
Acta Scientiarum 

 

 
http://periodicos.uem.br/ojs 

ISSN on-line: 1807-8664 

Doi: 10.4025/actascitechnol.v46i1.61512 

  
STATISTICS 

 

Acta Scientiarum. Technology, v. 46, e61512, 2024 

Bayesian approach for a 2 x 2 crossover design with repeated 

measures: a simulation study 

Yaciled Paola Miranda Lopez¹* , Denismar Alves Nogueira² and Luiz Alberto Beijo² 

¹Programa de Pós-Graduação em Estatística Aplicada e Biometria, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000, 

Alfenas, Minas Gerais, Brazil. ²Departamento de Estatísticas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil. *Author for correspondence. 

E-mail: yac12mir@hotmail.com 

ABSTRACT. In crossover designs, the subjects receive all treatments, according to the groups of sequences 

formed. Therefore, if carryover effects are present in the model, inferences about the treatments effects 

become difficult. Furthermore, repeated measures of the response variable can be taken over time in the 

same experimental unit; however, these measures may be correlated. In this way, we aimed to analyze a 2 

x 2 crossover design with repeated measures within the treatment period, using a Bayesian approach. A 

simulation study was performed to evaluate the performance. The posterior estimates of the model 

parameters were obtained under non-informative prior distributions and the normal likelihood function. 

The model performed well with a sample size of 20 subjects, showing even better results with samples of 

100 subjects. With larger samples, exact tests for the differences in carryover effects and time effects were 

obtained. However, the test of time effect proved to be powerful even with small samples. In turn, 

considering carryover effects different from zero did not influence the estimates of treatment differences, 

although biased estimates of the period effect were obtained. 
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Introduction 

In clinical, psychological and agricultural investigations, studies with crossover designs are commonly 

performed, with the purpose of comparing the effects of treatments based on the information provided by 

each subject. In this sense, the main feature of crossover designs is that each subject receives different 

treatments in different periods of time (Jones & Kenward, 2014; Krogh et al., 2019). 

In health area, crossover designs are suitable to study treatments involving chronic diseases such as 

asthma, migraine, epilepsy, hypertension, rheumatism, among others (Gomes & Dantas, 2017; Niazi, 

Hashempur, Taghizadeh, Heydari, & Shariat, 2017; Hermans et al., 2018; Samsonsen et al., 2018; Mcloughlin 

et al., 2019). Drugs with a quick, short and irreversible effect are used to treat these diseases, since the main 

objective is not the total cure, but to minimize the effects through treatments (Senn, 2002). 

One of the advantages of crossover studies is that each subject acts as its own control (Jones & Kenward, 2014), 

providing a direct comparison of the treatments received, and the difference between these measurements 

minimizes the effects of the subject and, consequently, the experimental variability. Furthermore, a smaller 

number of subjects is needed compared to other types of designs to obtain efficient results with a good precision 

of the treatments effects. These crossover designs remove any biological and methodological variation, which 

provides ethical and economic advantages (Senn, 2003; Li & Sivaganesan 2016; Krogh et al., 2019). 

However, the possible carryover effects may be a disadvantage in crossover designs. These effects are the 

treatment effects that persist in the next period and may hinder the obtaining of unbiased estimates of treatments 

and other parameters of the crossover model. To deal with the possibility of the presence of carryover effects, 

studies propose performing a period of cleaning up the effects of the current treatment, which is called washout 

(Jones & Kenward, 2014; Krogh et al., 2019). However, in some cases, this period is not enough. 

A procedure that can be applied in experimental designs is called repeated measures, in which several 

measurements are taken from the same experimental unit over time or space. As in the crossover designs, 

repeated measures allow the evaluation of the differences in responses in a more efficient way, since they 

allow to analyze the response variation, over time, requiring a smaller number of subjects (West, Welch, & 
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Galecki, 2022). However, the measurements taken in the same experimental unit may be correlated, due to 

the common contribution of each subject. 

For the analysis of crossover studies with repeated measures, a mixed model approach is proposed in the 

present study, which is suitable for the adjustment of the correlation produced by repeated measures (Littell, 

Milliken, Stroup, Wolfinger, and Schabenberger, 2006). The denomination of mixed models comes from the fact 

that systematic and random effects are considered in the model. In the crossover model, the effects of treatments, 

periods, sequences, time and the simple interaction between time and treatment are commonly considered 

systematic, whereas the effect of the experimental unit can be considered both systematic or random. 

The Bayesian approach can be applied in the analysis of mixed models in crossover studies with repeated 

measures. In this approach, previous information or initial beliefs about the model are implemented through 

prior distributions, and the likelihood function is also specified, to be further represented by the posterior 

distribution. Specifically in crossover designs, Bayesian analysis allows inferences about the model 

parameters (such as treatment and period effects) considering the uncertainties about the presence of 

carryover effects (Li & Sivaganesan, 2016). 

In this sense, we aimed to analyze a simple crossover study with repeated measures within treatment 

period through data simulation with the presence of time effect, with no time-treatment interaction and with 

equal carryover effects for the treatments, using a Bayesian approach. A second objective was to verify if the 

posterior estimates of the model parameters correspond to the simulated values, and therefore, evaluate the 

performance of the estimates through the mean squared error, accuracy and precision. 

Material and methods 

2 × 2 Crossover designs 

A crossover design is an experimental design in which each subject randomly receives all treatments according 

to determined sequences; in this way, each subject acts as its own control. There are different sets of sequences 

depending on the number of treatments. In the simplest AB/BA design, there are two treatments (A and B) and it 

is possible to make two sequences (AB and BA) in two distinct periods. According to Senn (2002) and Jones and 

Kenward (2014), this simpler design is called 2×2 and the subjects are randomly distributed in each sequence; 

sequence AB receives treatment A in the first period and treatment B in the second period, while sequence BA 

receives treatment B in the first period and treatment A in the second period. 

To minimize any relevant interference in subject responses or carryover effects, a washout period is 

applied between the application of each treatment (Jones & Kenward, 2014; Krogh et al., 2019). This washout 

period can be passive, in which no treatment is applied to the subject, a rest period, or active (non-stop). 

The statistical model that considers the carryover effect is based on the studies of Chow and Lui (2009) 

and Jones and Kenward (2014). If yijk is the observed value of the response variable Y, then, in a traditional 

way, the linear model of the crossover design is described as: 

yijk = µ + πj + τt[i,j] + λt[i,j−1] + Sk + eijk, 
 

(1) 

in which µ is the intercept; πj is the effect associated with the period j with j = 1, 2; τt[i,j] is the direct effect of 

treatment applied in the period j of the sequence  i,  i = 1, 2;  λt[i,j−1]  is the carryover effect for the treatment t, in 

which λt[i,0]  =  0; Sk is the effect associated to the  k-th  subject, k = 1, ···, ni , in which ni is the amount of subjects in 

the sequence i and eijk is the random error, that follows a normal distribution, with mean 0 and variance 𝜎𝑒
2. 

The carryover effect in the model can be considered as the sequence effect or as the interaction between 

treatment and period, and it is only present in the second period. 

2 X 2 Crossover designs with repeated measures 

Repeated measures is a procedure that consists in collecting data of a response variable in several 

occasions over time or in different study conditions of the same experimental unit (West, et al., 2022). 

According to Littell et al. (2006), the interest of studies with repeated measures is to verify if there are main 

effects of treatment or time and if there is an interaction of time and treatment. 

A common practice in crossover experiments is to collect a sequence of observations from each subject, 

under the same treatment, in each period (Jones & Kenward, 2014). Thus, the traditional 2×2 crossover model 

with repeated measures of each treatment in each period of time can be written as: 
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yijkl = µ + πj + τt[i,j] + λt[i,j−1] + γl + γlτt[i,j] + Sk + eijkl, 

 

(2) 

note that the difference from the simple crossover model (1) is that it incorporates the systematic effect of the l-th 

time as a repeated measure (γl) and the simple interaction between time and treatment (γlτt[i,j]).  Furthermore, in 

this model it cannot be assumed that the errors eijkl for the same subject are independent; although the treatments 

have been randomly assigned to each subject, the levels of the repeated measures factor, in this case, the time, are 

not randomly assigned to the subjects (Littell et al., 2006). Therefore, it can be assumed that eijkl ∼ N(0,R), in which 

R is a variance-covariance matrix. The other model effects are defined as in model (1). 

The assumption of errors independence of the classic models of analysis of variance is not guaranteed. In 

addition, repeated measures variances can often change over time. These situations lead to losses in precision 

and predictive capacity of models fitted according to classical assumptions (Gómez, Torres, García, & 

Navarro, 2012). However, mixed models allow capturing the correlation between measurements. 

Furthermore, these models can handle missing and imbalanced data well. 

2 x 2 Crossover designs with repeated measures as a mixed model 

The term mixed models comes from the fact that these models incorporate systematic and random effects 

to describe the relationship between the response variable (dependent) and the explanatory variables 

(independent, predictors or covariates) (Seoane, 2014). The systematic effects are, in most cases, the factors 

of interest in the study. They are restricted to the observed levels of the variable and there is no interest in 

generalizing the results to other levels. On the other hand, random effects are explanatory variables which 

levels were sampled from a population about which there is interest in inferring (Littell et al., 2006). 

According to West et al. (2022), the mixed model is given in matrix by: 

Y  = Xβ + Zu + e, 
 
 

(3) u ∼ N (0, G) 

e ∼ N (0, R), 

in which Y ∼ N (Xβ, ZGZ ’ + R) is the response vector of dimension n × 1; X is the incidence matrix associated 

with the systematic effects of dimension n × b; β is the vector of systematic effects of dimension b × 1; Z is 

the incidence matrix associated with the random effects of dimension n × q; u is the vector of random effects 

of dimension q × 1;  and  e  is the vector of errors of dimension q × 1; in which n is the number of observations; 

b is the number of systematic effects; and q is the number of random effects. The G e R matrices are positive 

definite and, therefore, not singular.  

The mixed models are suitable for the analysis of crossover designs with repeated measures. Considering 

Sk as the random effect of the k-th subject in the 2 × 2 crossover model with repeated measures (2), the 

marginal mixed model can be considered as: 

yijkl = µ + πj + τt[i,j] + λt[i,j—1] + γl + γlτt[i,j] + ϵijkl 

ϵijkl = Sk + eijkl 

 

(4) 

it is assumed that Sk ∼ N (0,𝜎𝑠
2),  in which 𝜎𝑠

2 is the variance of the subjects, and eijkl is  the vector of errors with 

eijkl ∼ N (0, R). Note that model (4) can be written in a matrix form as:                               Y  = Xβ + e*, where e* is the random 

vector of errors, in which the random effects of subjects Sk are absorbed by the residual part of the model, e* 

∼ N (0, V ), in which V = var(Y ) = ZGZ’ + R.  

Simulation of a 2 x 2 crossover data with 3 repeated measures 

To evaluate the simulation behavior of the data obtained from the 2 × 2 crossover experiment, 28 scenarios 

were considered, which were simulated N = 1,000 times each, stablishing sample sizes of n = 20 and 100, and 

considering equal number of subjects in each sequence. The variances σ2 = (µ ∗ cv)2 = 25 and 400 were defined 

as a function of the general mean µ  = 100, and the coefficient of variation of the subject cv = 5% and 20%. 

Furthermore, null covariance between the subjects was assumed. 

The difference between the treatments means τ  = τ1 − τ2 = w · SE, with w = 1 and 2, and SE the standard 

error for the specific comparison (frequentist reference). It was assumed that there was no difference between 

the periods when π = 0.1, a value close to zero, and there was no significant effect of the sequence when 

establishing that the carryover effects of the treatments were equal, λ1 = λ2 = 0. In some cases, the carryover 
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effects λ1 = λ2 = 4SE, SE between the treatments means, were considered to evaluate the impact on the 

estimates when the carryover effects of each treatment were equal, but different from zero. 

After establishing the values of the parameters, the data simulation from two bivariate normal 

distributions was performed, corresponding to the two groups of sequences. The data of AB sequence 

followed a bivariate normal distribution with mean µAB = (µ + π1 + τ1, µ + π2 + τ2 + λ1) and variance and 

covariance matrix, Variance Components, ΣAB = Iσ2. The data of BA sequence followed a bivariate normal 

distribution with mean µBA = (µ + π1 + τ2, µ + π2 + τ1 + λ2) and the same structure for the variance and 

covariance matrix, ΣBA = ΣAB . 

Consequently, the linear regression effect was inserted into the subjects within each period, through the 

following model: 

yijkl = bijk + γxl + ϵijkl, 

in which bijk  is the intercept, considered as the response of the k-th subject to the i-th sequence in the j-th 

period of the simulated 2 × 2 crossover data; γ is the regression coefficient associated with time; xl  is the 

effect of the l-th time, with l = 1, 2, 3, in which x1 = 0, x2 = 1 and x3 = 2; and ϵijkl ∼ N (0, Σk) is the vector of 

errors associated with the observation for the k-th subject, with Σk = Iσ2,  in which I is the identity matrix 

and 𝜎2= 20 is the variance between errors. The data obtained corresponded to the errors matrix of the k-th 

subject in the l-th time. 

Since there was an interest in verifying whether the proposed simulation adequately captured the 

established time regression coefficient, for each simulated scenario, the time regression coefficients (γ) were 

varied according to their standard errors. In this way, γ were established as γ = r · SEγ , with r = 0, 2 and 6. For 

the scenarios with samples of 20 subjects, the SEγ = 0.5, thus γ resulted in the 0, 1 and 3 values. For the 

scenarios with 100 subjects, the SEγ = 0.22, therefore, γ were established in the simulation as 0, 0.44 and 

1.32. Furthermore, it was assumed that there was no significant interaction between time and treatment, 

γlτt[i,j] = 0. 

The description of the simulated scenarios for the 2 × 2 crossover design with 3 repeated measures is 

presented in Tables 1 and 2. The data were simulated using an adaptation of the function getSimulationData() 

from the Reproducer package (Madeyski, 2017) of R software (R Core Team, 2018), in which the way of 

introducing the means of the sequences (µAB  and µBA) was modified, as well as the possibility of entering with 

distinct ni. Therefore, repeated measures could be generated through the effect of linear regression, as 

described in the link https://github.com/yacimiranda/Crossover_codex.git. 

Table 1. Scenarios (C1 to C24) simulated for the 2 x 2 crossover design with 3 repeated measures, considering the difference between 

the treatment means (τ) equal to 1SE or 2SE, carryover effects λ1 = λ2 = 0, difference between the periods effects π=0.1 and interaction 

between time and treatment, γlτt[i,j] = 0. 

Sce n  cv(%) τ γ Sce. n cv(%) τ γ 

C1 20  5 1.581 (1SE ) 0 C13 100 5 0.707 (1SE ) 0 

C2 20  5 1.581 (1SE ) 1 C14 100 5 0.707 (1SE ) 1 

C3 20  5 1.581 (1SE ) 3 C15 100 5 0.707 (1SE ) 3 

C4 20  5 3.162 (1SE ) 0 C16 100 5 1.414 (1SE ) 0 

C5 20  5 3.162 (1SE ) 1 C17 100 5 1.414 (1SE ) 1 

C6 20  5 3.162 (1SE ) 3 C18 100 5 1.414 (1SE ) 3 

C7 20  20 6.325 (1SE ) 0 C19 100 20 2.828 (1SE ) 0 

C8 20  20 6.325 (1SE ) 1 C20 100 20 2.828 (1SE ) 1 

C9 20  20 6.325 (1SE ) 3 C21 100 20 2.828 (1SE ) 3 

C10 20  20 12.649 (1SE) 0 C22 100 20 5.657 (1SE ) 0 

C11 20  20 12.649 (1SE) 1 C23 100 20 5.657 (1SE ) 1 

C12 20  20 12.649 (1SE) 3 C24 100 20 5.657 (1SE ) 3 

Sce  - Scenarios; n – Total number of experimental units; cv - Coefficient of variation; SE – Standard error. 

Table 2. Scenarios (C25 to C28) simulated for the 2 x 2 crossover design with 3 repeated measures, considering the difference between 

the treatment means (τ) equal to 1SE or 2SE and carryover effects λ1 = λ2 = 4SEγ of the time regression coefficient. 

Sce n cv(%) λ1 = λ2 π τ γ γτ 

C25 20 5 6.325 (4SE ) 0.1 1.581 (1SE) 3.00 0 

C26 20 20 25.298 (4SE ) 0.1 6.325 (1SE) 1.00 0 

C27 100 5 5.657 (4SE ) 0.1 1.414 (2SE) 0.00 0 

C28 100 20 11.314 (4SE ) 0.1 2.828 (1SE) 1.32 0 

Sce  - Scenarios; n – Total number of experimental units; cv - Coefficient of variation; SE – Standard error. 
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Bayesian approach 

The Bayesian approach was used for the analysis of the simulated data of the simple crossover study. This 

approach makes inferences about the unknown population parameters through the posterior distribution, which 

is obtained from the combination of information extracted from the sample (likelihood function) and information 

prior to sampling, called prior distribution of the parameters of interest (Degroot & Schervish, 2012). 

It is considered that the unknown population parameters θ are random, and obtaining the posterior 

distribution is an application of the Bayes’ theorem, thereby: 

P(θ|y) ∝ L(θ|y)P(θ), (5) 

in which P(θ|y) is the posterior distribution of θ given y; L(θ|y) is the likelihood function of y and P(θ) is the 

prior distribution of parameter θ. 

The prior distribution probabilistically represents the knowledge that exists about the population 

parameters (θ) before carrying out the experiment. The definition of the prior distribution is made by the 

researcher, specifying the distribution form and the hyperparameter values. The parameters of the prior 

distribution are called hyperparameters. Thus, Bayes' theorem updates the prior knowledge with sample 

information (Paulino, Turkman, & Murteira, 2003). 

Analysis and modeling 

The model considered for the data analysis was based on the model proposed by Zhang, Toubouti, and 

Carlin (2017), in which, considering the correlations between the three measurements taken within a period 

for the same treatment, the probability distribution is: 

(

𝑌𝑖𝑗𝑘1

 𝑌𝑖𝑗𝑘2

𝑌𝑖𝑗𝑘3

 ) ~ 𝑁 (  ( 

𝜇𝑖𝑗𝑘1

𝜇𝑖𝑗𝑘2 

𝜇𝑖𝑗𝑘3

) , ∑𝑡  ), 

 

(6) 

in which µijkl is given by: 

µ + λ Seqi + π Perj + τ Tratt[i,j] + γ Timel + γτ Timel × Tratt[i,j], 
 

(7) 

t is determined by the i-th sequence and the j-th period. In addition, Trat is the treatment to be tested; τ is 

the difference between the test treatment and the control; Seq is the sequence; Per is the period; and Time 

refers to the repeated measure. In this model, the subject effect was not explicitly specified, considering the 

marginal mixed model as described in equation (4). 

Non-informative normal prior distributions were used for the model parameters, i.e., no subset of the 

parametric space was favored. Therefore, the following prior distributions were considered: 

µ ∼ N (0; 0.001); λ ∼ N (0; 0.001); π ∼ N (0; 0.001); 

τ ∼ N (0; 0.001); γ ∼ N (0; 0.001); γτ ∼ N (0; 0.001), 

which are presented with the mean and precision hyperparameters. 

A non-informative inverse Wishart prior distribution was considered for the variance-covariance matrix 

Σt, so it was defined that the precision matrix Σt-1∼ Wishart(Rt, v), in which Rt = Iσ2,  with σ2 = 0.001, t = 1, 2, and v =  

dim(Σt) =  3 is the degrees of freedom. According to Li, Zhou, Zhang, and Yang (2020), the dimension of matrix Σt 

is the smallest value of degrees of freedom for which non-informative Wishart prior distribution is adequate. 

To fit the model and obtain the marginal posterior distributions of the parameters µ, λ, π, τ , γ, γτ, and 

the Σt matrices, the OpenBUGS software (Lunn, Spiegelhalter, Thomas, & Best, 2009) through the 

R2OpenBUGS package interface (Sturtz, Ligges, & Gelman, 2005) was used. This package implements Monte 

Carlo methods via Markov chains to obtain the marginal chains. A chain with 800,000 iterations was 

generated, with burn-in of 775,000 and thin of 5 iterations, obtaining a final chain of 5,000 samples. 

To verify the chain convergence, the following criteria were used: Dependence factor of Raftery and Lewis 

(1992) close to 1; stationarity of Heidelberger and Welch (1983) chain, p-value ≥ 0.05; and the non-

significance for the comparison of the means of the Geweke (1992) Z test by the standard Normal. 

Finally, point estimates were obtained for each parameter through the posterior means, as well as the 95% 

Highest Probability Density (HPD) intervals. To verify the behavior of our approach for a nominal confidence 
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of 5%, the type I error rates were estimated for the parameters of the differences in carryover (λ) and time (γ) 

effects, as well as the power of these tests. The mean squared error (MSE), accuracy and precision of the 

estimates of parameters λ, τ  and γ, in each one of the n data sets, were also estimated. 

Results and discussion 

Considering the 1,000 simulations performed in each scenario and the average values of the posterior 

estimates of the model parameters, we observed that the estimated values were close to the real values 

simulated for the scenarios with samples n = 20 and 100. Analyzing the averages of the limits of 95% HPD 

intervals for the parameters, we could note that the effect of the general mean added to the effect of treatment 

B (µB) was significant, therefore being different from zero. 

Furthermore, the differences in carryover and period effects, as well as the interaction between time and 

treatment, were not significant, as expected, since these conditions were established in the simulations. In scenarios 

C3, C6, C9, C12 (n = 20) and C15, C18, C21, C24 (n = 100), in which a linear time effect corresponding to 6SEγ was 

simulated, the variable time showed a significant effect. However, in scenarios C2, C5, C8, C11 (n = 20) and C14, C17, 

C20, C23 (n = 100), in which a time effect of 2SEγ was simulated, the time was not significant on average. 

Although a difference of 1SE has been simulated for the treatments effects, this difference was not 

statistically significant in any of the following scenarios: C1, C2, C3, C7, C8, C9, C13, C14, C15, C19, C20 and 

C21. On the other hand, when τ = 2SE was simulated, there were no significant effects for the results averages 

of scenarios with cv = 5% (C4, C5, C6, C16, C17 and C18); however, the differences in treatments for scenarios 

with cv = 20% (C10, C11, C12, C22, C23 and C24) were significant. This result may be due to the fact that the 

standard error depends on the variability, and if it is greater, higher standard errors and, consequently, greater 

simulated differences are expected. 

Tables 3 and 4 show the estimates of type I error rates for the differences in carryover effects (H0 : λ  =  0) 

and time effects (H0 : γ  =  0). The test power for time is given in the scenarios in which a linear time effect of 

r ·SEγ, with r = 2 or 6 was simulated. 

Table 3. Type I error rates of the tests of differences in carryover effects (λ) and time effects (γ) in the scenarios in which these effects 

were assumed null, and the power of  γ test for the scenarios in which a linear time effect of r · SEγ, with r = 2 or 6 was simulated; 

results for scenarios with 20 subjects, with τ = 1SE (C1, C2, C3, C7, C8, C9) and τ = 2SE (C4, C5, C6, C10, C11, C12), in which λ1 = λ2 = 0 

was assumed. 

Sce 
Par 

τ Tipe I  
Power  

Sce 
Par 

τ Tipe I 
Power  

(cv=5%)  error  (cv=20%)  error 

C1 
λ 1.581 0.122 - 

C7 
λ 6.325 0.132 - 

γ  1.581 0.085 - γ  6.325 0.080 - 

C2 
λ 1.581 0.114 - 

C8 
λ 6.325 0.128 - 

γ  1.581 - 0.423 γ  6.325 - 0.390 

C3 
λ 1.581 0.104 - 

C9 
λ 6.325 0.142 - 

γ  1.581 - 0.995 γ  6.325 - 0.991 

C4 
λ 3.162 0.116 - 

C10 
λ 12.65 0.130 - 

γ  3.162 0.090 - γ  12.649 0.068 - 

C5 
λ 3.162 0.133 - 

C11 
λ 12.649 0.136 - 

γ  3.162 - 0.477    γ  12.649 - 0.399 

C6 
λ 3.162 0.116 - 

C12 
  λ 12.649 0.134 - 

γ  3.162 - 0.994 γ  12.649 - 0.989 

Note: ’ -’ measure not calculated. 

The type I error rates of the differences in carryover effects for the scenarios with cv = 5 and 20% were 

similar (Table 3). Considering the exact confidence interval (99%) for the proportion pα = 0.05, CI99%(pα)  =  

[0.034; 0.068], all type I error rates for λ were statistically greater than the 5% significance level, since the 

values were greater than the interval upper limit. Therefore, the test for the difference in carryover effects 

was liberal for scenarios with 20 subjects. 

The hypothesis test of time effect was liberal, except for scenario C10, in which the type I error rate was 

included in the interval CI99%(pα), indicating that the test was exact. 

From these results, it is noteworthy that the type I error rates of the difference tests in carryover effects with 

samples of 20 subjects were all greater than 10%, which was the level of significance suggested by Grizzle (1965) 

to perform the carryover effect test. If the null hypothesis that the difference in carryover effects is equal to zero is 

rejected, only the data from the first period should be used in the analysis (Jones & Kenward, 2014). 
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Although the results presented here are theoretical, based on data simulation with repeated measures, 

there are applied studies, such as the one performed by Yin, Paoletti, Sargent, and Mandrekar (2017), in which 

the authors studied the toxicity time-trend of five doses of a drug using a sample size of 36 subjects. In this 

study, the type I error rate of the test of time effects as repeated measures was less than 13%. 

Furthermore, for scenarios C2, C5, C8 and C11, in which a time effect of 2SEγ = 1 was considered, the power 

values were less than 50%, indicating that in the 1,000 simulations performed in these scenarios, the test 

rejected the null hypothesis (H0: γ  = 0) in a little more than 500 simulations, which is an unexpected result. 

On the other hand, for scenarios C3, C6, C9 and C12, in which γ =  SEγ = 3, the power values were approximately 

99%, since a greater difference between the values of γ was considered. 

For n = 100 samples, the test for λ was exact in scenarios C14, C20, C21, C22, C23 and C24, according to 

the interval CI99%(pα) (Table 4). Contrasting the results with scenarios of n = 20 samples, the scenarios with 

samples of 100 subjects presented all type I error rates for the carryover hypothesis test lower than 10%, which 

was suggested by Grizzle (1965). 

Table 4. Type I error rates of the tests of differences in carryover effects (λ) and time effects (γ) in the scenarios in which these effects 

were assumed null, and the power of the γ test for the scenarios in which a linear time effect of w . S E , with  w  =  2 or 6 was simulated; 

results for scenarios with 100 subjects, with τ = 1SE (C13, C14, C15, C19, C20, C21) and τ = 2SE (C16, C17, C18, C22, C23, C24), in 

which λ1 = λ2 = 0 was assumed. 

Sce 
Par 

τ Tipe I 
Power  

Sce 
Par 

τ Tipe I 
Power  

(cv=5%)  error (cv=20%)  error  

C13 
λ 0.707 0.089 - 

C19 
λ 2.828 0.075 - 

γ  0.707 0.058 - γ  2.828 0.052 - 

C14 
λ 0.707 0.066 - 

C20 
λ 2.828 0.054   

γ  0.707 - 0.307 γ  2.828 - 0.346 

C15 
λ 0.707 0.078 - 

C21 
λ 2.828 0.057 - 

γ  0.707 - 0.995 γ  2.828 - 0.994 

C16 
λ 1.414 0.085 - 

C22 
λ 5.657 0.065 - 

γ  1.414 0.049 - γ  5.657 0.054 - 

C17 
λ 1.414 0.071 - 

C23 
λ 5.657 0.065 - 

γ  1.414 - 0.340 γ  5.657 - 0.330 

C18 
λ 1.414 0.077 - 

C24 
λ 5.657 0.061 - 

γ  1.414 - 0.987 γ  5.657 - 0.988 

Note:  ’ -’ measure not calculated. 

Considering the CI99%(pα), the hypothesis test of time effect was exact in all scenarios in which γ  = 0  was 

simulated (C13, C16, C19 and C22). Li et al. (2020) reported that the type I error rates for the test of time effect 

were close to the 5% significance level in an applied study in which a simulation was performed with a 4 × 4 

crossover design with repeated measures using sample sizes greater than or equal to 100 experimental units.  

Similarly, to the scenarios with n = 20, the test power for the time effect was greater than 98% in the 

scenarios C15, C18, C21 and C24, in which γ = 6SEγ  was simulated. These results show that the sample size 

did not influence the test power for γ when there was a time effect; nevertheless, an increase in power was 

observed when the time effect was greater. 

It can be highlighted that, regarding type I error and power of the difference tests in carryover and time 

effects, better results were obtained in the scenarios with samples of 100 experimental units and γ = 6SEγ, 

highlighting the scenarios with cv = 20% (C21 and C24). 

Additionally, Figure 1 presents the results of the mean squared errors, accuracies and amplitudes of the 

95% HPD intervals (from which the precision was verified) of the parameters estimates of the differences in 

carryover and treatments effects, and time effects, in each scenario. 

In scenarios with coefficient of variation of 5%, lower mean squared errors and amplitudes of the 95% HPD 

intervals were obtained for the estimates of λ and τ parameters compared to the scenarios with coefficients of 

variation of 20%. For the time effect, these measures were similar when the same number of samples was considered, 

even with different coefficients of variation. In all scenarios, high accuracies (above 85%) were obtained. 

Furthermore, for the scenarios with samples n = 100 subjects and cv = 5%, lower mean squared errors were 

obtained for the parameters of the differences in carryover effects, differences in treatment effects, and time 

effects. In addition, for these scenarios, smaller amplitudes of the 95% HPD intervals were obtained compared 

to the scenarios with samples of 20 subjects, which indicates greater precision of the estimates. 
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Figure 1. Mean squared errors (MSE), accuracies (%) and precision (amplitude of HPD intervals) of differences estimates in carryover 

effects (λ), differences in treatments (τ) and time effects (γ), from the 2 x 2 crossover model with 3 repeated measures, for scenarios n = 

20, with τ  = 1SE (C1, C2, C3, C7, C8, C9 ) and τ  = 2SE (C4, C5, C6, C10, C11, C12), and scenarios with n = 100, with τ  = 1SE (C13, C14, 

C15, C19, C20, C21) and τ = 2SE (C16, C17, C18 , C22, C23, C24). 

However, satisfactory results were obtained for the estimates in the analysis for samples of 20 subjects. 

Highlighting one of the advantages of crossover designs, a smaller number of subjects is required compared 

to other designs to obtain a high test power and high precision of estimates (Jones & Kenward, 2014; Larsen, 

Juul, Kreilgaard, Kristensen, & Simonsson, 2018). 

In all scenarios with samples of 100 subjects, low type I error rates were obtained for all parameters. The 

power results for the time effect test were similar for scenarios with 20 subjects and 100 subjects. In addition, 

Carriere and Huang (2000) emphasize that crossover designs provide greater test power, due to the less 

variability between subjects. 

Simulated data analyses for scenarios with λ1 = λ2 = 4SE 

This section presents the mean values of the parameters estimates of the 2 × 2 crossover model with 3 

repeated measures, in which the carryover effects of each treatment were simulated with 4SE of the 

treatments means, λ1 = λ2 = 6.325; λ1 = λ2 = 25.29; λ1 = λ2 = 5.657; λ1 = λ2 = 11.314, for scenarios C25, C26, C27 

and C28, respectively. Note that, in the simulation, the difference between the carryover effects is equal to 

zero (λ = λ2 − λ1 = 0). 

The mean values of the parameters estimates were close to the simulated real values, except for the 

parameter of difference in period effects (π), which was significant in all scenarios (Table 5). According to Li 

et al. (2020), when a significant period effect is found, the model interpretation may be problematic; however, 

this does not preclude the possibility of performing the test for treatment effects. 

The π estimates were close to the simulated values for the carryover effect of the treatment received in the first 

period, λ1 for the AB sequence and λ2 for the BA sequence (Table 5). These results may be due to the fact that the 

simulated values for the carryover effects (λ1 = λ2), different from zero but equal to each other, were captured by 

the difference in periods effects (π), since the carryover effects were in the second period only. According to Jones 

and Kenward (2014), carryover effects λ1 = λ2 = 0 cannot be tested when there are period effects in the model. In 

this sense, it can be inferred that carryover effects are mixed or confused with period effects. 

The differences in carryover effects (λ) were not significant in all scenarios. The effect of the general mean 

added to treatment B was significant in all scenarios, keeping the pattern observed in the simulations. As λ1 = 

λ2, the estimates of the differences in treatment effects are not biased, being close to the simulated values 

and not significant in all scenarios. In addition, significant time effects were obtained in scenarios C25 and 
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C28, in which linear time effects of γ = 6SEγ  were considered. For the interaction between time and 

treatment, the effects were not significant. 

Table 5. Means of descriptive statistics of posterior point and interval estimates and minimum and maximum values of the convergence 

criteria of the parameters of the 2 x 2 crossover model with 3 repeated measures, for the scenarios C25 (cv = 5%) and C26 (cv = 20%), in which λ1 

= λ2 = 4SE, with samples of 20 subjects, and for the scenarios C27 (cv = 5%) and C28 (cv = 20%), with samples of 100 subjects. 

Sce Par RV  mean LL UL  Sce Par RV mean LL UL 

C25 

µB 265.42 260.94 256.24 265.38  

C27 

µB 265.59 265.28 263.31 267.21 

λ 0.00 0.38 -3.10 3.83  λ 0.00 0.10 -1.47 1.65 

π 0.10 6.78 3.29 10.34  π 0.10 5.82 4.27 7.39 

τ 1.58 2.73 -2.51 8.09  τ 1.41 1.61 -0.72 3.93 

γ 3.00 3.32 1.93 4.73  γ 0.00 0.07 -0.57 0.68 

γτ 0.00 -0.30 -2.22 1.68  γτ 0.00 -0.06 -0.93 0.83 

C26  

µB 260.68 247.95 232.09 262.61  

C28 

µB 264.17 260.78 254.88 266.54 

λ 0.00 5.54 -7.15 18.52  λ 0.00 0.85 -4.70 6.30 

π 0.10 30.04 17.15 43.14  π 0.10 12.36 6.82 17.75 

τ 6.32 13.01 -0.91 27.54  τ 2.83 3.87 -1.99 10.09 

γ 1.00 1.28 -0.20 2.76  γ 1.32 1.36 0.73 1.98 

γτ 0.00 -0.27 -2.30 1.75  γτ 0.00 -0.04 -0.96 0.83 

Note: Sce - scenario, Par - parameter, RV - real value, LL - HPD lower limit of 95% credibility, UL - HPD upper limit of 95% credibility. 

Similar values of type I error rates and power of the tests of differences in carryover (λ) and time (γ) effects 

were obtained, as well as the measures of mean squared error, accuracy and precision of the estimates of 

differences in carryover effects, differences in treatments and time effects of the model, considering the 

scenarios simulated with λ1 = λ2 = 0. 

As noted in the literature, carryover effects affect the process of making inferences about the treatments 

when they are not equal (λ1 ≠ λ2), as there may be biased estimates of the other model parameters. 

Conclusion 

Based on the results of the present study, it is possible to conclude that under the Bayesian approach, the 

model presented good performance in relation to accuracy, mean squared error and precision of estimates 

with a sample size of 20 subjects. The results of these measurements were even better with a sample size of 

100 subjects. Furthermore, with larger samples, exact tests of the differences in carryover effects and time 

effects were obtained. However, the test of time effect proved to be powerful even with small samples. 

To minimize type I error rates and obtain more accurate and precise estimates, it is recommended to use 

a minimum sample size of 100 subjects in 2 × 2 crossover experiments with repeated measures. 

Considering carryover effects different from zero for each treatment does not interfere in the analysis of the 

differences in the treatments effects. In addition, there are no losses in accuracy and precision of the estimates of 

the model parameters λ, τ and γ. However, special care must be taken with regard to the interpretation of the 

estimates of period differences, which capture the values of carryover effects present in each treatment. 

Furthermore, if there are period effects in the model and the carryover effects are different from zero and 

equal to each other, it is impracticable to infer about the estimates of period and carryover effects for each 

treatment, due to the confusion between these two important effects. 

In future studies we intend to consider different structures of covariances and random subject effects, as 

well as the use of the Bayes factor to make inferences about the significance of the model parameters.  
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