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ABSTRACT. Tomatoes are one of the most prominent vegetables globally, with significant cultural and 

economic relevance in various nations, including Brazil. The term ‘safe food’ is becoming more popular as 

consumer preferences and supply chain dynamics become evolved in these processes. In light of these 

issues, the use of safety and quality management methods for fruits and vegetables have increased 

dramatically, with traceability being one of these solutions worth highlighting. When it comes to 

traceability, evaluation of tomato seedlings, plants, and fruits to identify groups or hybrids becomes 

particularly crucial throughout the marketing process, since the consumer of seedlings or fruit has 

difficulties recognizing whether that product truly belongs to the group indicated by the merchant. Thus, 

the potential of near infrared spectroscopy (NIRS) combined with the PC-LDA and PLS-DA algorithms was 

tested for the discrimination of two significant commercial groups, Salada and Saladete, as well as eleven 

cultivars belonging to these groups, which were tested for this purpose. The results show that, by using the 

PLS-DA model, the portable NIR equipment is capable of differentiating tomato seedlings in nurseries of 

the Salada and Saladete groups, with an accuracy of 99.7% and sensitivity of 100%. The technique showed 

to be efficient for individual models of tomato seedlings in the Salada group, with accuracy over 90% and 

sensitivity above 93% for all models. For the Saladete group's individual models, the technique proved 

effectiveness for the hybrids Parma, BS-110012, Giácomo, Guara, and Tyna. 
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Introduction 

Tomato cultivation for fresh consumption has a high production cost, of which the inputs, labor and seeds 

correspond, on average, for 60% of the total cost (Pagliuca, Deleo, Boteon, Mueller, & Valmorbida, 2017). 

Thus, profitability begins with the choice of the tomato and hybrid group to be implemented, as well as the 

production and delivery of healthy seedlings (Diniz, Guimarães, & Luz, 2006). However, it is not uncommon 

for loads or seedlings to be exchanged due to lack of inputs, such as lack of seeds of a certain hybrid, resulting 

in the delivery of tomato seedlings from the same group, but not of the same genetic material, causing 

economic damage that normally occurs at the time of production. These cases end up being prosecuted, and 

consequently subjected to expertise.  

Regarding the performance of judicial expertise, the elucidation is technically effective, but ineffective for 

reducing damages to the producer. This ambiguity occurs because such identification process is carried out 

in the fruit production stage, a period of easy distinction between genetic materials. However, at this point, 

the economic damage has already been done, as the implantation and input values were already spent at the 

time of the inspection. According to Pagliuca et al. (2017), these stages present values that can reach up to 

50% of the total cost of production. Thus, it is necessary to study methods and techniques that allow an expert 

to identify plant material quickly and before planting. 

In this context, near infrared spectroscopy (NIRS) can be an alternative technology. In the field of non-

destructive testing, the technique of spectroscopy in the near infrared range presents itself as a fast tool, 

which allows real-time analysis, thus demonstrating reliable results, which reduces the cost and time spent 

on routine analysis in laboratories (Brimmer & Hall, 2001; Muñiz, Magalhães, Carneiro, & Viana, 2012). Dale 
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and Klatt (1999) showed the ability to use NIR diffuse reflectance to identify the quality standard of paper 

money stock. Silva et al. (2013) differentiated types of inks and pen brands through the NIR spectrum that 

came from circles produced by these pens with results between 94.9 and 100% of correctness, thus 

contributing to increase the technological level in criminal laboratories, which allow forensic specialists a 

faster analysis and unbiased interpretation of the evidence. Oliveira, Honorato, Honorato, and Pereira (2018) 

demonstrated that portable NIR spectroscopy is 100% viable to identify counterfeit Brazilian banknotes from 

the original ones. 

In vegetable applications, Soares et al. (2017) demonstrated that portable NIR spectroscopy can be useful 

for monitoring illegal wood trade, since the models developed for six species presented efficiency rates above 

90% for wood discrimination in the field. Carvalho et al. (2018) demonstrated the efficiency of NIR 

spectroscopy to classify intact macadamia nut cultivars with an accuracy of 94.4%. Snel et al. (2018) reported 

that the use of portable NIRS associated with the Partial Least Squares for Discriminant Analysis (PLS-DA) 

chemometric method is a tool to control the timber trade, considering the technique demonstrated that can 

separate six different but visually confusing species of Dalbergia from various countries. 

Moreover, this work aimed to evaluate the use of portable NIR spectroscopy associated with techniques of linear 

discriminant analysis of principal components (PC-LDA) and Partial Least Squares for Discriminant Analysis (PLS-

DA), in order to obtain a fast method to assist in agricultural expertise for the authentication of two groups of 

tomatoes seedlings (Salada and Saladete) and 11 tomato hybrids, in order to reduce economic damages arising 

from the implantation and phytotechnical treatments of non-acquired plant genetic material. 

Material and methods 

The experiment was carried out in the Horticulture Sector of the School of Agronomy of the Federal 

University of Goiás (latitude 16º 35' 12" S, longitude 49º 21' 14" W Gr, at 730 m altitude), Goiânia, state of 

Goiás. The tomatoes hybrids (Table 1) were manually planted in polypropylene trays containing 162 cells. 

However, sowing was done in the 98 central cells of each tray. The substrate used was composed of coconut 

fiber (Amafibra 11), peat and Bioplant nature (coconut fiber, rice husk, pine bark and nutrients). After 

planting, the substrate was covered with vermiculite. Irrigation and fertilization were carried out with the aid 

of automatic bars following the commercial standard. 

Hybrids of greater commercial use were used as plant material for the treatments, as described in Table 1. 

The treatments were subdivided into two large groups of tomato with indeterminate growth habits: Salada 

and Saladete (Alvarenga, 2013). 

NIR spectral collections were carried out 35 days after sowing with Felix Intruments portable near infrared 

spectrophotometer, model F-750 (Camas, Washington, United States), which uses interactance as optical 

geometry and 300 range at 1200 nm. Readings were performed randomly on 30 plants of each variety tray , 

and the NIR spectrum was collected on the abaxial face of the trefoil at the end of each branch. The branch 

was chosen as the second to emerge after the cotyledon. Since temperature is one of the factors that affect 

performance in predicting models (Golic & Walsh, 2006), in order to reduce temperature interference in 

spectral collection, the temperature measurement of the trefoils was performed using an infrared 

thermometer (Benetech GM-32). Before the collection of NIR spectra, only those trefoils that presented a 

temperature between 27-28ºC were considered valid samples. 

Table 1. Commercial hybrids of indeterminate growth cultivated. 

Group Hybrid Company Sample number 

Salada 

Dominador Agristar 30 

Dylla 
Syngenta 

30 

ParonNTY 30 

Saladete 

BS II0012 Blue Seeds 29 

Giácomo RijkZwaan 30 

Guará HM Clause 28 

Parma SuperSeed 30 

Ravena Sakata 30 

Totalle Nunhens 29 

Tyna Sakata 29 

Helena Feltrin 30 



NIRs of tomato seedlings Page 3 of 10 

Acta Scientiarum. Technology, v. 45, e61270, 2023 

For data analysis, the following techniques were used: Principal Component Analysis (PCA), Discriminant 

Linear Analysis of Principal Components (PC-LDA) and Partial Least Squares for Discriminant Analysis (PLS-

DA) (Naes, Isaksson, Fearn, & Davies, 2002). To optimize models in order to reduce light scattering and 

increase signal, the following spectral processing were tested: Standard Normal Variate (SNV) (Ozaki, 

McClure, & Christy, 2006), Multiplicative Scatter Correction (MSC) (Souza & Poppi, 2012) and the first (1SG) 

and second (2SG) derivatives of Savitzky-Golay (Brown, Vega-Montoto, & Wentzell, 2000). 

Data were processed using The Unscrambler software version 10.0.3. The validation of the discrimination 

models was according the following calculations of the figures of merit: Accuracy (AC) (Cunha Júnior, Nardini, 

Khatiwada, Teixeira, & Walsh, 2015), false positive rate (FPR), false rate negative (FRN), specificity (SPEC) 

and sensitivity (SEN) (Botelho, Reis, Oliveira, & Sena, 2015). In the case of the PLS-DA models, the data used 

for the calculations were extracted from the result of the total cross validation of the calibration models. The 

flowchart for the procedure used in the data analysis is shown in Figure 1. 

 

Figure 1. The flowchart for the analysis procedure. 

Results and discussion 

Spectrums, principal component analysis and global model 

By observing the behavior of the Salada and Saladette absorbance spectra, there is a peak at the wavelength 

of 660 nm (Figure 2A) due to the presence of chlorophyll, which gives a characteristically green color to 

tomato seedlings (Gómez, Wang, & Pereira, 2006). In the region from 730 nm, a low absorbance can be seen 

for both hybrids, indicating that the seedlings have a high water content (Zhang, Li, & Zhang, 2012). For the 

spectra of each cultivar, it is observed that the cultivar Dominador had a higher absorbance in the region from 

490 to 1080 nm, while the hybrid ParonNTY had the lowest peak (Figure 2B) in relation to the cultivars of the 

Salada group. As for the cultivars of the Saladete group, there was also greater absorbance at the wavelength 

of 660 mm and a decrease from the 730 nm region. The cultivar with the highest absorbance was BS 110025, 

followed by Ravena, Tyna, Helena, Parma, Totalle, Guará and Giácomo, respectively (Figure 2C). After pre-

processing in the first derivative between the cultivars of the Saladete group, a negative peak was formed in 

the spectral range between 630 and 730 nm, demonstrating the low absorption in the region related to the 

red pigment (Beghi, Giovenzana, Tugnolo, & Guidetti, 2018). This means that, the chlorophyll present in the 

leaves was not degraded yet, and the smallest variation was detected in the cultivar BS 110025, followed by 

the cultivars Giácomo, Ravena, Parma, Totalle, Tyna, Guará and Helena respectively (Figure 2D). There was 

also an ascending behavior in the region from 1,080 to 1,130 nm (Figure 2D) for both hybrids, with peaks in 

this region being characteristic of water-rich samples (Nicolaï et al., 2017). 

It was possible to explain about 98% of the total variability of the absorbance spectra for the Salada and 

Saladete groups in the first two main components, however, there was no evident separation of the groups 

(Figure 3A). Regarding the PCA analyzes for each isolated group, the first two main components explained 83 

and 70% of the total variability of the data from the hybrids of the Saladete (Figure 3B) and Salada (Figure 3C) 

groups, respectively, demonstrating the difficulty of unsupervised methods associated with the NIRS 

technique in separating these types of material. 
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Figure 2. Spectra collected in the form of absorbance for the Salada and Saladete groups (A); Spectra collected in the form of 

absorbance for cultivars in the Salada group (B); Spectra collected in the form of absorbance for cultivars in the Saladete group (C). 

Spectra collected in the form of absorbance after pre-processing the first (1SG 6+6) derivative Savitzky-Golay for cultivars of the 

Saladete group (D). 

 

Figure 3. Analysis of principal components (PC) with near infrared absorbance spectra (381-1131 nm) for Salada and Saladete groups 

(A); cultivars from the Saladete group (B); and cultivars from the Salada group (C). 
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Supervised models such as PC-LDA with 10 principal components using a spectral range of 384-1131 nm 

were constructed to discriminate tomato seedling hybrids (Table 2), in which the probability of Salada and 

Saladette groups and their hybrids have the desired characteristic returns the results of prediction of positive 

values (PPV); on the other hand, the specificity for each hybrid and group of hybrids, returns results of 

prediction of negative values (PNV) (Amodio, Ceglie, Chaudhry, Piazzolla, & Colelli, 2017). The results 

obtained by NIR spectra associated with the PC-LDA technique are promising, especially when associated 

with spectral treatments with a window of 4+4 in the first derivative and a window of 6+6 in the second 

derivative of Savitzky-Golay, as they presented an accuracy of 88, 6% in both calibration models (Table 2). 

The accuracy values were calculated according to the Equation 1, as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦:
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
      (1) 

where: 

TP is for true positive values, TN for true negative values, FP for false positive values and FN is for false 

negative values.  

From this result, calibration models were performed to separate the groups (Salada and Saladete) and 

specific models for each hybrid within each group. 

Table 2. Results of the Linear Discriminant Analysis of Principal Components (PC-LDA) models in the spectral length between 384 and 

1131 nm among all cultivars of the Salada and Saladete groups, using 10 principal components. 

Salada/Saladete 

n = 30 30 30 30 29 29 29 30 30 30 28 
AC (%) 

Treat. Dominador Dylla ParonNTY Parma Tyna BS 110012 Totalle Ravena Helena Giácomo Guará 

no treat. 24 26 29 24 23 27 15 23 23 27 27 82.5 

NSS 22 25 28 17 23 25 15 22 21 26 28 77.5 

1SG(4+4) 29 26 28 26 27 26 22 27 25 25 27 88.6 

1SG(6+6) 26 28 29 26 27 25 18 28 23 26 27 87.1 

2SG(4+4) 28 27 25 18 14 22 11 17 18 20 21 68.0 

2SG (6+6) 30 27 27 26 24 29 21 25 25 28 26 88.6 

no treat.: no treatment, NSS: normal signal standardization; 1SG: first Savitzky-Golay derivative; 2SG: Savitzky-Golay second derivative, AC: accuracy. 

Specific models for seedlings of the Salada and Saladete groups 

The calibration models that used the PC-LDA algorithms presented good performance with accuracy 

greater than 96% for all. The models in which the spectra were treated by the Savitzky-Golay first derivative 

in the windows of 4 and 6 derivation points showed an accuracy of 99.7% in the separation of groups of 

seedlings (Table 3). The results obtained by these models are promising when compared with the models 

applied to other vegetables, such as the proposed by Canneddu, Cunha Júnior, and Teixeira (2016), for the 

separation of marketable macadamia, which obtained the best PC-LDA calibration model with an accuracy of 

88.3%. Also Carvalho et al. (2018), who likewise worked with macadamia variety separation, and obtained 

models with accuracy of approximately 60%. 

Regarding the PLS-DA calibration models, accuracy values greater than 99% were obtained (Table 3), 

showing that this method is the most appropriate. This is because PLS-DA allows variability in the limit line 

between the studied groups (Figure 4), using limits of 0.4 or 0.5 (Table 3). The PLS-DA model with a limit of 

0.4 without pre-processing is highlighted, which presented 100% sensitivity for the seedlings in the Salada 

group (Table 3), and it was calculated according to Equation 2. Moreover, when used, it can identify the 

Saladete group with 100% certainty, as seen in Figure 4A.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦:
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100      (2) 

where: 

TP is for true positive values and FN is for false negative values.  

A suitable calibration model is the PLS-DA after the first Savitzky-Golay derivative in the 4-point window 

with a limit of 0.5, with an accuracy of 99% (Table 3). According to the prediction, this model can guarantee 

100% accuracy of the Salada group (Figure 4B). 

Soares et al. (2017), when studying the identification of six wood species from the Amazon with the use of 

NIRS and PLS-DA, obtained specificity among the species greater than 90%, as well as the sensitivity, with 
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three of the six species reaching 100% of sensitivity. This corroborates with the result obtained in the present 

study, because demonstrates that the methodology is suitable for the proposal. 

In Figure 4, a reference value equal to 1was adopted for the Salada group and equal to 0 for the Saladete 

group. Then, the separation limits equal to 0.4 and 0.5 were tested. Consequently, the best result for the 

separation limit was 0.4, as this value was the one that best discriminated the two groups. 

Table 3. Results of the calibration models in the spectral length between 384 and 1131nm among all hybrids of the Salada and Saladete groups. 

Salada/ Saladete/ PCA-LDA 

PP SL MC  Salada (n = 90) Saladete (n = 235) AC Sens Spec PPV PNV 

no treat. _ 10 89 233 99.08 98.89 95.88 97.8 99.57 

NSS _ 10 89 232 98.77 98.89 95.87 96.74 99.57 

1SG (4+4) _ 10 89 235 99.69 98.89 95.92 100 99.58 

1SG (6+6) _ 10 90 234 99.69 100 95.90 98.9 100 

2SG (4+4) _ 10 89 223 96.00 98.89 95.71 88.12 99.55 

Salada/ Saladete/ PLS-DA 

PP SL MC  Salada (90) Saladete (235) AC Sens Spec PPV PNV 

no treat. 0.5 9 89 234 99.38 98.89 95.90 98.89 99.57 

no treat. 0.4 9 90 234 99.69 100 95.90 98.9 100 

NSS 0.5 8 88 234 99.08 97.78 95.90 98.88 99.15 

NSS 0.4 8 90 233 99.38 100 95.88 97.83 100 

1SG (4+4) 0.5 5 87 235 99.08 96.67 95.92 100 98.74 

1SG (4+4) 0.4 5 89 234 99.38 98.89 95.90 98.89 99.57 

1SG (6+6) 0.5 6 88 234 99.08 97.78 95.90 98.88 99.15 

1SG (6+6) 0.4 6 90 232 99.08 100 95.87 96.77 100 

2SG (4+4) 0.5 7 85 235 98.46 94.44 95.92 100 97.92 

2SG (4+4) 0.4 7 89 234 99.38 98.89 95.9 98.89 99.57 

PP: pre-processing; SL: separation limit; MC: main components; AC: accuracy; Sens: sensitivity; Spec: specificity; PPV: prediction of positive values; PNV: 

prediction of negative values; NSS - normal signal standardization; no treat.: no treatment; 1SG: Savitzky-Golay first derivative with 4 and 6 derivation 

points; 2SG: Savitzky-Golay second derivative with 4 and 6 derivation points. 

 

Figure 4. Representation of the total cross-validation results of the Partial Least Squares calibration model for Discriminant Analysis with a 

spectrum in the range of 384-1131 nm for seedlings of the Salada (n = 90) and Saladete (n = 235) groups. A) Non-processed absorbance spectral 

models; B) Pre-processed spectrum model with first Savitzky-Golay derivative with 4-point window. 

Separation of hybrids from the Salada group 

The best individual PLS-DA models for seedlings of tomato hybrids in the Salada group presented accuracy 

greater than or equal to 90% (Table 3). For the cultivar Dominador, it was possible to identify 29 of the 30 

analyzed data, resulting in an accuracy of 95.6 and a false negative value of 98.3%. The PLS-DA model for the 

ParonNTY hybrid performed an accuracy of 93.3 and a false negative rate of 96.6%. The models for both 

hybrids were elaborated after pre-processing with second derivative of Savitzky-Golay and presented 

sensitivity and specificity of 96.7 and 85.3% for Dominator, respectively, and of 93.3 and 84.9% for ParonNTY, 

respectively (Table 4). The specificity values were obtained according to the Equation 3. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦:
𝑇𝑁

((𝑇𝑁+𝐹𝑃)×100)
     (3) 

where: 

TN means true negative and FP means false positive. 
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For the Dylla cultivar (Table 4), the calibration model with the best performance was after spectral pre-

processing with the Savitzky-Golay first derivative, showing accuracy of 90.0, sensitivity of 93.33 and 

specificity of 84.1% (Table 4). 

These results are satisfactory when compared to the results for separating cultivars in macadamia fruit, 

which can be explained by the cross-pollination of the fruits (Carvalho et al., 2018). Consequently, this shows 

that regarding the identification of variety, hybrids or species, the use of NIRS technology tends to be more 

interesting for vegetative parts, as in this case, seedlings. 

Table 4. Results of the calibration models in the spectral length between 384 and 1131nm for the cultivars Dominador, Dylla and ParonNTY. 

Dominador 

Model PP SL MC  Dominador (n = 30) Others (n = 60) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.5 9 23 55 86.67 76.67 84.62 82.14 88.71 

PLS-DA 1SG(4+4) 0.4 6 29 52 90.00 96.67 83.87 78.38 98.11 

PLS-DA 2SG(6+6) 0.5 15 29 58 96.67 96.67 85.29 93.55 98.31 

Dylla 

Model PP SL MC  Dylla (n = 30) Others (n = 60) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.5 4 24 55 87.78 80.00 84.62 82.76 90.62 

PLS-DA 1SG(4+4) 0.4 10 28 53 90.00 93.33 84.13 80.00 96.36 

PLS-DA 2SG(6+6) 0.5 11 26 54 88.89 86.67 84.38 81.25 93.10 

Paronnty 

Model PP SL MC  ParonNTY (n = 30) Others (n = 60) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.5 14 27 57 93.33 90.00 85.07 90.00 95.00 

PLS-DA 1SG(4+4) 0.4 11 28 54 91.11 93.33 84.38 82.35 96.43 

PLS-DA 2SG(6+6) 0.4 12 28 56 93.33 93.33 84.85 87.50 96.55 

PP: pre-processing; SL: separation limit; MC: main components; AC: accuracy; Sens: sensitivity; Spec: specificity; PPV: prediction of positive values; PNV: 

prediction of negative values; no treat.: no treatment; 1SG: Savitzky-Golay first derivative with 4 and 6 derivation points; 2SG: Savitzky-Golay second 

derivative with 4 and 6 derivation points. 

Separation of the Saladete group hybrids 

The individual PLS-DA calibration models for seedlings of tomato hybrids of the Saladete group presented 

a general accuracy above 86% (Table 3). However, in specific models and with unbalanced sample numbers, 

accuracy is not a very relevant parameter to be observed in isolation. Thus, the sensitivity parameter must be 

examined instead of the accuracy, which allows us to assess with confidence the result obtained for a sample 

of the labeled class (the hybrid of the specific model) (Morais & Lima, 2018). 

Taking into account the sensitivity and accuracy parameters, two models are listed; PLS-DA for the hybrids 

Parma (94.5 Accuracy and 90% Sensitivity) and BS-110012 (98.3 Accuracy and 93.1% Sensitivity), both 

constructed after spectral processing with the second derivative of Savitzky-Golay (Table 5). 

By evaluating three performance parameters of accuracy, sensitivity and specificity models (Morais & 

Lima, 2018), we can list as satisfactory the results of the PLS-DA models for Giácomo hybrids (90.6, 70.0 and 

95.1% accuracy, sensitivity and specificity, respectively), and Guará (95.7, 83.3 and 95.2% accuracy, sensitivity 

and specificity, respectively), both after processing with the second derivative of Savitzky-Golay. Also, the 

Tyna hybrid (94.0, 89.7 and 95.1% accuracy, sensitivity and specificity, respectively) after application of the 

first Savitzky-Golay derivative (Table 5). 

PLS-DA models for the calibration of tomato seedlings from hybrids Totalle (88.9, 34.5 and 95.2% accuracy, 

sensitivity and specificity, respectively), Ravena (86.8, 10.0 and 95.3% accuracy, sensitivity and specificity, 

respectively) and Helena (90.2, 33.3 and 95.3% accuracy, sensitivity and specificity, respectively) showed 

unsatisfactory results, especially regarding sensitivity, which is the parameter that allows the identification 

of the hybrid object of the model (Table 5). This result may have occurred due to the similarity between the 

hybrids, which was also observed by Carvalho et al. (2018) in their study with macadamia. 

PLS-DA models combined with pre-processing, mainly the derivatives proposed by Savitzky-Golay, 

presented promising results for classification and identification of most of the hybrids of tested tomato 

plants, as proposed by Soares et al. (2017) for wood from species originating in the Amazon. However, the fact 

that the hybrids present genetic materials more similar than the species made it difficult to create the spectral 

identity by the NIR of some hybrids (Totalle, Ravena, and Helena, in Table 5), using the tools proposed in this 

study. Thus, in order to obtain robust models, there is a need of a greater number of hybrids and the use of 

chemometric tools for the selection of spectral variables, such as a genetic algorithm (Carvalho et al., 2018), 
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regression by partial least quadratic interval (Nørgaard et al., 2000), or optimization of the PLS wavelength 

window (Guthrie, Walsh, Reid, & Liebenberg, 2005; Cunha Júnior, Teixeira, Nardini, & Walsh, 2016). 

Table 5. Results of the calibration models in the spectral length between 384 and 1131 nm for cultivars Parma, Tyna, BS110012, 

Totalle, Ravena, Helena, Giácomo and Guará. 

Parma 

Model PP SL MC  Parma (= 30) others (n = 205) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.4 7 19 200 93.19 63.33 95.24 79.17 94.79 

PLS-DA 1SG(4+4) 0.4 5 21 199 93.62 70 95.22 77.78 95.67 

PLS-DA 1SG(6+6) 0.4 5 21 199 93.62 70 95.22 77.78 95.67 

PLS-DA 2SG(6+6) 0.4 16 27 195 94.47 90 95.12 72.97 98.48 

Tyna 

Model PP SL MC  Tyna (= 29) others (n = 206)  AC Sens Spec PPV PNV 

PLS-DA no treat. 0.4 10 15 193 88.51 51.72 95.07 53.57 93.24 

PLS-DA 1SG(4+4) 0.4 15 26 195 94.04 89.66 95.12 70.27 98.48 

PLS-DA 1SG(6+6) 0.4 6 10 201 89.79 34.48 95.26 66.67 91.36 

PLS-DA 2SG(6+6) 0.4 9 18 192 89.36 62.07 95.05 56.25 94.58 

BS 110012 

Model PP SL MC  BS 110012 (= 29) others (n = 206) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.4 10 22 199 94.04 75.86 95.22 75.86 96.6 

PLS-DA 1SG(4+4) 0.4 6 21 198 93.19 72.41 95.19 72.41 96.12 

PLS-DA 1SG(6+6) 0.4 6 22 198 93.62 75.86 95.19 73.33 96.59 

PLS-DA 2SG(6+6) 0.5 6 27 204 98.3 93.1 95.33 93.1 99.03 

Totalle 

Model PP SL MC  Totalle (= 29) others (n = 206) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.4 10 7 199 87.66 24.14 95.22 50 90.05 

PLS-DA 1SG(4+4) 0.4 7 8 200 88.51 27.59 95.24 57.14 90.5 

PLS-DA 1SG(6+6) 0.4 7 10 199 88.94 34.48 95.22 58.82 91.28 

PLS-DA 2SG(6+6) 0.4 5 4 200 86.81 13.79 95.24 40 88.89 

Ravena 

Model PP SL MC  Ravena (= 30) others (n = 205) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.4 1 0 205 87.23 0 95.35 _ 87.23 

PLS-DA 1SG(4+4) 0.4 3 0 205 87.23 0 95.35 _ 87.23 

PLS-DA 1SG(6+6) 0.4 5 3 201 86.81 10 95.26 42.86 88.16 

PLS-DA 2SG(6+6) 0.4 2 0 205 87.23 0 95.35 _ 87.23 

Helena 

Model PP SL MC  Helena (= 30) others (n = 205) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.4 9 4 199 86.38 13.33 95.22 40 88.44 

PLS-DA 1SG(4+4) 0.5 7 0 203 86.38 0 95.31 0 87.12 

PLS-DA 1SG(6+6) 0.4 6 5 199 86.81 16.67 95.22 45.45 88.84 

PLS-DA 2SG(6+6) 0.4 9 10 202 90.21 33.33 95.28 76.92 90.99 

Giácomo 

Model PP SL MC  Giácomo (= 30) others (n = 205) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.4 7 18 193 89.79 60 95.07 60 94.15 

PLS-DA 1SG(4+4) 0.4 5 19 192 89.79 63.33 95.05 59.38 94.58 

PLS-DA 1SG(6+6) 0.4 4 18 193 89.79 60 95.07 60 94.15 

PLS-DA 2SG(6+6) 0.4 5 21 192 90.64 70 95.05 61.76 95.52 

Guará 

Model PP SL MC  Guará (= 28) others (n = 207) AC Sens Spec PPV PNV 

PLS-DA no treat. 0.4 17 26 200 96.17 86.67 95.24 83.87 98.04 

PLS-DA 1SG(4+4) 0.4 13 26 203 97.45 86.67 95.31 92.86 98.07 

PLS-DA 1SG(6+6) 0.4 14 24 202 96.17 80 95.28 88.89 97.12 

PLS-DA 2SG(6+6) 0.4 10 25 200 95.74 83.33 95.24 83.33 97.56 

PP: pre-processing; SL: separation limit; MC: main components; AC: accuracy; Sens: sensitivity; Spec: specificity; PPV: prediction of positive values; PNV: 

prediction of negative values; no treat.: no treatment; 1SG: Savitzky-Golay first derivative with 4 and 6 derivation points; 2SG: Savitzky-Golay second 

derivative with 4 and 6 derivation points. 

Conclusion 

The portable NIR equipment he was capable of discriminating tomato seedlings, of Salada and Saladete groups 

with the PLS-DA model, with an accuracy of 99.7 and a sensitivity of 100%. 

For individual models of tomato seedlings in the Salada group, the methodology proved to be efficient, with 

accuracy above 90 and sensitivity above 93% for all models. As for the individual models of the Saladete group, 

the methodology proved to be efficient for the hybrids Parma, BS-110012, Giácomo, Guara and Tyna. 
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Portable NIR spectroscopy proved to be a tool to verify fraud in tomato seedling trade through. Considering 

the ability to discriminate samples, future works should be focused on identifying the original location of product 

to ensure the traceability. 
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