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ABSTRACT. Premature Ventricular Contractions (PVC) arrhythmias can be associated with sudden death 

and acute myocardial infarction, occurring in 50% of the population for Holter monitoring. PVC patterns 

are very hard to be recognized since their waveforms can be confused with other heartbeats, such as Right 

and Left Bundle Branch Blocks. This work proposes a new approach for PVC recognition, based on Gaussian 

Naive Bayes algorithm and AMUSE (Algorithm for Multiple Unknown Signal Extraction), which is a method 

for the blind source separation problem. This approach provides a set of attributes that are combined by 

Linear Discriminant Analysis, allowing the training of an ensemble learning. The Analytic Hierarchy 

Process weights each learned model according to its importance, obtained from the performance metrics. 

This approach has some advantages over baseline methods since it does not use a pre-processing stage and 

employs a simple machine learning model trained using only two parameters for each feature. Using a 

standard dataset for training and test phases, the proposed approach achieves 98.75% accuracy, 90.65% 

sensitivity, and 99.46% specificity. The best performance was 99.57% accuracy, 98.64% sensitivity, and 

99.65% specificity for other datasets. In general, the proposed approach is better than 66% of the state-of-

the-art methods concerning accuracy. 
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Introduction 

Normal heart rhythm is controlled regularly by the sinus (SA) node located in the right atrium using cell 

depolarization. Whether the sinoatrial node depolarization is insufficient to supplant other cardiac cells 

depolarization, or there is a blockage in the electrical impulse conduction in the atrioventricular (AV) node, 

then another cardiac cell may assume the heart rhythm (Hall, 2015; Bennett, 2012). If the ectopic focus is 

situated below the AV node, then a Premature Ventricular Contraction (PVC) is characterized, and the 

ventricles may assume the pacemaker function. This is also due to reentry, when an electrical impulse 

generated in the ventricles returns to them, either due to a shortened refractory period or to an elongation of 

the ventricular fiber, that makes the impulse travel a longer path (Ahn, 2013; Latchamsetty & Bogun, 2015; 

Cha, Lee, Klarich, & Grogan, 2012). 

PVC are not always associated with heart disease. They can also be caused by lack of sleep, irritability, 

coffee, and drugs (Garcia & Miller, 2004). They are considered benign if the patient has no structural heart 

disease. If PVC occurrences are high, hemodynamic problems may occur. They are also indicator of some 

reentry mechanism existence resulting from infarcted or ischemic areas. This can lead to an increased risk of 

lethal Ventricular Fibrillation (VF) or even sudden death (Hadia et al., 2017; Ahn, 2013; Kusumoto, 2009; 

Garcia & Miller, 2004). PVC are also associated with an increased risk of Atrial Fibrillation (AF) (Kim, Han, 

Choi, Choi, Choi, Shim, & Kim, 2021a), heart failure, and ventricular tachyarrhythmia (Kim, Choi, Han, Min, 

Choi, Shim, Choi, & Kim, 2021b). 

PVC prevalence had been estimated in a study of 301 middle-aged men, where 62% were diagnosed with 

some ventricular arrhythmia, including PVC (Latchamsetty & Bogun, 2015). For those individuals who were 
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at high risk of coronary artery disease, PVC occurrence was more frequent. In another study with more than 

122,000 military men, mostly young and healthy, PVC occurrence was lower than 1% (Latchamsetty & Bogun, 

2015). It is estimated that PVC prevalence occurs from 20% to 30% of the general population. For 24-hour or 

48-hour Holter monitoring, this percentage rises to 50% of the population (Kusumoto, 2009). On the other 

hand, for a simple ECG, such occurrence is reduced from just 1% to 4% in the general population 

(Latchamsetty & Bogun, 2015). In another study, the authors found that the prevalence of PVC-

cardiomyopathy was 29% of the general population (Huizar et al., 2021).  

The Electrocardiogram (ECG) measures the electrical heart activity using electrodes (sensors) placed on 

the chest, arms, and legs. It comprises three waveforms, which representes the atrial depolarization (P wave), 

ventricular depolarization (QRS complex), and ventricular repolarization (T wave).  

PVC have their own electrocardiograph characteristics, such as: a) Absence of the P wave preceding the 

QRS complex; b) Extended QRS complex (greater than 0.12 seconds), which may have a bizarre appearance 

and high voltage; c) QRS complex with the right (RBBB) and left bundle branch block (LBBB) appearance, 

when the extrasystole comes from the right or left ventricle, respectively; d) Polarity of T wave and ST-

segment opposite to QRS complex; e) Premature QRS complex (Garcia & Miller, 2004; Hadia et al., 2017). 

Given the multiplicity of PVC patterns due to electrocardiographic characteristics, and the need for longer 

examinations such as Holter, the proposition of mathematical/computational tools is critical to help the specialists 

in the PVC recognition task. Some of these propositions and their methodologies are mentioned below. 

Inan, Giovangrandi, and Kovacs (2006) proposed the use of the Wavelet Transform (WT) to generate the 

feature vectors for training a neural network (NN) with six sets of spectral features, obtained from five 

decomposition levels and one temporal attribute, obtained by the normalized ratio between the RR intervals. 

Shen, Hu, Li, and Meng (2011) implemented three different methodologies for extracting six attributes, which 

were divided into temporal, frequency, and morphological, and employed the support vector machine (SVM) 

with a radial basis function as the kernel. Adnane and Belouchrani (2013) proposed a threshold method to 

determine clusters belonging to PVC beats. Bazi, Hichri, Alajlan, & Ammour (2013) implemented a feature 

extraction method using four WT decomposition levels, S-Transform, and morphological criteria, and to PVC 

classification employed gaussian process classifiers. Li et al. (2014) presented a model-based approach using 

morphological differences between ventricular depolarization and repolarization phases. Liu, Du, Wang, 

Zhou, and Zhang (2015) proposed a new set of features based on Lyapunov exponents and their derivatives 

and the NN vector quantization. Zarei, He, Huang, and Zhang (2016) proposed a scheme based on the 

variation of the principal directions from the Principal Component Analysis by building a matrix with non-

PVC and PVC heartbeats. Hadia et al. (2017) implemented a methodology to detect PVC based on 

morphological characteristics of the ECG and, for PVC classification, proposed the K-nearest-neighbors with 

five neighbors. Zhou, Jin, and Dong (2017) presented a new methodology combining deep neural networks 

(lead convolutional NN and long short-term memory) and inference rules based on signal quality judgment 

for PVC recognition. Oliveira, Abreu, Duarte, and Vieira Filho (2019) proposed a new set of features inspired 

by geometric figures constructed over QRS complexes and various machine learning algorithms such as: 

multinomial naive Bayes, voted perceptron, NN, SVM, Radial-basis functions network, random forest (RF) 

and artificial immune systems. Xie et al. (2019) proposed a combination of features such as RR, PR, QRS and 

QT intervals, QRS area, and R wave amplitude, using RF with CART algorithm for PVC classification. 

However, PVC recognition is very hard task due to its dissimilarity, as observed in Oliveira et al. (2019), 

since the same heartbeat type can have very different characteristics. Examples are the LBBB and RBBB 

heartbeats. As mentioned earlier, PVC may look like these heartbeats (Garcia & Miller, 2004; Hadia et al., 

2017), but LBBB and RBBB belong to a standard class, according to the Association for the Advancement of 

Medical Instrumentation (AAIM)1. On the other hand, PVC belongs to the ventricular ectopic class. In 

addition, in Oliveira, Duarte, and Vieira Filho (2022) the authors found that the LBBB, RBBB, and Normal 

heartbeats have enough differences to recognize them in distinct classes. Therefore, any PVC recognition 

approach must be able to avoid these confusions. 

This work presents a new method for feature extraction based on AMUSE (Algorithm for Multiple Unknown 

Signal Extraction) blind source separation method without performing any pre-processing stage, followed by 

Linear Discriminant Analysis (LDA) to combine the features and reduce the dimensionality. The use of AMUSE 

is justified since the ECG can be seen as a superposition of heart activities, which this algorithm can separate. 

 
1 Practice for Testing and Reporting Performance Results of Ventricular Arrhythmia Detection Algorithms. 1987. 
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The new set of features is used for the PVC recognition task through an ensemble method that builds over the 

Gaussian Naive Bayes (GNB), where each induced model is weighted using Analytic Hierarchy Process (AHP). 

The model's weight is set according to its performance and a conversion function that converts the 

performance difference into a scale used in the AHP framework. 

Materials and methods 

Let 𝑨0 ∈ ℝ
𝑁×𝑀 be a mixing environment with 𝑁 sensors and 𝑀 sources, with 𝑀 ≤ 𝑁. The observed signals 

are given in the matrix 𝑿 = 𝑨0𝑺 + 𝑽, where 𝑺 ∈ 𝑅𝑀×𝑃 and 𝑽 ∈ ℝ𝑁×𝑃 are stationary zero-mean sources and 

noise matrices, respectively; 𝑃 is the length of the signals. 𝑽 is defined as a white noise process with 

covariance matrix 𝑹𝑉 = σ
2𝑰. 

To estimate latent sources in 𝑺 from the observed signals in 𝑿, AMUSE is employed applying the steps 

(Tong, Liu, Soon, & Huang, 1991): i) estimate the covariance matrix 𝑹𝑿 using the Eigendecomposition 𝑹𝑿 =

𝑳𝚿𝟐𝑳⊺ + σ2𝑰 where 𝚿 = diag(ψ1
2, ⋯ , ψ𝑁

2 ) is a diagonal matrix composed by the eigenvalues and 𝑳 is a matrix 

where its columns are the eigenvectors; ii) obtain an orthogonalization transformation 𝒯 = 𝚿−1𝑳⊺; iii) project 

𝑿 onto orthogonal space 𝒀 using 𝒯; iv) compute the Eigendecomposition for the symmetric covariance matrix 

𝑹𝒀sym
 for a given delay τ in the equation 𝑹𝒀sym

= (𝑹𝒀(τ) + 𝑹𝒀(τ)
⊺)/2, where 𝑹𝒀(τ) = E{𝒀(𝑝)𝒀(𝑝 − τ)⊺}, E{⋅} is 

the expectation, 𝒀(𝑝) = [𝑦1(𝑝) 𝑦2(𝑝)⋯𝑦𝑀(𝑝)]
⊺, 𝑝 = 1,2,⋯ , 𝑃, and 𝑦𝑚(𝑝) is the 𝑚-th orthogonal signal 

(source); v) build an unmixing matrix 𝑩 with the vectors obtained in the last step from 𝑹𝒀sym
; vi) estimate the 

sources using 𝑺̂ = 𝑩⊺𝒀 (Tong et al., 1991). 

Let T = (𝒙𝑘, 𝑦𝑘)𝑘=1
𝐾  be a dataset with 𝐾 instances; 𝒙𝑘 = [𝑥(1) 𝑥(2)⋯ 𝑥(𝑄)] has 𝑄 features and the 

classification is 𝑦𝑘 ∈ {0, 1}, where 0 and 1 encode two classes of patterns. To learn a decision boundary to 

separate these patterns, in a supervised way, T is split into two datasets: Tr for training/induction and Te for 

test/validation. Gaussian Naive Bayes (GNB) is one of the most popular and low-cost machine learning 

algorithms. It is based on three assumptions: i) Bayes rule 𝑝(𝑦|𝒙) = 𝑝(𝒙|𝑦)𝑝(𝑦)/𝑝(𝒙), where 𝑝(𝒙) and 𝑝(𝑦) are 

prior probabilities, 𝑝(𝑦|𝒙) and 𝑝(𝒙|𝑦) are posterior probabilities; ii) statistical independence of features, i.e., 

𝑝(𝒙|𝑦) = ∏ 𝑝(𝑥(𝑞)|𝑦)𝑄
𝑞=1 ; iii) features are normally distributed, so that the probabilities are given by density 

function (1), for each feature 𝑞. 

𝑝(𝑥(𝑞)|𝑦𝑘) =

exp [−
(𝑥(𝑞) − μ𝑞𝑘)

2

2σ𝑞𝑘
2 ]

√2πσ𝑞𝑘
2

, 

(1) 

where μ𝑞𝑘 and σ𝑞𝑘 are estimated in the induction phase for each 𝑦𝑘  class and exp(∙) is the exponential function. 

A 𝑄-dimentional 𝒙𝑘 pattern can be projected in a lower dimension space through Linear Discriminant 

Analysis, combining vectors of features linearly, so 𝒛𝑘 = 𝒖
⊺𝒙𝑘, where 𝒖 is a weight vector. The estimation of 

𝒖 is based on maximizing 𝐽(𝒖) = 𝒖𝑇𝒁𝐵𝒖/𝒖
𝑇𝒁𝑈𝒖, where 𝒁𝑈  and 𝒁𝐵 are within classes scatter and between types 

scatter matrices, respectively (Mika, Ratsch, Weston, Scholkopf, & Mullers, 1999). 

Analytic Hierarchy Process (AHP) is a method for decision making proposed by Saaty (Saaty, 1987; Santos, 

Neves, Sant'Anna, Oliveira, & Carvalho, 2019) and extensively used in the most diverse areas (Ho & Ma, 2018; 

Santos et al., 2019). In this hierarchy model, at the top and the bottom, there are put a goal and the 

alternatives, respectively, and in the middle the criteria used to compare the alternatives. This comparison 

results in a square pairwise matrix 𝑨𝑙 = (𝑎𝑖𝑗) ∈ ℚ
𝐷×𝐷, where 𝐷 is the number of alternatives and 𝑙 a criterion. 

The main diagonal elements in 𝑨𝑙 are equal to one, and the others are 𝑎𝑖𝑗 = 1/𝑎𝑗𝑖, where 𝑎𝑖𝑗 = 𝑤𝑖/𝑤𝑗 is the 

judgment value of alternative 𝑖 over alternative 𝑗 for some criterion. The verbal judgment is employed using 

the Saaty's scale described in Table 1. If the decisions are consistent, then the determinant of 𝑨𝑙 is zero 

(Oliveira, Oliveira, Freitas, & Duarte, 2021). A judgment is consistent if an alternative 𝐴1 is preferable over 𝐴2, and 

the latter is preferable over 𝐴3, then 𝐴1 is preferable over alternative 𝐴3. In the case of consistency, there is only 

one nonzero eigenvalue from 𝑨, named 𝜆𝑚𝑎𝑥  (Saaty, 1987; Santos et al., 2019; Oliveira et al., 2021). 

The eigenvector gives the judgments scores (importance) 𝒘𝑙 = [𝑤1𝑙 , 𝑤2𝑙 , ⋯ , 𝑤𝐷𝑙]
⊺ related to the higher 

eigenvalue 𝜆𝑚𝑎𝑥  from 𝑨𝑙. Local priority is provided by 𝑤𝑙𝑖  concerning the 𝑙-th criterion. The global priority 

vector, obtained from all judgments, is given by 𝒗 = [𝑣1, 𝑣2, ⋯ , 𝑣𝐷]
⊺, where 
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𝑣𝑝 =∑𝑠𝑙𝑤𝑝𝑙

𝐿

𝑙=1

 (2) 

for 𝑝 = 1,2,⋯ , 𝐷, where 𝑤𝑝𝑙  is the local priority of alternative 𝑝 concerning the 𝑙-th criterion and 𝑠𝑙 is the 𝑙-th 

criterion weight. Commonly 𝒗 is normalized, i.e., ∑𝑣𝑝 = 1 (Santos et al., 2019). 

Table 1. Saaty's scale. 

Verbal judgment Importance value 

Equal importance 1 

Somewhat more importance 3 

Much more important 5 

Very much more important 7 

Absolutely more important 9 

Intermediate value (weaker) 2, 4, 6, 8 

 

Results 

An overview of the proposed approach2 is illustrated in Figure 1. The data flow is applied to each ECG 

register in the database, as follows: 

 
Figure 1. Block diagram of the proposed approach. Solid and dotted lines mean: data flow and actions on the data, respectively. 

(1) ECG segmentation: segments are obtained in the following way: 𝒙𝑘(𝑚) = 𝒙(𝑝), 𝑅𝑘 − 𝐽𝑙∇≤ 𝑝 ≤ 𝑅𝑘 + 𝐽𝑟∇, 

where ∇ is the ECG sampling rate (Hz), 𝐽𝑙 and 𝐽𝑟 are the left and the right lengths (in seconds) for a rectangular 

window, where 𝐽𝑙 = 𝐽𝑟  such that 𝐽𝑙 + 𝐽𝑟 = 0.75, where 0.75 is the average duration in seconds of a cardiac cycle, 

𝑝 = 0,1,⋯ , 𝑃 − 1; 𝑚 = 0,1,⋯ , (𝐽𝑙 + 𝐽𝑟)∇ − 1;   𝑘 = 1,2,⋯ , #𝑅; 𝑅𝑘 is the position (to the entire ECG) for the 𝑘-

th R wave peak; and #𝑅 is the amount of these waves.  

(2) AMUSE features extraction and normalization: AMUSE application is proposed since the ECG is 

composed by the superposition of the electrical activity in the cardiac cells arranged in distinct sites, among 

them: SA node, AV node, and Purkinje system, due to depolarization and repolarization phases having 

different periods. AMUSE separates the low-frequency and high-frequency components, generating better-

suited features for classification. However, AMUSE waits for a matrix of sources but the 𝑘-th ECG segment 

𝒙𝑘(𝑚) is a vector with a dimension equal to (𝐽𝑙 + 𝐽𝑟)∇ − 1. To circumvent this inconsistency, for each 𝑘 

segment, a matrix (3) is built: 

 
2 The source code is available on github (https://github.com/brunobro/Premature-Ventricular-Contraction-Recognition). 
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𝒀𝑘 = [
𝒙𝑘(0) ⋯ 𝒙𝑘((𝐽𝑙 + 𝐽𝑟)∇ − 2)

𝒙𝑘(1) ⋯ 𝒙𝑘((𝐽𝑙 + 𝐽𝑟)∇ − 1)
], (3) 

whose second row is a delayed version of the first row. This delay is necessary since the AMUSE calculates the 

covariance matrix, which would be null without such delay. Due to the 𝒀𝑘 matrix form and the orthogonality 

of 𝑩⊺, the estimated sources will have characteristics of low (𝑺̂𝑘[0, : ])
3 and high (𝑺̂𝑘[1, : ]) frequency signals. 

Ultimately, the sources (features) 𝑺̂𝑘 for 𝑘-th segment are normalized. 

(3) LDA dimensionality reduction: the features 𝑺̂𝑘[0, : ] and 𝑺̂𝑘[1, : ] are linearly combined by LDA, resulting 

in the dimensionality reduction of the input space. This reduction ensures that less relevant attributes are 

attenuated. 

(4) Induction models: to train the models for PVC recognition, 𝑄 instances are used in the dataset Tr =

(𝑎𝑞 , 𝑏𝑞)𝑞=1
𝑄

, where 𝑎𝑞 ∈ {𝑺̂𝑞[0, : ], 𝑺̂𝑞[1, : ]} and 𝑏𝑞 is the instance label (class). This approach results in two 

models whose outputs (predictions) are combined using weighted voting scheme. 

(5) Compute AHP priorities: since each model disagrees with certain predictions, AHP application is 

proposed to weight these models. In the hierarchy, the goal is "choose a model", subject to criteria, namely 

accuracy, positive and negative predictive, sensitivity and specificity. The alternatives are the models 

themselves. To obtain the preferences of models in relation to some criterion, it is proposed a conversion 

function (6) based on Oliveira et al. (2019), which converts the difference of the metric 𝑐𝑚 generated by models 

ℳ𝒾 and ℳ𝒿, i.e., 𝑐𝑚,ℳ𝒾
 and 𝑐𝑚,ℳ𝒿

, to Saaty's scale: 

𝑑𝑚ℳ𝒾ℳ𝒿
= (𝑐𝑚ℳ𝒾

− 𝑐𝑚ℳ𝒿
) κ (4) 

δ𝑚ℳ𝒾ℳ𝒿
=

{
 
 

 
 1, if |𝑑𝑚ℳ𝒾ℳ𝒿

| < 1

9, if |𝑑𝑚ℳ𝒾ℳ𝒿
| > 9

⌈|𝑑𝑚ℳ𝒾ℳ𝒿
|⌉ , otherwise 

 (5) 

Δ𝑚ℳ𝒾ℳ𝒿
= 𝛿𝑚ℳ𝒾ℳ𝒿

sgn(𝑑𝑚ℳ𝒾ℳ𝒿
)
, (6) 

where 𝑚 = 1,2,⋯ , 𝐷; 𝐷 is the number of metrics, ⌈⋅⌉ is the ceiling function, sgn() is the signal of difference 

𝑑𝑚ℳ𝒾ℳ𝒿
 and κ >  0 is a constant used to increase the difference. After computing the pairwise matrices, whose 

elements are Δ𝑚ℳ𝒾ℳ𝒿
, the AHP method returns a 𝒗 vector with the weights for each model.  

(6) Recognition: The weights in 𝒗 are put in equation (7), to obtain the models weighted: 

𝑝̂(𝑦𝑘|𝑎𝑞′) = ∑𝑣𝑙𝑝𝑙(𝑦𝑘|𝑎𝑞′)

𝑂

𝑜=1

, (7) 

where 𝑂 is the number of models4, and Te = (𝑎𝑞
′ , 𝑏𝑞

′ )
𝑞′=1

𝑄′

 is test dataset. Finally, the ensemble output, weighted 

by AHP, is calculated by 

𝑏̂𝑞′ = {
1, if 𝑝̂(1|𝒂𝑞′) ≥ 𝛼

0, if 𝑝̂(1|𝒂𝑞′) < 𝛼
  , (8) 

where 0 and 1 represent Normal and PVC heartbeats, respectively, and α is a cut-off probability. Commonly 

α =  0.5. 

To train and test the PVC recognition models MIT/BIH-ARDB database is employed (Goldberger et al., 

2000). The used datasets are described in Table 2. For performance evaluation, the following metrics are used: 

accuracy 𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁), sensibility 𝑆𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), specificity 𝑆𝑝 = 𝑇𝑁/(𝑇𝑁 +

𝐹𝑃), positive 𝑃+ = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and negative 𝑃− = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑁) precisions, where 𝑇𝑃 and 𝑇𝑁 are true 

positive and negative, 𝐹𝑁 and 𝐹𝑃 are false positive and negative, respectively. In this work, PVC and Normal 

heartbeats are considered positive and the negative classes, respectively. 

 
3 The notation [0, : ] means that the first row of matrix. 
4 In order to obtain additional models just take more delayed versions in matrix 𝒀𝑘. 
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Table 2. Datasets used for training and testing the PVC recognition models. 

Label ECG Registers 
Instances 

PVC Normal 

D1 
101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 

220, 223, 230 
3,683 38,087 

D2 
100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 

232, 233, 234 
3,219 36,428 

D3 
108, 109, 111, 112, 113, 115, 117, 122, 124, 200, 203, 207, 208, 209, 210, 212, 213, 214, 219, 

222, 215, 220, 223, 228, 230, 231, 233 
5,040 46,980 

D4 100, 101, 102, 103, 104, 105, 106, 107, 114, 116, 118, 119, 121, 123, 201, 202, 205, 221, 223, 232 2,400 29,826 

D5 

103, 105, 106, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 200, 

201, 202, 203, 205, 207, 208, 209, 210, 212, 213, 214, 215, 219, 220, 221, 222, 223, 228, 230, 

231, 232, 233, 234 

6,901 70,419 

D6 100, 101, 102, 104, 105, 106, 107 627 8,391 

D7 100, 102, 104, 105, 106, 107, 118, 119, 200, 201, 203, 205, 208, 212, 213, 214, 215, 217 4,420 25,124 

D8 111, 115, 116, 119, 221, 230, 231 953 10,395 

D9 106, 119, 200, 201, 208, 213, 221, 223, 233 4,899 16,930 

 

In the first experiment, D1 and D2 datasets, described in Table 2, are used in training and testing phases, 

respectively. Two models are induced, namely ℳ0 and ℳ1, using the linear combination provided by LDA 

from the AMUSE components. ℳ0 received that component associated with the higher eigenvalue, i.e., 

𝑺𝑘[0, : ], and ℳ1 received the component 𝑺𝑘[1, : ]. Using the evaluation metrics, the AHP importance (weights) 

are obtained. The induced models and the ensemble scheme, weighted by AHP through conversion function 

using κ =  500, are tested, and the obtained results are shown in Table 3. 

Table 3. First experiment results using D1 and D2 datasets for training and testing, respectively. Bold values are the best ones. 

Model 𝐴𝑐𝑐 𝑆𝑒 𝑆𝑝 𝑃+ 𝑃− 

Single Models 

ℳ0 0.9800 0.9214 0.9852 0.8460 0.9930 

ℳ1 0.9777 0.9248 0.9824 0.8228 0.9933 

AHP ensemble approach 

α = 0.3 0.9706 0.9397 0.9733 0.7566 0.9946 

α = 0.4 0.9753 0.9292 0.9794 0.7993 0.9936 

α = 0.5 0.9796 0.9214 0.9847 0.8419 0.9930 

α = 0.6 0.9841 0.9158 0.9902 0.8917 0.9925 

α = 0.7 0.9875 0.9065 0.9946 0.9374 0.9918 

 

In the second experiment, registers are the same as for the first experiment, but the cross-validation 

method was employed, where for each fold, the ECG register is swapped so that each of them is in the training 

or testing, at least once. This approach aims to ensure the diversity of instances used in training and testing. 

The obtained results are shown in Table 4. 

Table 4. Results for AHP approach with 𝛼 = 0.7 and cross-validation with 22 folds. 

Fold 𝐴𝑐𝑐  𝑆𝑒 𝑆𝑝 𝑃+ 𝑃− 

1 0.9875 0.9065 0.9946 0.9374 0.9918 

2 0.9872 0.9040 0.9946 0.9378 0.9915 

3 0.9870 0.9034 0.9958 0.9575 0.9899 

4 0.9758 0.8541 0.9888 0.8908 0.9844 

5 0.9759 0.8544 0.9891 0.8943 0.9843 

6 0.9755 0.8480 0.9890 0.8910 0.9840 

7 0.9772 0.8585 0.9898 0.8992 0.9850 

8 0.9777 0.8640 0.9898 0.8995 0.9857 

9 0.9780 0.8689 0.9896 0.8992 0.9861 

10 0.9779 0.8579 0.9886 0.8694 0.9874 

11 0.9744 0.8179 0.9904 0.8976 0.9815 

12 0.9786 0.8759 0.9885 0.8804 0.9880 

13 0.9779 0.8678 0.9889 0.8873 0.9867 

14 0.9791 0.8685 0.9904 0.9036 0.9865 

15 0.9575 0.7543 0.9780 0.7756 0.9753 

16 0.9579 0.7655 0.9771 0.7690 0.9766 
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Fold 𝐴𝑐𝑐  𝑆𝑒 𝑆𝑝 𝑃+ 𝑃− 

17 0.9696 0.8046 0.9856 0.8446 0.9811 

18 0.9632 0.7675 0.9884 0.8950 0.9706 

19 0.9671 0.7789 0.9887 0.8873 0.9750 

20 0.9654 0.7672 0.9872 0.8681 0.9747 

21 0.9668 0.7798 0.9864 0.8565 0.9772 

22 0.9644 0.7555 0.9844 0.8225 0.9768 

Average 0.9737 0.8329 0.9884 0.8802 0.9827 

 

In the third experiment, a continuous uniform distribution5 noise is added to each ECG segment for 

training and testing datasets to ascertain the model's robustness. Checking the classification integrity in a 

noisy environment is very important because noise distorts the ECG signal waveforms (Oliveira, Duarte, 

Abreu, & Vieira Filho, 2018). The respective results are shown in Figures 2 and 3, where the Signal-to-noise-

ratio (SNR) is that from the test dataset. 

 
Figure 2. The accuracy obtained taking noise in training and testing datasets. 

 
Figure 3. The accuracy obtained taking noise only in the testing dataset. 

 
5 Random real numbers in the interval [0, 1). 
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Figure 4 illustrates a noiseless PVC heartbeat (Figure 4 (a)) and a noisy one (Figure 4 (b)). In Figures 4 (c) 

and (d), we have the low and high-frequency components obtained by applying the AMUSE method, 

respectively, where it can be noted that the lowest frequency components are less affected by noise. This 

shows an AMUSE advantage which is separating the noisy components providing a signal with better SNR. 

However, it is important to highlight that the estimated components are not on the same scale as the original 

signal and, in addition, they have a 180-degree lag. Even so, GNB algorithms can capture arrhythmic patterns. 

 
Figure 4. Examples of (a) noiseless PVC, extracted from the ECG register number 223, (b) noisy PVC; (c) and (d) AMUSE low and high-

frequency components, respectively. 

Robustness is also evaluated to detection errors in R peaks (or QRS) position6. In this experiment, a random 

deviation in the integer interval [−10,10] is added to the R peak actual location7. This implementation is 

necessary since the proposed approach is based on ECG segmentation which depends on the R wave position. 

The obtained results are shown in Table 5. 

Table 5. Results take a deviation in the actual R peak location. 

Model 𝐴𝑐𝑐 𝑆𝑒 𝑆𝑝 𝑃+ 𝑃− 

Single models 

ℳ0 0.9710 0.8186 0.9845 0.8232 0.9840 

ℳ1 0.9731 0.8577 0.9833 0.8190 0.9874 

AHP ensemble approach 

α = 0.3 0.9676 0.8798 0.9753 0.7590 0.9892 

α = 0.4 0.9747 0.9311 0.9820 0.8956 0.9885 

α = 0.5 0.9747 0.8546 0.9853 0.8367 0.9871 

α = 0.6 0.9763 0.8416 0.9882 0.8627 0.9860 

α = 0.7 0.9775 0.8148 0.9918 0.8983 0.9838 

 

Until here, experiments were performed for PVC and Normal classes. To evaluate the performance for 

other types of heartbeats, such as RBBB/LBBB, Atrial, and Ventricular Fibrillation, and others, the fourth 

experiment is executed by taking PVC as positive class and all other heartbeats as a negative class, considering 

all arrhythmias available in the databases used. This experimentation is important because RBBB/LBBB 

heartbeats can be confused with PVC as reported in the introduction. Furthermore, each class of arrhythmia 

has its particularities. Figure 5 (a) and (b) shown the PVC and LBBB heartbeats types, respectively, where 

some similarities in the waveforms can be observed: inverted QRS complex and prominent T wave. Results 

for this experiment are shown in Table 6. 

 
6 This position refers to occurrence of samples, considering entire ECG signal, related to maximum R wave value. 
7 Location available at MIT/BIH-ARDB. 
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Figure 5. Examples of (a) PVC and (b) LBBB heartbeats from the ECG register number 207. 

Table 6. Results for the PVC and all other types of heartbeats. 

Model 𝐴𝑐𝑐 𝑆𝑒 𝑆𝑝 𝑃+ 𝑃− 

Single models 

ℳ0 0.9702 0.8180 0.9804 0.7369 0.9877 

ℳ1 0.9698 0.8596 0.9772 0.7167 0.9904 

AHP ensemble approach 

𝛼 = 0.3 0.9596 0.8826 0.9648 0.6273 0.9919 

𝛼 = 0.4 0.9654 0.8705 0.9718 0.6742 0.9911 

𝛼 = 0.5 0.9714 0.8571 0.9791 0.7332 0.9903 

𝛼 = 0.6 0.9766 0.8437 0.9855 0.7960 0.9895 

𝛼 = 0.7 0.9814 0.8180 0.9923 0.8777 0.9878 

 

Lastly, the AHP ensemble is compared to state-of-the-art approaches, taking the datasets according to 

Table 2. Comparative results are shown in Table 7. 

Table 7. Comparison among the state-of-the-art methods and the proposed AHP ensemble. 

Approach 𝐴𝑐𝑐 𝑆𝑒 𝑆𝑝 𝑃+ Tr Te 

Liu et al. (2015) 0.9890 0.9026 - 0.9890 D3 D4 

Proposed, 𝛼 = 0.7 0.9867 0.9058 0.9932 0.9146 D3 D4 

Li et al. (2014) 0.9820 0.9310 0.9850 0.8140 D1 D2 

Zarei et al. (2016) 0.9877 0.9612 - 0.8648 D1 D2 

Zhou et al. (2017) 0.9941 0.9759 0.9954 0.9355 D1 D2 

Xie et al. (2019) 0.9638 0.9788 0.9756 0.9546 D1 D2 

Oliveira et al. (2019) 0.9840 0.9110 0.9870 0.8570 D1 D2 

Proposed, α = 0.7 0.9875 0.9065 0.9946 0.9374 D1 D2 

Proposed, α = 0.3 0.9802 0.9787 0.9818 0.9817 D1 D2 

Ebrahimzadeh and Khazaee (2010) 0.9540 - - - D5 D6 

Proposed, α = 0.7 0.9869 0.9761 0.9877 0.8559 D5 D6 

Inan et al. (2006) 0.9520 0.8520 - 0.9240 D7 D8 

Proposed, 𝛼 = 0.7 0.9957 0.9864 0.9965 0.9631 D7 D8 

Shen et al. (2011) 0.9700 - - - D9 D9 

Proposed,𝛼 = 0.7 0.9878 0.9714 0.9925 0.9740 D9 D9 

Tr and Te mean training and test dataset, respectively. 

Discussion 

From results in Table 3, it is noted that the AHP ensemble approach is better than single models regardless 

of 𝛼 probability, highlighting 𝑃+ metric, which is 9.14% higher than the best single model result due to the 

greater number of true positives. On the other hand, from Table 4, it is observed that the results for different 

datasets, from the second row onwards, present inferior performance since ECG registers belonging to D1 and 

D2 datasets are good representations of the analyzed patterns. That’s why most of the researches cited in the 
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introduction use these datasets in the training and testing phases. In general, taking into account average 

metrics, it is noted that more false alarms occur, mainly false positives. Hence, 𝑃+ and 𝑆𝑒 metrics achieved 

the greatest reductions. This is because some ECG registers do not have PVC heartbeat instances. Anyway, on 

average, the accuracy is above 97%.  

In addition to performance, the robustness of the proposed approach was also validated. The graph in 

Figure 2 makes it clear that poor SNR causes loss of performance. In this noisy environment, the AHP 

ensemble, with α = 0.4, is better or equal to ℳ0 single model, being superior as SNR increases. On the other 

hand, when noise is added only in the test dataset, the results presented in Figure 3 show that the AHP 

ensemble, with α = 0.4 and α = 0.6, is better regardless of SNR. Moreover, in this case, when SNR is greater 

than 1.093 dB, the performance stabilizes. These results are very important since the proposed approach does 

not implement a pre-processing step for noise attenuation. 

Robustness was also validated for errors in the R peak detection. Comparing results between Tables 3 and 

5, we noted a performance decrease for accuracy close to 1%, considering AHP with α = 0.7. Again, the 

sharpest decrease occurs for PVC class, according to 𝑃+ and 𝑆𝑒 metrics, since it has fewer instances, so it is 

more susceptible to changes in the attribute extraction step. However, for 𝑆𝑒, when α = 0.7, there was an 

increase of around 1%. This is due to the weighted combination of the AHP ensemble approach since the 

metric 𝑆𝑒 for model ℳ1 had a smaller decrease than that of the model ℳ0. 

As mentioned in the Introduction section, a PVC recognition method must differentiate among PVC and RBBB 

or LBBB, as there may be cases where these beats are similar, according to the example in Figure 5. The proposed 

approach has been tested for this ability. From results in Table 6, in comparison to the ones in Table 2, we noted 

decreases of 6.36% for 𝑃+ and 9.76% for 𝑆𝑒 about α = 0.7, when all other heartbeats were considered as negative 

class. Although these reductions in the performance are relevant, all metrics for α = 0.7 are greater than 90%. An 

additional reason for these results is that RBBB and LBBB beats, for example, are only available for eight registers8, 

and a patient ECG register is considered in the training or testing phase, but not for both. 

In comparison to the state-of-the-art methods, Table 7, regarding D3 and D4 datasets, it is noted that the 

proposed approach surpassed the approach of Liu et al. (2015) only in 𝑆𝑒 metric, with lower performance for 

𝐴𝑐𝑐 and 𝑃+, implying that the number of false negatives is greater for the proposed approach.  

To the results obtained from D1 and D2 datasets, the proposed approach with α = 0.7 surpasses all state-

of-the-art methods concerning 𝑆𝑝, except for the one proposed by Zhou et al. (2017). For 𝑃+ metric, the 

proposed approach also outperformed the other methods but not the one proposed by Xi et al. (2019). Such 

results indicate that the proposed approach generates less false positives but, on the other hand, it generates 

more false negatives when α = 0.7. For results with α =  0.3, it is noticed that accuracy is lower, but, unlike the 

previous case, 𝑆𝑒 is greater than other methods, except the one proposed by Xi et al. (2019). These results imply a 

reduction in false negatives by taking a lower α cut-off probability. Therefore, the proposed approach allows us to 

choose which performance metric we will emphasize, which implies more false positives or negatives. 

When comparing D5 and D6 datasets, the proposed approach surpassed Ebrahimzadeh and Khazaee (2010) 

concerning accuracy. In the fourth comparison, implemented on D7 and D8 datasets, the proposed approach 

is superior to the method presented in Inan et al. (2006) concerning all metrics. In fact, the model induced on 

these datasets generated the best performance results in comparison to all others, except for 𝑃+. 

In the last comparison, over the D9 dataset, the proposed approach is better than one proposed by Shen 

et al. (2011). 

The proposed approach was better or worse in the above comparisons depending on the dataset and cut-

off probabilities, obtaining greater results for most metrics and comparisons. It is also evident that the 

proposed approach generated high 𝑆𝑒 and 𝑃+ values, greater than 0.9, except for the implementation over D5 

and D6 datasets, where it was obtained a reduced 𝑃+, resulting in fewer occurrences of false positives and 

false negatives. Another advantage of the proposed approach is that it does not include a pre-processing step 

to eliminate noise, as the other approaches, which reduces the computational load. 

Conclusion 

This work proposes a new approach aiming at PVC recognition based on the AMUSE components with 

linear combination and GNB models, which are combined in ensemble learning weighted by AHP. Several 

experiments were performed, including cross-validation, noisy environment, many arrhythmia types, and 

 
8 ECG registers that have RBBB or LBBB heartbeats are: 109, 111, 118, 207, 212, 214, 231, 232. 
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comparisons with baseline methods. Obtained results showed good performance for the propositions varying 

a cut-off probability in the AHP ensemble. In comparison to other methods, the proposed approach was better 

in most of the cases. The best performance was obtained when considering the use of D7 and D8 datasets, 

consisting 99.57% accuracy, 98.64% sensitivity, and 99.65% specificity. Besides that, the proposed approach 

has a lower computational load since there is no need for the pre-processing stage, and it is based on the 

Naive Bayes concept, which depends only on the probabilities computation. 

Future works include research on conversion functions for the AHP and other scales and more in-depth 

investigations into how noise affects performance. In addition, implementation of testing and training phases 

in other databases. 
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