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ABSTRACT. The retina is an eye layer that incorporates light- and color-sensitive cells as well as nerve 

fibers. It collects light and distributes it to the brain for image processing through the use of the optic nerve. 

Diseases that end up causing vision loss and blindness are generated by retinal ailments. As a result, it is 

imperative to diagnose and treat certain disorders as early as possible. Optical coherence tomography 

(OCT), an angiography imaging technique, is operated to help diagnose retinal disorders. Deep learning 

approaches, which are extensively utilized, have now become a convenient way for diagnosing retinal 

illnesses through OCT images as a result of their effective outcomes in interpreting medical images. To 

diagnose retinal disorders utilizing OCT scans, this investigation developed a hybrid methodology based on 

image pre-processing and convolutional neural networks (CNNs) (a deep learning method). Image pre-

processing techniques including background filling, resizing, noise reduction, and highlighting are 

exercised at the pre-processing stage. The segmentation process provides a new CNN architecture with five 

convolution layers that does have a low computational cost. Compared to other publications using the same 

data set, the proposed method seems to have a success rate of 99.48 percent in the detection of retinal 

disorders, closing a significant gap in the literature. The proposed approach has the advantage of 

maintaining low computing costs in comparison to other studies in the literature. When the conclusions 

are regarded, it is noticed that the suggested method might be exerted as a decision support system to assist 

physicians in the clinical context during the diagnosis of retinal disorders. 
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Introduction 

The retina is an eye membrane that holds light- and color-sensitive cells as well as nerve fibers. It catches 

light and distributes it to the brain for image processing via the optic nerve (Kermany et al., 2018). Thus, 

diseases that cause vision loss and blindness may be driven by retinal abnormalities. Heart disease and 

hypertension can also triggered by retinal disorders (Miranda & Romero, 2019). Early identification and 

treatment are essential in preventing or eliminating such consequences. Age-related macular degeneration 

(AMD), drusen, diabetic retinopathy (DR), diabetic macular edema (DME), and myopic choroidal 

neovascularization are only a few of the serious disorders brought by retinal issues (CNV) (Taş, Barin, & 

Güraksin, 2021). DME is a retinal disorder that leads to damage in the blood vessels in the retina of the eye as 

well as consequent loss of vision (Jancy, Duela, Devi, & Lakshmi, 2021; Sharma, Khanna, & Bhargava, 2021). 

If DME is not treated, fluid leaks from the retina's blood vessels in the retina, causing swelling of the macula 

and eventually a sudden vision loss takes place (Jancy et al., 2021; Kaymak & Serener, 2018; Sharma et al., 

2021). The higher amount of sugar in the blood, especially in Type II diabetic patients, increases the 

probability of DME (Jancy et al., 2021). Macular degeneration culminates in age-related macular degeneration 

(AMD). Dry and wet AMD are the two diverse types of AMD. Wet AMD is generated by the degeneration of 

retinal blood vessels, whereas Dry AMD is accompanied by profound retinal degeneration. While the dry form 

of AMD cannot be cured in general, the wet form of AMD can be managed in a variety of separate ways 

(Kaymak & Serener, 2018). Drusen is a term used to describe wet AMD. As the drusen swells, it bleeds and 

wounds the macula cells, triggering central vision loss (Sharma et al., 2021). In those over the age of 50, AMD 

is the leading cause of vision loss. Choroidal neovascularization (CNV) is a retinal disorder that produces 

vascular leakage or hemorrhage by permeating non-vascularized blood vessels' Retinal Pigment Epithelial 
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(RPE) cells (Rajagopalan, Venkateswaran, Josephraj, & Srithaladevi, 2021). CNV proceeds to the point where 

the RPE surface of the retina thickens (Gołȩbiewska et al., 2017). It is commonly noticed that age-related 

alterations or malignant myopic degeneration aggravate it (Sharma et al., 2021). Early detection of retinal 

abnormalities is critical for averting progression of disease and visual loss. 

The imaging techniques of fundus fluorescein angiography (FFA) and optical coherence tomography (OCT) 

are frequently employed to investigate retinal disorders. A medical treatment in which a fluorescent dye is 

administered into the bloodstream to showcase the retinal blood vessels is known as fundus fluorescein 

angiography (Gupta, 2011). Optical coherence tomography (OCT) is a noninvasive imaging technique in which 

infrared rays are transmitted to the eye to capture high-resolution micron images of the retina (Rawat & 

Gaikwad, 2014.). These two methods are frequently performed in the diagnosis of retinal disorders. Each, 

though, has its own set of benefits and drawbacks. Fundus fluorescein angiography is a limited, slow, and 

invasive imaging procedure that is no longer exploited. Optical coherence tomography, on the other hand, is 

a novel, quick, and noninvasive technique that is better at evaluating a big capillary structure and delivering 

specific information on all of the eye's layers (Taş et al., 2021). When the history of the OCT technology is 

evaluated from its inception to the contemporary, it is noticeable that it has progressed at a rapid and 

successful rate (Leitgeb, 2019). OCT has become more and more widely practiced in the identification of 

retinal illnesses since it is a recent and still developing technology that delivers excellent results in imaging 

retinal layers. OCT comes in four different forms. They are known as Time Domain (TD-OCT), Spectral 

Domain (SD-OCT), Swept Source (SS-OCT) and Linear (L-OCT)(Cordes et al., 2021). TD-OCT and L-OCT fulfill 

A-scan in cartesian space. SD-OCT and SS-OCT carry out A-scan in Fourier space and require an FFT back to 

cartesian space to complete the A-scan. The article of Cordes et al (Cordes et al., 2021) can be referred to for 

more information about OCT scan systems. In retinal imaging, the varieties of TD-OCT and SD-OCT are more 

often exploited (Tayal et al., 2021). SD-OCT employs optical frequencies to measure the prevailed 

interferometric signal, facilitating imaging 50 times quicker than TD-OCT. It also presents a greater quantity 

of images per unit area. High-density raster scanning of retinal tissue is now possible thanks to the increased 

resolution and scanning speed (Forte, Cennamo, Finelli, & De Crecchio, 2009). These imaging techniques, as 

well as their own knowledge and experience, are benefitted by experts to screen for disorders and discover 

retinal diseases. Analyzing OCT and FFA ophthalmological images, on the other hand, is time-consuming, 

expensive, and subject to human error. Furthermore, late detection of retinal abnormalities prolongs, if not 

completely eliminates, the treatment procedure, resulting in a waste of time and effort. To address those 

problems in medical systems, sophisticated artificial intelligence (AI) approaches in medical diagnostics and 

image identification are extensively deployed (Avanzo et al., 2021; Born et al., 2021; Botwe et al., 2021; Law, 

Seah, & Shih, 2021). 

AI is often applied in computational technologies that mimic mechanisms powered by human intelligence, 

such as thought, deep learning, adaptation, inheritance, and sensory understanding (Alzubi, Nayyar, & 

Kumar, 2018; Dong, Hou, Zhang, & Zhang, 2020; Son et al., 2019). It also comes in a range of applications in 

a variety of fields, particularly national security (Horowitz et al., 2018), health services (Calandra & Favareto, 

2020; Li et al., 2021; Tan, Scheetz, & He, 2019), education (Chen, Chen, & Lin, 2020; Fadel, Holmes, & Bialik, 

2019), and transportation (Kouziokas, 2017). Meanwhile, artificial intelligence's potential in healthcare has 

recently been proved by researchers. Modern computers' increased computational capacity and a massive 

reservoir of digital data have awarded AI the respect it deserves in the field of healthcare. Artificial 

intelligence models are benefitted in a variety of medical fields, involving risk modeling and stratification in 

biomedical research and clinical applications, personalized screening, diagnosis (including molecular disease 

subtype categorization), and therapeutic response prediction (Castiglioni et al., 2021). Artificial intelligence 

can receive, analyze, and report big data in divergent modalities to detect diseases and guide clinical decisions 

(Secinaro, Calandra, Secinaro, Muthurangu, & Biancone, 2021). Prominent in computer vision and a sort of 

artificial intelligence, deep learning algorithms can generate very good outcomes in fast and automatic 

classification of medical images, allowing for faster diagnosis with lower costs. As a result, deep learning 

approaches can help physicians overcome present drawbacks and detect and diagnose retinal illnesses more 

quickly. They can also make extremely accurate projections, saving both time and money. 

Latest research mostly on identification of retinal disorders using OCT images have demonstrated that 

deep learning approaches are the most effective automatic retinal disease diagnosis techniques. Once the 

research are analyzed, preprocessing approaches are found to improve performance in studies using deep 

learning methods (Bhadra & Kar, 2020; Mezni, Slama, Mbarki, Seddik, & Trabelsi, 2021; Rajagopalan et al., 
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2021; Tayal et al., 2021). Another conclusion made from the examination is that the architecture does not 

need to be large and complicated for a good classification success (Tayal et al., 2021). As a result of all of the 

examinations, the goal of this work was to classify as many OCT images as possible utilizing preprocessing 

techniques as well as a simple CNN architecture. Prioritization was assigned to either the preprocessing stage 

or the classification stage in the investigations when the preceding publications, whose details were supplied 

in the literature review chapter, were inspected. In addition, pre-trained deep neural networks with high 

computational cost architectures were generally preferred in the classification stage.  This research was 

conducted to determine image quality through image processing as well as producing an ideal system by 

engaging in the classification architecture design. Another goal of the research was to keep the computing 

costs as low as possible. A hybrid system comprising of a CNN architecture with 5 convolution layers and 

preprocessing approaches has been described for this purpose. The findings were analyzed and compared to 

the most recent and noteworthy studies in the field. Image processing techniques such as resizing, space-

filling, noise removal, and highlighting the region of interest were concentrated on throughout the image 

processing stage. A CNN architecture with low computational cost consisting of 5 convolution layers with 3x3 

kernels was designed in the classification stage. 83.484 images achieved from the preprocessing step were 

used in the training of the designed CNN architecture. As a result of the training, 99.48% accuracy, 99.48% 

sensitivity, and 99.83% specificity were secured.  

The remaining part of the paper is organized as follows: The introduction has commenced with a literature 

review. In the material and method section, the proposed hybrid system has been explained in detail after the 

technical details of the preprocessing, and CNN methods have been explained. The experimental results 

gained as a result of material and method have been explained and analyzed in the result and discussion 

section. In the result and discussion section, the suggested classification approach has also been compared to 

other state of art methods. Ultimately, the conclusions section has described all of the literature and discusses 

the study's future direction. 

Literature review 

The optical coherence tomography imaging technique is up-to-date and constantly evolving. Therefore, 

there has been a growing body of research on AI and deep learning in recent years. For example, Li et al. (Li 

et al., 2019) developed a CNN-based application to detect CNV, DME, and dry AMD diseases. To that end, they 

made use of 109,312 OCT images of 5319 adult patients from the Shiley Eye Institute of the University of 

California San Diego, the California Retinal Research Foundation, Medical Center Ophthalmology Associates, 

the Shanghai First People’s Hospital, and the Beijing Tongren Eye Center between 2013 and 2017. They 

divided the images into four categories (CNV, DME, Drusen, and normal). They used the VGG-16 CNN 

architecture pre-trained in the ImageNet database. They reported that the proposed method had superior 

performance in retinal OCT images detection, with a prediction accuracy of up to 98.6%.  

Mishra et al. (Mishra, Mandal, & Puhan, 2019) practiced the ResNet50 architecture to diagnose AMD and 

DME. They achieved an accuracy of 99.97% and a precision of 99.97% on the Duke database while they 

achieved an accuracy of 99.62% and a precision of 99.62% on the Neh database.  

Alqudah (Alqudah, 2020) proposed a 19-layered CNN architecture called AOCT-NET to diagnose retinal 

diseases from OCT images. The AOCT-NET architecture achieved 97.78% accuracy, 97.78% sensitivity, and 

97.778% specificity. Das et al. (Das, Dandapat, & Bora, 2019) proposed a multi-scale deep feature fusion-

based classification approach to diagnose AMD, CNV, and DME from OCT images (n=83.484). The proposed 

method consisted of three steps, including a pre-processing. The method achieved 99.60% sensitivity, 99.87% 

specificity, and 99.60% accuracy.  

Motozawa et al. (Motozawa et al., 2019) exercised two computational deep learning-based CNN models to 

diagnose AMD. The first model analyzed OCT images in two categories: AMD and healthy. The second model 

classified AMD images as exudative and non-exudative. The researchers also investigated the effect of 

transfer learning on the learning rate of the second model. The first model diagnosed AMD with 99.0% 

accuracy, 100% sensitivity, and 91.8% specificity. The second model detected exudative cases with 98.4% 

sensitivity, 88.3% specificity, and 93.8% accuracy.  

Saha et al. (Saha et al., 2019) focused on the automatic classification of biomarkers causing AMD. They 

applied 19584 OCT B-scans from 153 patients to train and test three CNN models (Inception-V3, ResNet50, 

and Inception-ResNet50). The Inception-ResNet50 architecture outperformed the others. It was able to 

identify the subretinal drusenoid deposits with a sensitivity, specificity, and accuracy of 79, 92, and 86%, 
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respectively. It also managed to detect hyperreflective foci (hRF) within druseniod lesions with a sensitivity 

of 78% and a specificity of 100%, while it detected the hyporeflective foci (hRF) within druseniod lesions with 

79% precision and 95% specificity. Researchers in general reported relatively successful results in different 

transfer learning architectures (Bhowmik, Kumar, & Bhat, 2019; Kamble et al., 2018; Wang et al., 2019).  

Wang et al. (Wang et al., 2020) combined two CNN architectures and proposed a new method. The 

architectures distinguished images based on the presence of choroidal neovascularization (CNV) and 

identified CNV scans based on the presence of a CNV membrane. The first architecture was used for CNV 

membrane identification and segmentation, while the second was used for pixel-based vessel segmentation. 

The proposed model was able to diagnose all CNV with 100% sensitivity and 95% specificity.  

Alqudah et al.(Alqudah, Alqudah, & AlTantawi, 2021) proffered a hybrid artificial intelligence system for 

multiclass classification of eye retina diseases using automated deep features extracted from OCT images. 

They used the OCT  dataset published by  Zhang  Lab at the  University of California at San Diego (UCSD) 

(Kermany et al., 2018)  and the Farsiu  2013  Ophthalmology  AMD  dataset available at  Duke University. The 

total dataset they used consisted of five classes: normal, AMD, CNV, DME, and Drusen. In the intended 

system, the features extracted from the CNN-based AOCT-NET architecture were classified using eight 

varying machine learning methods: Support Vector Machine with Linear kernel (LSVM), Support Vector 

Machine with Radial Basis Function kernel (RBF SVM), Artificial Neural Network (ANN), K Nearest Neighbor 

(KNN), Random Forest (RF), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and 

Naïve Bayes (NB). CNN-based AOCTNET, previously proposed by Alqudah (Alqudah, 2020) for the diagnosis of 

retinal diseases, possessed a structure consisting of 19 layers. As a result of the evaluations, KNN machine learning 

displayed the best success with 99.44% accuracy, 99.44 sensitivity, 99,86 specificity and 99.45 precision.  

Thomas et al. (Thomas et al., 2021) submitted a novel deep CNN architecture to automate AMD diagnosis 

from OCT images. AMD images taken from 4 different data sets were used in the study (Farsiu et al., 2014; 

Kermany et al., 2018; Rasti, Rabbani, Mehridehnavi, & Hajizadeh, 2018; Srinivasan et al., 2014). In this study, 

a CNN architecture with 6 convolution layers and two feed-forward routes was designed to extract features 

from OCT images and three machine learning methods (Multi-Layer Perceptron, SVM and Random Forest) 

were used to detect AMD disease using extracted features. The proposed technique with Random Forest has 

acquired the best performances with accuracy of 99.78% and sensitivity 99.8% via Kermany et al.’s dataset 

(Kermany et al., 2018) . 

Najeeb et al. (2019) presented an image pre-processing algorithm to acquire the region of interest (ROIs) 

from retinal OCT images and a single layer convolutional neural network structure to detect retinal diseases 

from segmented OCT images. They used the OCT dataset containing four classes published by  Zhang  Lab at 

the  University of California at San Diego (UCSD) (Kermany et. al. 2018).  At the end of the study, they achieved 

95.66% accuracy and 95% sensitivity. 

Berrimi and Moussaoui (2020) introduced two new CNN architectures to detect retinal diseases from OCT 

scans. They used the OCT dataset containing four classes published by  Zhang  Lab at the  University of 

California at San Diego (UCSD) (Kermany et. al. 2018), similar to the other studies. The two proposed CNN 

architectures also consisted of 3 convolution layers. The only difference between them was that the second 

CNN architecture included extra dropout and batch normalization layers. In this study, they also trained the 

VGG 16 and Inception V3 models to compare the proposed architectures. As a result of the trainings, 

Inception V3 architecture exhibited the best result with 99.27% accuracy. When the evaluation results were 

ranked from the best to the worst, the second CNN architecture designed by Berrimi and Moussaoui (2020) 

came after the Inception V3 architecture with an accuracy rate of 98.65%.  

Bhadra and Kar (2020) proposed a deep multi-layered CNN for retinal disease detection and classification. 

They used the OCT dataset containing four classes published by  Zhang  Lab at the  University of California at 

San Diego (UCSD) (Kermany et al., 2018). Their supplied methodology owned two sections: pre-processing 

and classification. The pre-processing section contained image processing methods to remove artifacts and 

segment ROIs. A CNN architecture consisting of six convolution layers were used to classify OCT scans in the 

classification section. Their proposed technique seemed to obtain accuracy of 96.5% for test dataset. 

Mezni et al. (2021) tendered an advanced filtering and classification framework to detect AMD and DME 

disease using OCT images.  The OCT image dataset consisting of 95 normal and 162 abnormal (AMD, DME) 

images was taken from the Hedi Raies Institute of Ophthalmology in Tunisia between February 2019 and 

August 2020. The proposed method included two parts: pre-processing and classification. OCT image pre-

processing strategy was first applied by the use of the Block-matching and 3D filtering (BM3D) filter to reduce 
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the Gaussian noise in used OCT image data. Second, the appreciated classification classified the macular 

region using the Deep Belief Neural (DBN) methodology. The proposed method gained an accuracy of %92.54, 

sensitivity of 92.08% and specificity of 93.25%. 

Tayal et al. (Tayal et al., 2021) presented a classification  method based on 3 different CNN architectures 

consisting of 5,7,9 convolution layers to detect DME, Drusen and CNV using the OCT scans. The used OCT 

dataset prepared by (Kermany et al., 2018) was preprocessed for noise removal, contrast enhancements, 

contour-based edge, and detection of retinal layer extraction. The training was done with both raw and 

processed images and it was proven that the proposed preprocessing method increased the classification 

success. In the study, the architecture trained with pre-processed data gave the best accuracy (%97.14), while 

sensitivity (0.9447) and specificity (0.9816) values provided the worst outcome. Among the architectures 

trained with raw images, CNN architecture with five convolution layers achieved the best accuracy (% 96.54), 

while CNN architecture with seven convolution layers achieved the best results in sensitivity (0.9654) and 

specificity (0.9884). 

Sharma et al. (2021) designed a system consisting of preprocessing and CNN-based architecture to classify 

three retinal disorders (CNV, DME, Drusen). In the pre-processing stage, Random Under Sampling technique 

was applied for tackling the dataset's class imbalance. Then resizing was applied to bring the data to the same 

size, and augmentation was applied through Tensorflow ImageDataGenerator to increase the data again. A 

CNN architecture consisting of 10 convolution layers was used to classify retinal diseases. The proposed 

system achieved an accuracy of 99.38% with a precision amounting to 0.9938.  

Rajagopalan et al. (Rajagopalan et al., 2021) planned a CNN architecture and a series of image pre-

processing method to detect retinal disorders using OCT images. In pre-processing, four various filters were 

used for speckle noise reduction: mean filter, wiener filter, Kuan, and biorthogonal spline wavelet filter. 

Researchers used CNN architecture with 5 convolution layers and determined the training hyperparameters 

by random search method. Their system provided an accuracy of 97.01%, sensitivity of 93.43%, and 98.07% 

specificity. 

Li, Cheng et al. (2021) proposed an end-to-end deep learning algorithmic framework based on domain 

adaptation Inception V3 to classify six categories of retinal OCT images using the prior knowledge of a similar 

domain. Using two different data sets, the researchers applied non-local mean filtering, laplacian filtering, 

and normalization processes to the images before the classification process, which was followed by applying 

data augmentation with the ImageDataGenerator, and then resized the images (229x229x3). Their method 

achieved 96.3% accuracy, 96.2% sensitivity, 99.2% specificity, and 96.2% F1-score.  

Apon et al. (Apon, Hasan, Islam, & Alam, 2021) proposed a CNN model with four convolution layers to 

identify OCT images in four classes. The study aimed to design a significantly small and fast system to create 

a web application for a real-time OCT diagnostic system. In the study, the proposed CNN architecture with 

four convolution layers achieved %94.87 accuracy without preprocessing except resizing. The proposed CNN 

architecture held 423,460 parameters for training. In addition, the researchers examined the interpretability 

of the proposed model, which could provide major information to specialists for the diagnosis of retinal 

diseases with LIME and Grad-Cam methods. 

Considering the literature review, it is clear that either the pre-processing stage or the categorization stage 

is given the utmost importance in these studies. Furthermore, at the classification process, pre-trained deep 

neural networks with high computational cost designs were frequently favored. 

Material and methods 

In this study, an automated computer-aided system was designed to diagnose retinal diseases from OCT 

images. The proposed system consisted of two main stages just like other OCT studies observed in the 

literature (Bhadra & Kar, 2020; Mezni et al., 2021; Rajagopalan et al., 2021; Tayal et al., 2021): They are the 

stages of pre-processing and deep learning architecture-based classification. The pre-processing part consists 

of 7 steps: 

1 All images were converted to gray-scale. 

2 White regions were filled in to remove background distortions.  

3 All images were resized to 128x128.  

Having completed all these stages, morphological image processing methods were used to reduce noise 

and highlight the essential points. 
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4 Contrast limited adaptive histogram equalization (CLAHE) was applied to the images. 

5 Median filter was applied to the images. 

6 Gaussian filter was applied to the images. 

7 Non-local means denoising filter was applied to the images. 

In the classification stage, a CNN architecture was designed based on AlexNet, which is known as a simple 

deep learning architecture. The CNN architecture consisted of five convolution layers and three fully 

connected layers. The flow chart of the proposed study is given in Figure 1.  

 
Figure 1. Flow chart of the study. 

In addition, AlexNet architecture was trained with pre-processed images to compare the performance of 

the proposed CNN architecture with the AlexNet. Also, the proposed CNN architecture was trained using both 

raw images and pre-processed images to compare the effect of the pre-processing step on the performance. 

Dataset 

As for the dataset, a publicly available OCT dataset developed by Kermany et al. (2018) was used. The 

images were selected from retrospective cohorts of adult patients from the Shiley Eye Institute of the 

University of California San Diego, the California Retinal Research Foundation, Medical Center 

Ophthalmology Associates, the Shanghai First People’s Hospital, and Beijing Tongren Eye Center 

between 2013 and 2017. The dataset consisted of four categories and 84.484 images (83.484 training and 

1.000 test). Thirty-two images were exercised for validation, 83.484 images were exerted for the training, 

and 968 images were applied for the test (Table 1). An example image of each class in the data set is given 

in Figure 2. 

Table 1. Distribution table of data set by classes. 

Data Set Category Number of Images 

Training CNV 37.205 

 DME 11.348 

 DRUSEN 8.616 

 NORMAL 26.315 

Validation CNV 8 

 DME 8 

 DRUSEN 8 

 NORMAL 8 

Test CNV 242 

 DME 242 

 DRUSEN 242 

 NORMAL 242 
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Figure 2. Retinal OCT images of (a) Normal (b) CNV (c) Drusen (d) DME. 

Image preprocessing 

The images used in this study are in various sizes and resolutions because they are from dissimilar periods 

of time and captured with different devices. Each image has a unique magnification rate. Most images have 

salt-and-pepper noise, while others have denser noise than normal OCT images. CNN architectures can be 

trained with original OCT images. However, they may require more convergence time and have a high error 

rate due to distortion (see Figure 2 for examples). In addition to these mentioned factors, studies marked that 

when image preprocessing methods were applied correctly, they increased the performance of deep learning 

methods (Li, Cheng et al., 2021; Mezni et al., 2021; Tayal et al., 2021; Uysal & Güraksin, 2021). In the study, 

some image processing methods were applied to image standardization and remove noise in images.  

The data set used in the study included both gray-scale and RGB-scale images. For this reason, all images 

were converted to gray-scale, thus reducing the computational cost and standardizing the images. RGB image 

was represented by three color component intensities such as red, green, and blue. RGB image owned a 24 

bits/pixel where 8 bits for each color (red, green and blue). Grayscale images were a monochrome image that 

contained brightness and intensities information only and no color information. A grayscale image contained 

a 8 bit/pixel allowing the image to represent (0-255) different brightness (gray) levels (Padmavathi & 

Thangadurai, 2016). RGB images involved more information than grayscale images. Although this increased 

the success of deep learning methods, it brought extra computational costs.  

In image processing methods, thresholding is a widely used method for many purposes (Sezgin & Sankur, 2004). 

Thresholding is a simple but effective tool, especially for separating objects from the background. The thresholding 

method is so effective and widespread has also laid the groundwork for the continuous improvement of the applied 

methods, and many thresholding methods have emerged according to the application purpose. In images, the gray 

levels of the pixels belonging to the object are usually significantly dissimilar from the gray levels of the pixels 

belonging to the background. (Sezgin & Sankur, 2004). In the light of this information, an adaptive thresholding 

method, widely used in gray-scale images, whose formulation is given in Equation 1, is used. 

𝑑𝑠𝑡(𝑥, 𝑦) = {
0                                                    𝑖𝑓 𝑠𝑟𝑐(𝑥, 𝑦) > 𝑇(𝑥, 𝑦)
𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (1) 

where T(x,y) is a threshold calculated with adaptive methods individually for each pixel (OpenCV: Image 

Thresholding, December 18, 2021). The threshold value is a mean of the neighborhood of (x,y) . 

In all deep learning architectures, the images applied to the input layer must be the same size. For this 

reason, all the images in the data set were resized to the same size by the interpolation method. 

Histogram equalization is a simple and effective method for improving contrast in digital images. CLAHE 

is a type of adaptive contrast enhancement method and in previous studies it appeared to be effective in 

contrast enhancement methods of OCT images (Tayal et al., 2021). It aims to reduce the noise produced 

inhomogeneous areas and was initially developed for medical imaging (Rosenman, Roe, Cromartie, Muller, & 
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Pizer, 1993). In CLAHE, the image is divided into subsections. Each subsection has a histogram (Tayal et al., 

2021). Each histogram is cropped using a crop threshold, and the contrast of each subsection is enhanced 

using histogram equalization. Those subsections are then combined to incur a contrast-enhanced image. This 

method is widely used in ophthalmology because it is pretty good at enhancing the visibility of hidden features 

of gray-scale images. (Uysal & Güraksin, 2021; Yadav, Maheshwari, & Agarwal, 2014). Two factors are 

determined in CLAHE algorithms: Clip limit and Tile size. ClipLimit can be expressed as the contrast 

enhancement limit, preventing image oversaturation, especially in homogeneous areas. Without ClipLimit, 

the adaptive histogram equalization technique may produce worse results than the original image. Tile size 

refers to the number of rows and columns that the image will be divided into. 

Every image has a component of noise. Kumar and Sodhi (2020) categorized noises into four groups as 

Amplifiers or Gaussian noise, Salt and Pepper noise, Shot or Poisson noise, and Speckle noise. Outliers, known as 

"salt-and-pepper noise," result from bit errors during transmission or signal acquisition. Median smoothers are 

commonly used to remove noise-distorted images, especially outliers (Kumar & Sodhi, 2020). In addition, previous 

studies have also shown that the median filter is effective in removing noise in OCT images (Rajagopalan et al., 

2021).  The median filter is based on the logic of moving pixel-by-pixel on the image and replacing each pixel value 

with the median value of the pixels of neighbors in the specified window (Image Filtering). 

The Gaussian smoothing operator is a 2-D convolution operator employed to blur images and remove detail 

and noise. In this sense, it is similar to the median filter, but it uses a discrete kernel representing the shape of the 

Gaussian hump (Wüthrich, Trimpe, Cifuentes, Kappler, & Schaal, 2017). The gaussian filter was generally used to 

suppress the speckle noise in OCT images (Devi, Ramkumar, Kumar, & Sasi, 2021). Probability Density Function 

(P(x)) of Gaussian distribution is represented by Equation (2)(Kumar & Sodhi, 2020).  

𝑃(𝑥) =
1

√2𝑛𝜎2
𝑒−(𝑥−𝜇)2

/(2𝜎2)          (2) 

Here, x is a gray level image. μ is mean value, and σ is the standard deviation. The standard 

deviation (σ) of the Gaussian determines the amount of smoothing (Ahmad, Khan, & Iqbal, 2019). 
Buades et al. (Buades, Coll, & Morel, 2011) were the first to propose the non-local means denoising filter 

as a noise reduction algorithm. The method is based on the principle of generating a new value for a pixel by 

averaging similar pixel values (Buades et al., 2011). Similar pixel values may not always be neighbors or in 

close proximity. The method scans a large section of the matrix to find similar pixel values, which is why it is 

superior to other methods. In previous studies, the non-local mean filter was used to remove Gaussian noise 

in OCT images (Li, Cheng et al., 2021). Two factors were determined in non-local means denoising filter. Size 

in pixels of the template patch that was used to compute weights and Size in pixels of the window that was 

used to compute weighted average for given pixel(OpenCV: Denoising, December 12, 2021). 

Classification 

This stage consists of classification of retinal diseases through OCT images using CNN architectures. CNN 

architectures consist of convolution, fully connected layer, and pooling layers. CNN architectures are created 

by combining these layers by arranging them one after the other or by designing them as modules. The 

Convolution Layer is the most crucial layer in ESA. The primary purpose of convolutional layers is to extract 

features from inputs. Typically, edge, line, and corner detection features are reported in the first layers. Also, 

combining the dense layers later with the first layers allows for more specific features to be extracted, such as 

the appearance and occurrence of objects. In this layer, some filters are applied to the image to extract low- 

and high-level features from the image. The size of the applied filter is set by the architect of the model, but 

the pixel values of the filter used are optimized during the training of the architecture. Figure 3 displays the 

convolution operation of a 4x4 size 2D-image and a 2x2 size kernel. 

Another momentous layer of the CNN architecture is pooling. In the pooling layer, spatial dimension reduction is 

performed gradually(Li, Karpathy, & Networks, 2016). The pooling layer not only preserves prominent properties, 

but also reduces space invariance (information loss). In this way, the number of learnable parameters for the model 

is reduced and problems such as learning slowness and excessive learning are prevented. In the pooling layer, the 

pooling process is applied to the pixels remaining in the window by sliding the window of a certain size on the 

property map. The most commonly used pooling process, which has three unalike application methods as Average, 

Global Average and Maximum, is maximum pooling(Ajit, Acharya & Samanta, 2020). Figure 4. manifests the 

maximum pooling applied to a 4x4 feature map. In the example given, the window size is set to 2x2. 



Detection of retinal diseases based on CNN architecture  Page 9 of 22 

Acta Scientiarum. Technology, v. 44, e61181, 2022 

 
Figure 3. Example convolution operation. 

 
Figure 4. Example max-pooling operation. 

Fully connected layers frame the last layers of a CNN architecture. Outputs from layers preceding these 

layers represent high-level features in the input data of the CNN. The fully connected layer flattens all 

neurons in the previous layer by connecting them to the neurons within it and then connects them to the 

output layer. This is a low-cost way to learn nonlinear combinations of features (Coşkun, Yildirim, Uçar, & 

Demir, 2017). A convolution layer cannot be used after the fully connected layer. The number of neurons of 

the last fully connected layer in a CNN architecture is equal to the number of classes. Figure 5 indicates an 

example of a fully connected layer. 

 
Figure 5. Example of fully connected layer. 
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To build and train a CNN model from scratch is often very costly. Because one of the disadvantages of deep 

learning models is that they need a lot of data for training. For this reason, architectures such as ImageNet, 

which are trained with big data before and achieve very successful results, are mostly used in the studies 

(Berrimi & Moussaoui, 2020; Bhowmik et al., 2019; Kermany et al. 2018; Ye et al., 2019). These pre-trained 

models have learned how to analyze the image, and it is possible to retrain and exploit the model with less 

data for our problems by using the feature maps of these models. This method is called as transfer learning. 

AlexNet is one of the pre-trained transfer learning architectures. AlexNet is a CNN-based deep learning 

architecture designed by Krizhevsky, Sutskever, and Hinton (2012). AlexNet was first recognized by its GPU 

technology at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition in 2012 and has 

paved the way for new CNN-based deep learning architectures since then. In general, AlexNet consists of an 

input layer (227x227x3), five convolutional layers, and three fully-connected layers. See (Krizhevsky et al., 

2012) for more detailed information on AlexNet. 

Performance metrics 

In this study, the performance was assessed using accuracy, sensitivity, specificity, precision, and F1-Score 

was calculated using a confusion matrix, which summarizes predictions in a classification problem. A 

confusion matrix separates the number of true and false predictions by each class, thus showing the prediction 

profile of the architecture in a comparative fashion during classification. The following can be calculated 

using a confusion matrix: 

. True Positive (TP) is a measure of the cases predicted as true to be actually true 

. True Negative (TN) is a measure of the cases predicted as false to be actually false 

. False Positive (FP) is a measure of the cases predicted as true to be actually false 

. False Negative (FN) is a measure of the cases predicted as false to be actually true 

. Accuracy is the ratio of the total number of correct predictions to the total number of predictions 

(Equation 3). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
                  (3) 

. Sensitivity: The proportion of true positives correctly predicted as positives (Equation 4). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (4) 

. Precision: The ratio of true positive predictions to the overall number of positive predictions. 

(Equation 5). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (5) 

. Specificity: The proportion of true negatives correctly predicted as negatives (Equation 6). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 
𝑇𝑁

𝐹𝑃+𝑇𝑁
               (6) 

. F1-Score: Harmonic mean of precision and sensitivity values (Equation 7). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑇𝑃

𝐹𝑃+𝐹𝑁+(2∗𝑇𝑃)
                (7) 

. Gradient-weighted Class Activation Mapping (Grad-CAM): It uses gradients of any target concepts 

that progresses to the final convolution layer as to produce a rough localization map by highlighting the 

notable regions in the image for classification. To create a Grad-CAM heatmap, a model is created that is cut 

at the layer to be mapped, and fully connected layers are added for prediction. Next, the image to create a 

heatmap is given as input to the model. The layer where the heatmap will be created is taken and the gradient 

of this output is detected. Finally, the heatmap is overlaid with the original image. 

Proposed method 

As shown in the flowchart in Figure 1, this study consists of two parts as pre-processing and classification. 

Each section contains differing stages. This part of the article explains all the study steps in order. 

The pre-processing stage consisted of seven steps (Figure 1).  

1 All images were converted to gray-scale.  
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2 The white regions in the background were filled to eliminate distortions. For background filling, the 

images were converted to binary format using thresholding. This process can be used for varying purposes, 

such as reducing noise or identifying an object on an image. Thresholding updates pixels to black or white 

based on a given threshold value (Bradley & Roth, 2007). Afterward, the images were complemented, and 

black and white pixels were replaced to obtain a mask, which was then used to fill the background of the 

original images.  

3 All images were resized to 128x128.  

Four other pre-processing techniques were utilized to remove noise and highlight weighty points to 

diagnose diseases.  

4 CLAHE with (5,5) tile size and 1.0 clip limit was applied to the images. Figure 6 compares the pre-

CLAHE and post- CLAHE images.  Because it is so effective at boosting the visibility of hidden features in gray 

level images, this approach is commonly exploited in medical imaging and ophthalmology (Uysal & Güraksin, 

2021; Yadav et al., 2014). 

5 The median filter with 33 kernel size was applied to the images to remove noise. Brightness and 

transparency were adjusted after applying the median filter. 

6 There was an increase in salt-and-pepper noise after histogram equalization. However, masking failed 

to reduce that noise, either. Therefore, the last stage involved a Gaussian filter and non-local denoising means 

for noise reduction. The Gaussian smoothing operator with -1 kernel standard deviation and (3,3) kernel size 

was used to blur images and decrease noise. In this sense, It's close to the median filter, but it employs a 

distinct kernel to reflect the Gaussian hump's shape (Wüthrich et al., 2017).  

7 Lastly, non-local means denoising filter with 31 search window size and 11 block size was applied to 

all images.  

Figure 6 reveals the effects of all steps on images. 

 
Figure 6. Images after the seven steps of pre-processing. 
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The classification step is based on the deep CNN architecture designed to classify the pre-processed 

images. The CNN architecture was designed according to the AlexNet architecture, which is a simple deep 

learning architecture. The reason why AlexNet was the architecture of choice is that it is not only cost-

effective but also it performs well in classification. The AlexNet architecture has three pooling layers. 

However, the proposed CNN architecture had five pooling layers also. Also, the input layer size was set to 

128x128, and the filter size of layers, especially fully connected layers, were reduced. These have led to a 

decrease in the number of parameters and the cost of computation. Parameter numbers of AlexNet and the 

proposed architecture are given in Table 2 for comparison. The AlexNet with pre-processed images and CNN 

architectures with raw images were also trained to evaluate the performance of the CNN architecture and to 

determine the effect of pre-processing on classification.  

Table 2. Comparison of parameter numbers of AlexNet and proposed CNN architecture. 

Architecture Total Parameter Numbers Trainable Parameter Numbers 

AlexNet 343183956 343.163.788 

Proposed CNN 3715332 3.715.332 

 

The input layer of AlexNet was resized to 128x128 for training because the proposed CNN architecture had 

an input layer of 128x128. 

In this study, the structure of the deep CNN architecture, which was designed based on AlexNet 

architecture, included 5 convolutions with 3x3 kernel in the feature extraction part and 4 fully connected 

layers in the classification part. ReLU activation functions were used in all convolution layers and 3 fully 

connected layers (except the last one). A softmax activation function was utilized in the last fully connected 

layer. Also, max-pooling layer with 2x2 window size was applied to each convolution layer output. Figure 7. 

expresses the block diagram of the proposed CNN architecture. 

 
Figure 7. The block diagram of the CNN architecture. 

A first-order gradient-based stochastic optimization algorithm, the ADAM optimization algorithm was 

exerted during the training of the architectures. The learning rate was determined as 0.0001. Batch-size 64, 

epoch number 48, and cross-entropy as loss function were preferred during the training process.  

Results and discussion 

This study involved two stages: image pre-processing and classification. The pre-processing stage consisted of 

seven steps: (1) converting images to gray-scale, (2) removing background distortions, (3) resizing, (4) histogram 

equalization, (5) median filter, (6) Gaussian filter, and (7) non-local denoising mean filter. In the classification 

stage, a five-layer CNN architecture was designed based on the AlexNet architecture. The pre-processed images 

were resorted to train and test the designed CNN architecture. In addition, The AlexNet with pre-processed images 

and CNN architectures with raw images were also trained to evaluate the performance of the CNN architecture and 

to determine the effect of pre-processing on classification. 
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The pre-processed images and the original images are displayed in Figure 8. The images indicate that the 

regions that are eminent for diagnosis became more prominent after pre-processing. 

 

Figure 8. Original and pre-processed images. 

The proposed CNN architecture (Figure 7) was trained with the pre-processed images. Figure 9 shows the 

accuracy and loss curves during training. 

 
Figure 9. Accuracy and loss curves in CNN architecture trained with pre-processed images. 

The CNN architecture had an accuracy of 99.40% and a loss of 0.0134, suggesting that the training was 

successful. Afterwards, the CNN architecture was tested to determine its performance. Figure 10 presents the 

confusion matrix of the classification of the test dataset consisting of 968 images (242 for each category). 

 
Figure 10. Confusion matrix of test data in CNN architecture trained with pre-processed images. 
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The confusion matrix shows that the CNN architecture detected all categories except for the Drusen with 

100% accuracy. However, it evaluated five Drusen images incorrectly and labeled them as CNV. Table 3 

discloses the class-based performance of the CNN architecture on the test data. 

Table 3. Class-based performance of CNN architecture on test data. 

 Accuracy Precision Sensitivity Specificity F1-Score Data Number 

CNV 0.9948 0.98 1.00 0.9931 0.99 242 

DME 1 1.00 1.00 1 1.00 242 

DRUSEN 0.9948 1.00 0.98 1 0.99 242 

NORMAL 1 1.00 1.00 1 1.00 242 

 

In short, 99.40% accuracy was incurred from the training data set with the proposed method, while 99.48% 

accuracy, 99.48% sensitivity and 99.83% specificity values were obtained from the test data set. 

The proposed CNN architecture was trained and tested with raw images to determine the effect of pre-

processing techniques on its performance. Figure 11 illustrates the accuracy and loss curves of the CNN 

architecture trained with raw images. 

 
Figure 11. Accuracy and loss curves of CNN architecture trained with raw images. 

The CNN architecture trained with raw images achieved 99.50% accuracy and 0.015 loss. The confusion 

matrix of the performance of the CNN architecture on the test dataset is shown in Figure 12. 

 
Figure 12. Confusion matrix of CNN architectures trained with raw images. 

The CNN architecture trained with pre-processed images classified some Drusen images incorrectly. 

However, the CNN architecture trained with raw images made mistakes in other classifications as well. Table 

4 denotes the performance values of the CNN architecture trained with raw images. 
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Table 4. Performance values of CNN architecture trained with raw images. 

 Accuracy Precision Sensitivity  Specificity F1-Score Data Number 

CNV 0.9758 0.98 1.00 0.9917 0.99 242 

DME 1 1.00 0.99 1 1.00 242 

DRUSEN 0.9958 1.00 0.98 0.9986 0.99 242 

NORMAL 0.9918 1.00 1.00 0.9972 0.99 242 

 

The CNN architecture trained with raw images achieved 99.50% accuracy during training but achieved 

99.07% accuracy, 99.07% sensitivity, and 99.69% specificity during the test. 

The results represented that the CNN architecture trained with pre-processed images outperformed the 

CNN architecture trained with raw images. Table 6 compares their performance. The CNN architecture trained 

with pre-processed images had more accuracy (by 0.41%), sensitivity (by 0.41%), and specificity (by 0.14%) 

compared to the CNN architecture trained with raw images. 

Laying the basis for the creation of the CNN architecture, The AlexNet architecture was preprocessed and 

trained with images. In this way, the effect of the new model on the system success was observed The AlexNet 

architecture trained with pre-processed images achieved 99.07% accuracy, 99.07% sensitivity and 99.69% 

specificity during test. A confusion matrix was generated, and performance values were calculated for 

AlexNet. Figure 13 shows the confusion matrix and Table 5 shows the performance values. 

 
Figure 13. Confusion matrix of the AlexNet architecture. 

Table 5. Performance values of the AlexNet architecture. 

 Accuracy Precision Sensitivity  Specificity F1-Score Data Number 

CNV 0.9917 0.9836 0.9917 0.9945 0.99 242 

DME 1 0.9837 1 0.9945 0.99 242 

DRUSEN 0.9834 1.00 0.9834 1 0.99 242 

NORMAL 0.9876 0.9958 0.9876 0.9986 0.99 242 

 

The results asserted that the CNN architecture trained with pre-processed images outperformed both the 

CNN architecture trained with raw images and the AlexNet architecture. On the other hand, CNN architecture 

trained with raw images and AlexNet architecture showed the same performance. This state supported the 

hypothesis proposed in this study. Thus, similar, or better results can be retrieved with pre-trained 

architectures with less computational cost. Performance comparisons of AlexNet and the proposed CNN 

architecture are given in Table 6.  

When it comes to diagnosing retinal illnesses, even a single error can be highly costly. Heat maps were 

built to let specialists examine and see whether the CNN model focuses on the appropriate location, which 

helped to solve this problem. The heat maps picked up by the Grad-CAM method was attained by creating 

gradient maps of the last convolution layer of the architecture. Table 7 exhibits the heatmaps derived through 

using sample images for each class. 
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Table 6. Performance of CNN architecture trained with pre-processed and raw images. 

 Accuracy Sensitivity Specificity 

Preprocessed 99.48 99.48 99.83 

Raw 99.07 99.07 99.69 

AlexNet  99.07 99.07 99.69 

Table 7. Heatmaps obtained from the proposed CNN for each class. 
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The proposed CNN architecture was compared to other systems proposed by earlier studies that employed 

the same dataset. Table 8 shows the results. 

Table 8. Studies on the publicly available OCT dataset developed by Kermany et al. (2018). 

Method Classifier Input Size Dataset Sensitivity 

(Kermany et. al. 2018) Inception V3 (94 conv. layers) - 4 classes 

Sensitivity:  97.8 

Specificity: 97.4 

Accuracy: 96.6 

(Najeeb et al., 2019) CNN (1 conv. layer) 128 x 128 4 classes 
Sensitivity: 95.66 

Accuracy: 95.66 

(Li et al., 2019) VGG-16 (13 conv. layer) 224 x 224 4 classes 

Sensitivity: 97.8 

Specificity: 99.4 

Accuracy: 98.6 

(Das et al., 2019) 
Multi-scale spatial pyramid CNN 

(14 conv. layer) 
496 × 512 4 classes 

Sensitivity: 99.60 

Specificity:99.87 

Accuracy: 99.60 

(Bhowmik et al., 2019) VGG-16 (13 conv. layer) 224 x 224 4 classes 
Sensitivity: 94 

Accuracy: 94 

(Berrimi & Moussaoui, 

2020) 

CNN (3 conv. layer) 224 x 224 4 classes 
Sensitivity: 98.50 

Accuracy: 98.65 

Inception V3 (94 conv. layer) 224 x 224  4 classes 
Sensitivity: 99.25 

Accuracy: 99.2 

(Bhadra & Kar, 2020) CNN (6 conv. layer) 128 x 128 4 classes 

Sensitivity: 99.1 

Specificity: 97.9 

Accuracy: 96.5 

(Alqudah, 2020) AOCTNet (4 conv. layer) 256 x 256 5 classes 

Sensitivity: 97.78  

Specificity: 97.78 

Accuracy: 97.78 

(Alqudah et al., 2021) AOCTNet (4 conv. layer) + KNN 256 x 256 5 classes 

Sensitivity: 99.44 

Specificity: 99.86 

Accuracy: 99.44 

(Thomas et al., 2021) 
CNN (6 conv. layer) + Random 

Forest 
96 x 96 2 classes 

Sensitivity: 99.8 

Accuracy: 99.78 

(Tayal et al., 2021) CNN (5 conv.layer) 128x128 4 classes 

Sensitivity:94.47 

Specificity:98.16 

Accuracy: 97.14 

(Li, Cheng et al., 2021) Inception V3 based CNN (94 conv. 299x299 6 classes Sensitivity:96.2% 
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layer) Specificity:99.2% 

F1-score:96.2% 

Accuracy:96.3% 

(Sharma et al., 2021) CNN (10 conv. layer) 128x128 4 classes Accuracy: 99.38 

(Apon et al., 2021) CNN (4 conv. layer) 224x224 4 classes Accuracy: 94.87 

Proposed Method CNN (5 conv. layer) 128x128 4 classes 

Sensitivity: 99.48 

Specificity: 99.83 

Accuracy: 99.48 

 

As the comparison table is reviewed, it may be noticed that the method proposed in this study ranks the 

second in terms of performance. The most successful study seems to be the multi-scale deep feature fusion 

(MDFF) based on the classification system designed by Das et al. (Das et al., 2019). The MDFF-based 

classification architecture consists of 14 convolution layers, and the computational cost is high compared to 

the proposed method, and the difference between the evaluation metrics is only 0.05-0.12%. Taking the other 

studies into consideration, it is seen that pre-trained CNN architectures are also frequently included in 

studies. However, it is remarked that pre-trained CNN architectures cannot provide the expected high 

performance in the classification of retinal diseases, and they show lower performances or close performances 

to each other than the CNN architectures designed in terms of diagnosing the retinal diseases. Among the 

studies compared, there are methods whose calculation cost is close to or lower than the proposed method 

(Alqudah, 2020; Apon et al., 2021; Berrimi & Moussaoui, 2020; Bhowmik et al., 2019; Najeeb et al., 2019; 

Tayal et al., 2021). However, surveying the results attained, it may be spotted that the performance loss is 

high. The approach suggested by Alqudah et. Al (Alqudah et al., 2021) is the closest to the performance values 

procured in this study, and the computational cost is relatively low. However, the input image sizes are high 

in this method, and a more complex method was suggested in the classification stage. Therefore, it is seen 

that the method proposed employed in this study has an essential place in the literature in terms of 

computational cost and performance while classifying the OCT images.  

Conclusion 

Retinal diseases can lead to blindness all around the world. Heart disease and hypertension can also be 

triggered by retinal disorders. As a result, early detection and treatment are critical for preventing or reducing 

the prevalence of those diseases and disabilities. To identify retinal illnesses, optical coherence tomography 

(OCT) and fundus fluorescein angiography (FFA) are frequently employed. Analyzing OCT and FFA 

ophthalmological images, on the other hand, is time-consuming, costly, and prone to human mistake. Experts 

use imaging techniques and their own knowledge and experience to screen for and detect retinal diseases. 

However, experts sometimes overlook symptoms or misdiagnose someone with another condition. As a result, 

computer-assisted systems are required to assist specialists in evaluating OCT and FFA images. In recent 

years, significant progress has been made in image analysis thanks to deep learning models (a subbranch of 

AI) as they are becoming more and more complex with advances in technology. Deep learning models have 

outperformed most computer-aided diagnostic tools. Thus, the current studies were analyzed and the gaps in 

the literature were identified. Upon analysis, a deep learning-based method (a five-layer CNN architecture) 

for detecting eye disorders from OCT images was developed. The images in the publicly available OCT dataset 

developed by Kermany et al. (2018) were pre-processed [1] and then the CNN architecture was trained with 

those images. The five-layer structure allowed the researchers to prevent losses and reduce the convergence 

time. The CNN architecture had 99.48% accuracy, 99.48% sensitivity, and 99.83% specificity. The CNN 

architecture trained with pre-processed images achieved a 0.41% increase in accuracy compared to the CNN 

architecture trained with raw images. 

This study has come up with five conclusions. To begin, it is vital to diagnose retinal problems as soon as 

possible. Second, a computer-aided approach could benefit physicians in detecting and diagnosing retinal 

illnesses. Third, deep learning algorithms are effective decision support systems that can guide specialists in 

diagnosing retinal illnesses due to their high accuracy rates. Finally, when properly constructed, simplified 

CNN architectures can give superior performance at lower computational costs than more sophisticated or 

pre-trained systems. Fifth, image pre-processing procedures can improve the performance of simple deep 

learning architectures while also lowering their computational costs. 
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There are some drawbacks to this study. SD-OCT scans are limited by the resolution of CCD cameras. 

Furthermore, the study exclusively put OCT images to use to diagnose retinal disorders. Although the study's 

results are highly accurate, using images acquired using several imaging modalities will boost confidence in 

the system and the classification's success. The data set operated for the study has an unbalanced data 

distribution. Data augmentation procedures were not applied in this study since they would add to the cost 

of system calculation. However, for classes with less data than other groups, a balance can be achieved to 

accumulate information by using other deep learning methods, such as data augmentation or GAN. 

In the future, the proposed method can be trained using 3D images or it may earn more precise results by 

using OCT data together with other imaging techniques. The proposed model can be submitted to experts by 

integrating it with the desktop or mobile application. In addition, results can be improved regularly by 

retraining the system with up-to-date data.  
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