams, and columns
with uniaxial or biaxial bending, proposed by Mello (2003) and adapted to NBR 6118 (ABNT, 2014) in this
study. The part involving Equation 26 to 30 is distinct from the model proposed by (Mello, 2003).

Taking Equation 11a-b in which the terms of the applied actions receive a load factor y;, then:

Y0€oa = Yo (Vd + f—;z); Y1€1a = V1 (Vd - f—;z) (26)
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Replacing terms in Equation 26 with those from 25, it is possible to obtain the terms for the load factors
in the section.

woFsy + Feyg(@) = yoegq; w1 Fsy + Fey(a) = y,e14 27)
Then:
Vo < wOFsO:FeO(a); V< w1Fsi1+Feq(a) (28)
od €1d
The section load factor is the least value of the values obtained:
Yoo = min (¥o; v1) (29)

The load factor in each increment is obtained with the least factor for all the sections analyzed.

]/j = min (ysegiol; ysegéoz; e ysegéon) (30)
where:
j is the number of increments in the analysis; and n is the number of sections analyzed in the structure.

The load factor involves the axial and bending moment efforts in y-axis and z-axis directions of the cross-
section for singly or doubly reinforced beams and columns with uniaxial bending. In the case of columns with
biaxial bending, the biaxial bending method is used.

For the obtention of the collapse load factor (y/) the following possibilities were considered based on

information provided by Table 1. Table 2 is part of the FOB, FNC and FSA routines of Figure 7.

Table 2. Tests of y/.

Algorithm 2
1t Phase: test to verify if a minimum reinforcement is necessary.
1. Calculation of v; = 4v,4(1 — v,) with v, (Equation 8b) and p4 (Equation
8b).
If uy < vs, then:
Adopt minimum reinforcement.
Yo =+ and y; = +o
Exit
2" Phase: tests fory, =y,
1. Adopt a,; = —; a,, =+
2. Use wy, and wy, = arbitrated reinforcements (doubly reinforced section)
3. Obtain by root isolation the a, fory, =y,
4. To a, obtain Ry; Ry; Ty = Ry X 0593 Ty = Ry X 0513 0593 01
5. Check parity:
IfTy, 20andT; = 0and y, = 0 and y; = 0, then:
Yo and y; are possible solutions.

Exit

If not, then:

If ct1 = 1 and ct2 = 1, then:
wgo = 0 and w,; = 0 (section without reinforcement)
fa,=as;
Ay = Qx5 e = Ax3
If not, then:

Yo and y; are possible solutions
Ay = Qi
Exit
If not, then:
test = test + 1
If test = 1, then:

Use wgy = 0 and wy; = arbitrated reinforcement
Obtain the minimum root (a,,, ) in the intervals:
@) Ay = Ayg15 Ay = Ayry
b) ay = @0} A = Axro
To a,,, obtain Ry; Ry; Ty = Ry X 0503 Ty = Ry X 0415 050} 051
Check parity:

IfTy, =0andT; = 0and y, = 0 and y; = 0, then:
Yo and y; are possible solutions
Ay = Q.

Exit
If not, then:
test = test + 1
If test = 2, then:

Use wy, = arbitrated reinforcement and wy; = 0
Obtain the minimum root (a,,,) in the intervals:
a) Ay = Q15 Ay = Ayry
b) @y = @05 Aur = Ao
To a,,, obtain Ry; Ry; Ty = Ry X 059; Ty = Ry X 0y1; 050; 01
Check parity:

Ay = Ax3; Ay = Ay
Repeat step 5.
If ct1 = 1 and ct2 = 0, then:
Use wy, = 0 and w,; = arbitrated value (simple bending
section)
Ay = Ax105 Ay = Ay
Repeat steps 3. to 5.
If ct1 = 0 and ct2 = 1, then:
wg = arbitrated value and w,; = 0 (simple bending section)
Ay = Qx5 Ay = Ay3
Repeat steps 3to 5
3 Phase: tests to yo # ¥,
1. test=0
2. While test < 3, do:
If test = 0, then:
Use wy and wy; = arbitrated reinforcement
Obtain the minimum root (a,,,) in the intervals:
Ay = A1 A = Ay
a) Ayq = Ay05 Aoy = Ay
To a,,, obtain Ry; Ry; Ty = Ry X 0y9; Ty = Ry X 0y1; 050; 061
Check parity:
IfTy =0andT; = 0andy, = 0and y; > 0, then:

IfTy =20andT; = 0andy, = 0 and y; = 0, then:
Yo and y; are possible solutions
ax = axm
Exit
If not, then:
test = test + 1
If test = 3, then:
Use wgy = 0and wg; =0
Obtain the minimum root (a,,) in the intervals:
Q) Uy = Ay Qo = Upry
b) @ = Ao} X = Auro
To a,,, obtain Ry; Ry; Ty = Ry X ds0; Ty = Ry X 01 Og0; Og1
Check parity:
IfTy =0andT; = 0andy, = 0and y; > 0, then:
Yo and y; are possible solutions
Ay = Wy
Exit
If not, then:
test = test + 1
If test > 3, then:
Yo and y; we’re not found with these criteria
Stop program.
4" Phase:
1. To a, obtain Ry; Ry; Ty = Ry X 0503 Ty = Ry X 041 050 Os15
Yo V1
2. Check parity:
IfTy >0andT; = 0andy, = 0andy; =0
Print results

Source: The authors.
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The biaxial bending model will be the same as that presented by Mello (2003), using an interpolation
function and reinforcement arrangements as shown in Figure 6 which, however, are only illustrative.

Obtaining the reinforcement is one of the objectives of the proposed model.

The angle 8 is the result of the relations of the relative eccentricities §, and§, , taking the direction / as a reference.

tan(8) = g—bwith 0<6<m/2
h

With

_az, p _°y
Eb - b’ Eh h

where:

(31

(32)

§, and ¢, are the relative eccentricities; e;, and e;,, are the initial biaxial bending eccentricities of the 1* order.

The angle ¢ comes from geometric properties of the section so that

tan(g) =

The function of interpolation f(6) for the stress .4 has the following description:
e Iftheangle6<¢o

f(8) = 0.85 - 0.05 3 tan(6); f(t) = 0.85 — 0.05 (%)i—’;

e Iftheangle6 > ¢

£(8) = 0.85 - 0.05 7 tan(6); f(t) = 0.85 — 0.05 (%)%

With
t=sin?(@)witho < t <1

Biaxial bending

: h : h
i X
e e ———- PPy N - M
bt-—4—4--——-- 4——..—_L - Zb ay
_.I."._..__? _______ .Vr_..‘an; -
L L | Ll
(g g b‘[
LY ‘
i T z, P
Iz ;
B
a) Reinforcement arrangements b) Interpolation function for o4

Figure 6. Biaxial bending model.
The applied stress in the angle 6 will be calculated in the following manner:

Ocat = f(t)acd

(33)

(34)

(35)

(36)

(37

Using the relations of Equation 8a-b and 11a-b expressed expressed for the case of biaxial bending:

Ng — Ng — Ng
bhocar  aqth  Aocqe

Var =

where:

vy is the calculated relative normal working stress.
The equivalent actions are presented by Mello (2003) as follows:
e Direction h

€odn = [1 +2 (S)h] Vat; €1dn = [1 -2 (g)h] Vat
e Direction b

€oap = [1 +2 (S)b] Vats €1ap = [1 -2 (g)b] Vat

(38)

(39)

(40)
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In function (S) , in the following manner:
t

(), =a-o(2),+e(%), (41)

€odr = [1 +2 G)t] Vat; €1dt = [1 -2 G)t] Var (42)
The working moments follow the same procedures adopted for axial stresses, as

Han = 8var (22); pap = 8var (22) (43)
The interpolation formula will be based on ¢:

e = (1 = ptan + thap (44)

where:

ugqn and pg,, are the relative applied stresses in directions y and z.

Equation 41, 42, 43, and 44 are used in the program developed, along with the other relations of
Equation 31 to 38.

The other relations used for the formulation, based on Figure 3, are the following:

Kon =285 Kop = 225 Ky = (1= £) Ko + t Ky (45)

qe = bocar; aoy = a%hi A1y = % (46a)
Aoz = %2 A1z = ab;b (46b)
aor = (1 —t) agy +t agy; @1 = (1 —t) agy +tay, (46¢)

The procedures follow the same logic of uniaxial bending, considering the use of the interpolation function
with ‘t’ in order to direct the angle 8; for more details see Mello (2003).

The criteria of NBR 6118 (ABNT, 2014) in relation to the rules of uniaxial bending, and biaxial bending, in
its items 11.3.3.4.3 (minimum bending moment) and 15.8 (isolated elements analysis), were implemented to
calculate, if necessary, the total moments for columns with slenderness ratio A < 90. Two approximate
standard-column methods (standard-column method with approximate rigidity and standard-column
method with approximate curvature) were used. The values of the two directions of cross-section were
obtained and the one with the highest total value of moments (M, ;,,) was chosen. Other similar studies are
those of Sfakianakis (2002), and Al-Ansari and Afzal (2020).

Schematic diagram of the method

The summary of procedures for the presented method are described in Figure 7, 8 and 9.

The input data (INPUT in Figure 7) is as follows: NN is total number of nodes; NE is the total number of
elements or bars; NDF is the number of degrees of freedom per node; MS is the semi-bandwidth of the total
stiffness matrix; NNE is the number of nodes per element; NL is the total number of nodal loads; NC is the
total number of boundary conditions; ITC is the monitoring node; TG is the graphic type; G, is the concrete
reduction factor; G, is the steel reduction factor; GF is the loads magnification factor; v is the Poisson's ratio;
E. is the modulus of elasticity of concrete; E, is the modulus of elasticity of steel; ENM is the plastic hinge
type; X,Y and Z are the nodal coordinate vectors; CON is the element connectivities array; IRZ is the element
rigidity conditions vector; b is the cross-section width; db is the effective width; h is the cross-section overall
depth; dh is the effective depth; TA is the steel strength type; fck is the concrete strength; fyk is the steel
yield strength; AL is the applied loads vector; the cross-section properties are those seen in Figure 1 and
Figure 5; ws, and ws, are the reinforcement rates; and T}, is the element type as in Figure 7.

Characterization of cases

The cases are related to the formulation presented to verify the importance of the design conception and
the applicability of the formulation to obtain plastic collapse load factors, and their formation trajectory.

Case 1 is based on space frame data presented by Harrison (1973), with 3 elements and 4 discretized nodes,
according to Figure 10.
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Figure 7. General schematic diagram.
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Figure 9. Plastic procedure (P. P.) schematic diagram.

Properties of the space frame (SP):

Figure 10. Space frame - Harrison.

Table 3. Coordinates of the space frame — Harrison.

Vieira et al.

X Y A
Node (m) (m) (m)
1 0.000 12.000 0.000
2 12.000 12.000 0.000
3 12.000 12.000 12.000
4 12.000 0.000 12.000
Table 4. Physical characteristics of the space frame — Harrison
Elem. Node [ Node F (kN m™2) (kN m™2) v
1 1 2 E, Fy
201.037x10° 490.335x10° 0.20
2 2 3
E. Fop L
3 3 4 31.57x10° 19613.40 12m

The terms of Table 4 have the following description: E; is the modulus of elasticity of steel; E_. is the longitudinal

modulus of elasticity of the concrete; G, = 7 (f:v) (shear modulus of elasticity of concrete); v is the Poisson's ratio;
Fy is the yield stress of steel; F,, is the maximum stress of concrete; and L is the span length.
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Table 5. Material properties of the space frame — Harrison.

Element Cross-section
A=0.18 m?
b=03mandh=0.6 m
1,2and 3 I, = 5400.00 x10® m*

Iy = 1350.00 10 m*
I, =3710.00 x10° m*

where:
A is the cross-section area; b is the width of the cross-section; h height of the cross-section; I, is the moment
of inertia in the z direction; I, is the moment of inertia in the y direction; and I, is the torsion constant.

Table 6. Applied loads of the space frame - Harrison.

Node Dir Value (kN)
2 E, -9.807

where:
E, is the applied force in y direction.
Project conceptions were implemented in 2 (two) types that are described in Table 7.

Table 7. Project Conceptions — space frame — Harrison.

Pharl Phar2
Elem. ws; (%) WSy (%) T, Agp = Agp (M) Elem. wsy(%) WSy (%) T, Agp = Agp (M)
1 1.5 0.75 13 0.015 1 1.5 0.75 12 0.015
2 1.5 0.75 13 0.015 2 1.5 0.75 12 0.015
3 1.5 0.75 2 0.015 3 1.5 0.75 21 0.015

where:
The column (biaxial bending) - T, = 2; the column (uniaxial bending) - T, = 21; the singly reinforced beam
- T, = 11; the doubly reinforced beam (uniaxial bending) - T, = 12; the doubly reinforced beam (biaxial
bending) - T, = 13; and ws; and ws, are the reinforcement rates.

Case 2 is based on the space frame with data provided by Gere and Weaver Jr. (1987), according to Figure 11.
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Figure 11. Space frame - Gere & Weaver.

Table 8. Coordinates of the space frame - Gere & Weaver.

X Y VA
Node (m) (m) (m)
1 4.000 3.000 2.250
2 4.000 6.000 0.000
3 0.000 0.000 0.000
4 8.000 0.000 0.000
5 4.000 4.500 1.125
6 6.000 1.500 1.125

The properties of the case are presented in Table 8 to Table 10.
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Table 9. Physical characteristics of the space frame - Gere & Weaver.

Elem. Node I Node F (kN m™2%) (kN m™2)
1 1 5 Es Fyk v
2 5 2 201.037x10° 490.335%10° 0.2
3 3 1
4 1 6 E, Fue L
5 6 4 31.57x10° 19613.40 3Im

Table 10. Material properties of the space frame - Gere & Weaver.

Element (Elem.) Cross-section
A =0.08 m?
b=0.2mandh=04m
las I, = 1066.667x10° m*

I =732.800x10° m*
Iy = 266.667x10° m*

The applied loads are the following:

Table 11. Applied loads of the space frame - Gere & Weaver.

Node F,(kN) F,(kN) M, (kN - m)
1 0.000 -22.2411 0.000
1 0.000 0.000 -16.6808
5 0.000 -22.2411 0.000
6 -22.2411 0.000 0.000

With M, = PL/4and F, = F, = 22.2411.
Project conceptions were implemented in 3 (three) types that are described in Table 12.

Table 12. Project Conceptions - space frame - Gere & Weaver.

PGere &Weaverl PGere &Weaver3
Elem. ws; (%) wso(%) Ty Aop = Ao (M) Elem. ws; (%) wso(%) Ty Aop = Agp (M)
1 1.5 0.75 12 0.015 1 1.5 0.75 12 0.020
2 1.5 0.75 12 0.015 2 1.5 0.75 12 0.020
3 1.5 0.75 12 0.015 3 1.5 0.75 12 0.020
4 1.5 0.75 12 0.015 4 1.5 0.75 12 0.020
5 1.5 0.75 12 0.015 5 1.5 0.75 12 0.020
PGere &Weaver2
Elem. ws; (%) wso(%) Ty Aop = Agp (M)

1 1.5 0.75 2 0.015

2 1.5 0.75 2 0.015

3 1.5 0.75 2 0.015

4 1.5 0.75 2 0.015

5 1.5 0.75 2 0.015

Results and discussion
The results and discussion of the case studies 1 to 2 are presented in this section.

Case 1

The displacements and sectional efforts from the first elastic phase of the program were validated with
SAP200 v.22 software of the first elastic phase as seen in Table 13 and Table 14.

Table 13. Displacements - space frame - Harrison.

SAP2000 v.22
Node ui Uz us Ii 2 I3
1 0 0 0 0 0 0
2 9.198e-8 -0.022169 -0.007638 -0.001947 0.000868 -0.002675
3 0.008046 -5.533e-6 -0.007640 -0.001375 0.000449 -0.001366
4 0 0 0 0 0 0
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The authors

Node ui Uz us Ii I2 I3
1 0 0 0 0 0 0
2 0.000000 -0.022129 -0.007634 -0.001945 0.000868 -0.002676
3 0.008048 -0.000006 -0.007636 -0.001374 0.000449 -0.001366
4 0 0 0 0 0 0

Table 14. Sectional Efforts - space frame - Harrison.

SAP2000 v.22
Elem.- Node P \£ Vs T M Ms
1-1 -0.044 0.718 7.187 7.5972 81.1294 -7.3918
1-2 0.044 -0.718 -7.187 -7.5972 5.1112 -1.2276
3-3 2.620 0.718 0.044 -1,7503 -5.1112 23.8462
3-4 -2.620 -0.718 -0.044 1.7503 4.5885 -15.2267
The authors
Elem.- Node P \£ V3 T M Ms
1-1 -0.043822 0.718125 7.188849 7.593434 81.15150 -7.391445
1-2 0.043822 -0.718125 -7.188849 -7.593434 5.114685 -1.226050
3-3 2.618151 0.718125 0.043822 -1.751909 -5.114685 23.824372
3-4 -2.618151 -0.718125 -0.043822 1.751909 4.588826 -15.206878

The results of the studies are presented in Table 15 and Figure 12, with the formulations of the proposed
method. The number of plastic elements varied in the project conceptions adopted, being 2 (two) elements
for Pharl and 3 (three) for Phar2. The quantity of hinges was 3 (three) for both conceptions. The hinge
formation paths are shown in Table 15 and Figure 12. Both conceptions had a clear influence on the structure’s
resistance capacity, i.e., Pharl with load factor 2.6643 shows that the dimensioning of doubly reinforced
beams (biaxial bending) and of columns with biaxial bending is safer than Phar2 with load factor 1.9049, which
has doubly reinforced beams (uniaxial bending) and columns with uniaxial bending. In this case, the coverings
were the same. The most important factor for the variation in the collapse load factor was that node 2, at the
third plastic hinge, obtained parity (see Table 2) with single reinforcement for Phar1 and double reinforcement
for Phar2. The case where the three (3) elements are dimensioned as columns gives the same result as case Pharl.
This is because the biaxial bending analyses for columns and beams are similar, except for the issue of equivalent
columns eccentricities and moments. The rotation angle was verified and did not exceed the limits of NBR 6118
(ABNT, 2014). The results are as follows: Pharl and Phar2 with 0,,,;, = 0.01144 and 6,;,, = 0.015.

Table 15. Plastic hinges — space frame - Harrison.

Pharl (u,,) Phar2(u,,)
Plastic Hinge  Element Node A Limit load (kN) Plastic Hinge  Element Node A Limit load (kN)
1 2 3 0.999 1 3 3 1.0007
2 1 1 1.8930 2.6643 2 1 1 1.8940 1.9049
3 2 2 2.6643 3 2 2 1.9049
—— uyl
34 -m- w2

2.51

1.5

Load Factor A

0.5 1

T T T T
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Displacement Uy

Figure 12. Applied load versus vertical displacement (u_y) - node 2 — space frame — Harrison.
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Case 2

The displacements and sectional efforts from the first elastic phase of the program were validated with
SAP200v.22 (Computers & Structures, Inc, 2022)software of the first elastic phase as seen in Table 16 and 17.

Table 16. Displacements - space frame - Gere & Weaver.

SAP2000 v.22
Node u Uz us I 2 I3
1 -0.000001094 -0.00002 -0.000082 -0.000552 0.000019 -0.000642
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0.000235 -0.00026 -0.000383 0.000155 0.000233 -0.000022
6 -0.001299 -0.002001 0.000289 0.000043 0.000038 0.000209
The authors
Node u; Uz Us I I I3
1 —0.000001 —0.000020 —0.000082 —0.000541 0.000019 —0.000640
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0.000234 —0.000245 —0.000363 0.000166 0.000234 —0.000020
6 —0.001284 —0.001972 0.000277 0.000047 0.000037 0.000208
Table 17. Sectional Efforts - space frame - Gere & Weaver.
SAP2000 v.22
Elem.- Node P Vs Vs T M M;
1-1 15.782 0.642 1.788 0.9872 -4.4799 12.0980
1-5 -15.782 0.642 -1.788 -0.9872 1.1281 13.3015
5-6 26.400 -4.661 -10.198 -0.2526 13.3794 -5.6971
5-4 -26.400 4.661 10.198 0.2526 14.5781 -7.0822
The authors
Elem.- Node P V2 V3 T M2 Ms3
1-1 15.720715 0.523479 1.795657 0.984185 -4.490467 -12.219558
1-5 -15.720715 -0.523479 -1.795657 -0.984185 1.123611 13.201081
5-6 26.298606 -4.647485 -10.193192 -0.240746 13.370275 -5.655635
5-4 -26.298606 4.647485 10.193192 0.240746 14.573994 -7.085278

The results of the studies are presented in Table 18 and Figure 13. The number of elements with plastic
hinges varied in the design conceptions adopted, being 2 (two) elements for PGere &Weaverl, 4 (four) for
PGere&Weaver2, and 3 (three) for PGere&Weaver3. The hinge formation paths are shown in the table
and the figure mentioned above. The design conceptions PGere&Weaverl and PGere&Weaver3 are
similar for doubly reinforced beams (uniaxial bending) but have distinct covers. The adoption of different
cover thicknesses changes the load factor obtained because it interferes with the steel reinforcement.
There was an increase in the load factor for PGere&Weaver3 in which the cover was greater than in
PGere&Weaverl. PGere &Weaver2 has the column concept (biaxial bending). The design conception that
permitted a higher load factor was PGere&Weaver2, with a load factor of 3.9989. The design concept as
a column for this type of space frame was more appropriate in order to have a structure with better
resistant capacity. This case of a space frame with its geometry can generate doubts about which would
be the best way to execute it, i.e., as a beam or a column. However, the method presented makes it
possible to evaluate which is the best execution process. It should be noted that mixed beam and column
configurations were also tested, but load factors that met the parity criteria of Table 2 were not obtained.
It is possible to use the option uniaxial bending for beam and/or column with minor quantities of
reinforcement and less cost, but this method does not perform automatic optimization. The rotation
angles were verified and did not exceed the limits of NBR 6118 (ABNT, 2014). The results were as follows:
PGere&Weaverl with 6,,;, = 0.010878 and 6,;,,, = 0.015; PGere &Weaver2 with 0,,;, = 0.013684 and 8;;,,, =
0.015; PGere&Weaver3 with 6,4, = 0.011931 and 6;;,,, = 0.015.
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Table 18. Plastic hinges — space frame - Gere & Weaver.

Page 17 of 18

PGere&Weaverl (u,;)

PGere&Weaver3 (u,;3)

Plastic Hinge Element Node A Limit load (kN) Plastic Hinge Element Node A Limit load (kN)
1 4 1 0.1321 1 4 6 0.3965
2 5 6 0.7368 0.7368 2 1 1 0.5672 1.3994
3 5 4 1.3994
PGere&Weaver2 (u,,)
Plastic Hinge Element Node A Limit load (kN)
1 5 6 0.9997 3.9989
2 2 5 1.9994
3 3 3 2.9991
4 1 1 3.9989
5
—.— uyl
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Figure 13. Applied load versus vertical displacement (u,) - node 6 - space frame - Gere & Weaver.

Conclusion

e  Based on the results presented, designers should have comprehensive knowledge on structural safety
to define a good design that makes projects safer in their implementation for several design conceptions. The
better conception for a space frame — Harrison — should be dimensioned with doubly reinforced beam (biaxial
bending) and column (biaxial bending). For the space frame conception of Gere & Weaver, it is better to use
the column (biaxial bending). There is also the possibility of using the uniaxial bending option for beam
and/or column with minor quantities of reinforcement and lower cost, but this method does not perform
automatic optimization.

e Based on Melo's formulation, the present method is able to work with the design criteria of NBR 6118
(ABNT, 2014) to successfully obtain load factors, plastic collapse, and design according to the criteria of
Vieira. It is a much simpler process for obtaining plastic hinges and their load factors without the use of
methods with a reduced stiffness matrix or mesh refinement or plastic hinge length. The purpose of having a
code for research development without the need for commercial software licenses has been achieved.

e The method suggested in this study is simpler than working with surface interaction for controlling
the movement of a plastic force point over the yield surface or reduced stiffness matrix methods. Hence, it
seems to be a viable technique for obtaining collapse load factors using elastic analysis and stiffness matrix’s
propriety changes for space frames.

e The present method shows that good safe designs for structural systems can be obtained using the
project criteria of NBR 6118 (ABNT, 2014), according to the analysis carried out. It is necessary to test more
examples for better conclusions, but the method presented in this study is an alternative technique for
elastoplastic analysis.
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