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ABSTRACT. Based on the normal distribution, a new generator of continuous distributions is presented 

using the monotonic functions tan((𝜋/2)G1) and log (1 − G2), such that G1  and G2  are the baselines. A 

study of identifiability of the proposed class is exhibited as well as the series expansions for its cumulative 

distribution function and probability density function. Additionally, some mathematical properties of the 

class are discussed, namely, the raw moments, the central moments, the moment generating function, the 

characteristic function, the derivatives of the log-likelihood function, and a study of the support.  A 

numerical analysis comprising a simulation study and an application to real data is presented. Comparisons 

between the proposed model and other well-known models evince its potentialities and modeling benefits. 
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Introduction 

Probability distributions play statistics a fundamental role. Probability models are important tools to deal 

with real problems since they can provide powerful models to describe natural and social phenomena. In 

recent times, several methods to generate new distributions have been presented in order to create 

distributions with higher flexibility than the classical ones.  

A review of some relevant methods is presented in Lee, Famoye, and Alzaatreh (2013) and a detailed list 

of generalized classes of continuous distributions widely found in the statistical literature is cited in Tahir 

and Nadarajah (2015).  Some notable examples are the 𝑇 − 𝑋 family of continuous distributions (Alzaatreh, 

Lee, & Famoye, 2013), the beta-G (Eugene, Lee, & Famoye, 2002), the McDonald-G (Alexander, Cordeiro, 

Ortega, & Sarabia, 2012), the exponencialized exponential-Poisson (Ristić & Nadarajah, 2014), the logistic-

G (Tahir, Cordeiro, Alzaatreh, Mansoor, & Zubair, 2016a), the new Weibull-G (Tahir et al., 2016b), the new 

gamma-G (de Brito, Rêgo, de Oliveira, & Gomes-Silva, 2017) and the normal-G (Silveira et al., 2019).  

Probability mixture models are often used in data modeling with more than one mode. Bimodal distributions 

are quite useful tools because they model relevant variables in nature. For instance, the sizes of the weaver ant 

workers are bimodally distributed (Nichols & Padgett, 2006) as well as the number of cases per year of Hodgkin’s 

lymphoma (Mauch, Armitage, Diehl, Hoppe, & Weiss, 1999). In inferential terms, this modeling can be difficult 

since mixture models can admit a reasonable amount of parameters. It is well-known that probability mixture 

models can lead to identifiability problems making parametric inferences becomes a hard task. The two-

component normal mixture model is a classic example of this problem that can be found (Teicher, 1961).  

In this work we employ a method to generate classes of probability distributions (de Brito, Rêgo, de 

Oliveira, & Gomes-Silva, 2019) to build a class whose cumulative distribution function (cdf) is written as a 

composition of the standard normal cdf and two baselines, namely, G1 and G2. One of the new features of this 

method is working with multiple baselines. Since this method considers the Lebesgue integral instead of the 

Riemann integral, one can choose either continuous or discrete distributions to be baselines. The proposed 

class is called Normal-tangent-logarithm- (G1, G2) , NTL- (G1, G2)  for short, and besides furnish a more 

parsimonious model, it holds interesting properties, like the parametric identifiability (under certain 

conditions) and the bimodality of some special cases. The name of the class alludes to the monotonic 

functions that are used in its definition. 
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The method to generate distributions and classes of probabilistic distributions presented by de Brito et al. 

(2019) is given by: 

FG1,…,Gm
(x) = ∫ dF(t)

μ1(∙)(x)

l1(∙)(x)

 

where 

μ1(∙)(x) = μ1(G1, G2, … , Gm)(x) and l1(∙)(x) = l1(G1, G2, … , Gm)(x) are compositions known probability models. 

This method extends the process of building probability distributions, allowing the classes to be designed 

from classic distributions and predefined univariate monotonic functions. Thus, considering the monotonic 

functions μ1(G1, G2, … , Gm)(x) = tan (
π

2
G1(x)), 𝑙1(G1, G2, … , Gm)(x) = log(1 − G2(x)) and the standard normal 

probability density function (pdf), the cdf of the new class is given by: 

HG1, G2
(x) = ∫

1

√2π
e−

t2

2
tan(

π

2
G1(x))

log(1−G2(x))
dt = Φ (tan (

π

2
G1(x))) − Φ(log(1 − G2(x))),    (1) 

where G1 and G2 are the baselines. Given that g1(x) and g2(x) are the pdfs associated with G1(x) and G2(x) 

respectively, the pdf associated with HG1, G2
 is given by: 

hG1, G2
(x) = H′

G1,G2
(x) = Φ′ [tan (

π

2
G1(x))] − Φ′[log(1 − G2(x))] 

=
π

2
g1(x) sec2 (

π

2
G1(x)) ϕ [tan (

π

2
G1(x))] +

g2(x)

1−G2(x)
ϕ[log(1 − G2(x))].     (2) 

Equation (1) can be reduced to new unibaseline (“classic generators”) class by setting G1 = G2. It is worth noting 

that for each pair (G1, G2) of baselines we have a completely new class and that HG1, G2
≠ HG2, G1

, ∀ G1 ≠ G2. Based 

on Equation (2), the proposed model is quite competitive with the two-component probability mixture models.  

The remainder of the paper is organized as follows. Identifiability, support, series representation, row and 

central moments, moment generating function (mgf) and characteristic function (cf), and estimation and 

inference are derived in Section 2. Applications to both simulated and real data sets are addressed in Section 

3. Finally, we offer a conclusion in Section 4. 

Mathematical properties 

Identifiability 

Discussing the identifiability of a probability distribution is considerably important, because the parametric 

estimation of unidentifiable distributions may not be trustworthy.  Under specific conditions, the (sole) theorem 

presented in Silveira et al. (2021) assures that the submodels of the normal- (G1, G2)  class of probability 

distributions enjoy the property of identifiability. Since the NTL-(G1, G2) clearly resembles the normal-(G1, G2) 

class, we bring an adapted version of the aforementioned theorem for the new class in the following lines. 

Theorem 1. Let G1(x|θ1) and G2(x|θ2) be the baselines of the NTL-(G1, G2) class, whose cdf is defined by 

the expression.  

HG1, G2
(x|θ) = Φ (tan (

π

2
G1(x))) − Φ(log(1 − G2(x))).  

Additionally,  

θ1 = (θ11, … , θ1n) ∈ Θ1, θ2 = (θ21, … , θ2m) ∈ Θ2  

and 

θ = (θ11, … , θ1n, θ21, … , θ2m) ∈ Θ  

where Θ1, Θ2 and Θ are the parametric spaces associated with G1, G2 and HG1, G2
 respectively. If G1 and G2 are 

identifiable, then HG1, G2
 is identifiable. 

Proof. Assume that  

Φ (tan (
π

2
G1(x|θ1))) =  Φ (tan (

π

2
G1(x|θ1

∗))),  
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where 

{θ1, θ1
∗} ⊂ Θ1 and θ1 ≠ θ1

∗ .  

Since Φ is injective, G1(x|θ1) = G1(x|θ1
∗); this is a contradiction, because it denies the identifiability of G1. 

Thus if θ1 ≠ θ1
∗ , then  

Φ (tan (
π

2
G1(x|θ1))) ≠  Φ (tan (

π

2
G1(x|θ1

∗))).  

Analogously, it is also true for θ2, θ2
∗ ⊂ Θ2. If θ2 ≠ θ2

∗  then  

Φ(log[1 − G2(x|θ2)]) ≠ Φ(log[1 − G2(x|θ2
∗ )]).  

Now consider {θ, θ∗} ⊂ Θ and assume that 

HG1, G2
(x|θ) = HG1, G2

(x|θ∗). If θ1 = θ1
∗  and θ2 ≠ θ2

∗ ,  

we can infer from the equation 

HG1, G2
(x) = Φ (tan (

π

2
G1(x))) − Φ(log(1 − G2(x)))  

that G2(x|θ2) = G2(x|θ2
∗ ), namely, an absurd. Likewise, if θ1 ≠ θ1

∗  and θ2 = θ2
∗ , we get to a similar 

contradiction, where G1(x|θ2) = G1(x|θ2
∗ ). If  θ1 ≠ θ1

∗  and θ2 ≠ θ2
∗  then the assumption fails since 

HG1, G2
(x|θ) ≠ HG1, G2

(x|θ∗) for almost all values of 𝑥 within the support. Thus, HG1, G2
 is identifiable. 

Support of the NTL-(𝐆𝟏, 𝐆𝟐) class 

Almost all probability distributions that appear in the statistical literature depend on one single baseline. 

In such case, the distribution emerged from the class and the associated baseline usually share the same 

support. Defining the support of the NTL-(G1, G2) though demands further attention. 

As mentioned in the first paragraph of Section (1), we have that 

μ1[G1(x), G2(x)] = tan (
π

2
G1(x))  

and 

l1[G1(x), G2(x)] = log[1 − G2(x)].  

It can be observed that  

1. Sϕ = (−∞, +∞), the support of the normal distribution, is a convex set; 

2. (a) μ1[G1(+∞), G2(+∞)] = μ1(1,1) = tan (
π

2
G1(+∞)) = +∞ = sup[x ∈ ℝ ∶  Φ(x) < 1]; 

(b) l1[G1(+∞), G2(+∞)] = l1(1,1) = log[1 − G2(+∞)] = − ∞ = inf[x ∈ ℝ ∶  Φ(x) > 0]; 

(c) μ1[G1(x), G2(x)] and l1[G1(x), G2(x)] = log[1 − G2(x)] are monotonic functions. 

These statements satisfy the hypotheses established by Theorem (T4) in de Brito et al. (2019). Therefore, 

the   support of 𝐻𝐺1, 𝐺2
(∙) is the union of the supports of both baselines, that is, SHG1, G2

= SG1
∪ SG2

.  

Figures 1 and 2 evince the flexibility of the proposed class considering different baselines and it also 

illustrates the important result of the support shown in this subsection. 

 

Figure 1. Support behavior for some submodels of the proposed class. 

(a)NTLWN (b)NTLWC 
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Figure 2. Support behavior for some submodels of the proposed class. 

The chosen baselines are Weibull (W), normal (N), Cauchy (C) and gamma (Ga). In some cases (Figure 1a 

and b), we have 𝑆𝐺1
≠ 𝑆𝐺2

. Furthermore, the pdfs can have bimodal shape. 

Series representation 

This section plays a fundamental role in terms of the development of subsequent mathematical properties. 

The normal cdf can be written in terms of the error function as follows: 

Φ(z) =
1

2
[1 + erf (

z

√2
)],           (3) 

such that erf(z) =
2

√π
∫ e− 

s2

2
z

0
ds. Since erf (

z

√2
) can be linearly represented by: 

erf (
z

√2
) =

2

√π
∑

(−1)n (
z

√2
)

2n+1

n! (2n + 1)

∞

n=0

 

=  √
2

π
∑ (−

1

2
)

n z2n+1

n!(2n+1)
∞
n=0 .          (4) 

Replacing (4) in (3), we get: 

𝛷(𝑧) =
1

2
+

1

√2𝜋
∑ (−

1

2
)

n 𝑧2n+1

n! (2n + 1)

∞

𝑛=0

. 

Thus, we have that: 

Φ [tan (
π

2
G1(x))] =

1

2
+

1

√2π
∑ (−

1

2
)

n [tan(
π

2
G1(x))]

2n+1

n!(2n+1)
∞
n=0        (5) 

Since,  

tan(y) = ∑
(−1)k22k+2(22k+2−1)B2k+2

(2k+2)!

∞
k=0 y2k+1        (6) 

for |y| <
π

2
 and Bp = ∑ (

p
l
)

p−1
l=0

Bl

k−l+1
  

(Bernoulli numbers). Thus, rewriting (5) from Eq. (6) we have  

       Φ [tan (
π

2
G1(x))]  =  

1

2
+

1

√2π
∑ (−

1

2
)

n∞

n=0

 

×  

[∑
(−1)k22k+2(22k+2 − 1)B2k+2

(2k + 2)!
∞
k=0 [

π
2

G1(x)]
2k+1

]

2n+1

n! (2n + 1)
 

    =  
1

2
+ 

1

√2π
∑ (−

1

2
)

n∞

n=0

(
π

2
)

4kn+2k+2n+1

 

×  
[G1(x)]2n+1[∑

(−1)k22k+2(22k+2−1)B2k+2
(2k+2)!

∞
k=0 [

π

2
G1(x)]

2k
]

2n+1

n!(2n+1)
.       (7) 

(a)NTLWG (b)NTLWW 
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According to Gradshteyn, Ryzhik, Jeffrey, and Zwillinger (2007), a power series raised to a positive integer 

𝑁 can be expanded as: 

[∑ ajy
j

∞

j=0

]

N

= ∑ cjy
j

∞

k=0

, 

where c0 = a0
N and cj =

1

ja0
∑ (sN − j + s)ascj−s

j
s=1 , for j ≥ 1 and 𝑁 ∈ ℕ. In this way, (7) can be rewritten as: 

Φ [tan (
π

2
G1(x))]  =  

1

2
+

1

√2π
∑

(−1)nπ4kn+2k+2n+1

24kn+2k+3n+1

∞

n=0

[G1(x)]2n+1 ∑ ck{[G1(x)]2}k∞
k=0

n! (2n + 1)
 

 =  
1

2
+

1

√2π
∑ ∑

(−1)nπ4kn+2k+2n+1ck

n! (2n + 1) 24kn+2k+3n+1

∞

k=0

∞

n=0

[G1(x)]2n+2k+1, 

where 

c0 = a0
2n+1, ck =

1

ka0
∑ (s(2n + 1) − k + s)asck−s

k
s=1 , a0 = 1  

and 

as =
(−1)k22k+2(22k+2−1)B2k+2

(2k+2)!
 , 

for 

k ≥ 1 and n ∈ ℕ. 

Analogously, we have that: 

Φ[log(1 − G2(x))] =
1

2
+

1

√2π
∑ (−

1

2
)

n log(1−G2(x))
2n+1

n!(2n+1)
∞
n=0 .       (8) 

Furthermore, 

log(1 − y) = − ∑
yj+1

j+1

∞
j=0 , for |y| < 1.  

Therefore, (8) can be rewritten as: 

Φ[log(1 − G2(x))] =
1

2
+

1

√2π
∑ (−

1

2
)

n [− ∑
[G2(x)]j+1

j + 1
∞
j=0 ]

2n+1

n! (2n + 1)

∞

n=0

 

=
1

2
+

1

√2π
∑

(−1)3n+1

n!(2n+1)2n [∑
[G2(x)]j+1

j+1

∞
j=0 ]

2n+1
∞
n=0 .        (9) 

Equation (9) can be rewritten similarly as we did with (7), that is, expanding a power  series raised to a 

positive integer. Thus: 

Φ[log(1 − G2(x))] =
1

2
+

1

√2π
∑

(−1)3n+1

n! (2n + 1)2n

∞

n=0

[G2(x)]2n+1 [∑
[G2(x)]j

j + 1

∞

j=0

] 

=
1

2
+

1

√2π
∑ ∑

(−1)3n+1

n!(2n+1)2n dj
∞
j=0

∞
n=0 [G2(x)]2n+j+1,        (10) 

where 

d0 = 1, dj =
1

j
∑ (2s(n + 1) − j)asdj−s

j
s=1   

and 

as =
1

2s+1
  

for ≥ 1 and N ∈ ℕ. 

Using the expressions obtained in (7) and (10), we can rewrite (2) as follows: 
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HG1, G2
(x) =

1

√2π
∑ ∑

(−1)nπ4kn+2k+2n+1ck

n! (2n + 1) 24kn+2k+3n+1

∞

k=0

∞

n=0

[G1(x)]2n+2k+1 

 −
1

√2π
∑ ∑

(−1)3n+1dj

n!(2n+1)2n
∞
j=0

∞
n=0 [G2(x)]2n+j+1.         (11) 

Defining 

β1,n,k =
(−1)nπ4kn+2k+2n+1ck

n!(2n+1) 24kn+2k+3n+1  

and  

β2,n,j =
(−1)3n+1dj

n!(2n+1)2n,  

Equation (11) can be written as follows: 

HG1, G2
(x) =

1

√2π
{∑ β1,n,k

∞
n,k=0 [G1(x)]2n+2k+1 − ∑ β2,n,j

∞
n,j=0 [G2(x)]2n+j+1},     (12) 

namely, the cdf of the new class expressed as a linear combination of exponentiated baselines. In case of 

continuous 𝐺1 and 𝐺2 the pdf associated to (12), namely, ℎ𝐺1, 𝐺2
(𝑥) = H′G1, G2

(x), can be expressed as follows: 

hG1, G2
(x) =

1

√2π
{ ∑ β1,n,k

∞

n,k=0

g1,2n+2k+1(x) − ∑ β2,n,j

∞

n,j=0

g2,2n+j+1(x)}, 

where 

g1,2n+2k+1(x) = [2n + 2k + 1]g1(x)[G1(x)]2n+2k  

and 

g2,2n+j+1(x) = [2n + j + 1]g2(x)[G2(x)]2n+j.  

Raw moments 

The (i, j, k)th Probability Weighted Moments (PWM) introduced by Greenwood, Landwehr, Matalas, and Wallis 

(1979), are a generalization of the usual moments for probability models. PWM are an alternative for parametric 

estimating when it is not possible through the methods of moments and maximum likelihood. The PWM is given by: 

τi,j,k = 𝔼{Xi[F(X)]j[1 − F(X)]k} = ∫ ℚ[F(x)]iF(x)j[1 − F(x)]KdF(x)
1

0

 

where i, j, k ∈  ℝ and ℚ(∙) denotes the quantile function of F(∙) cdf. The advantage of computing moments in terms 

of PWM is that in most distributions, or at least the main ones, these quantities are defined in the literature 

(Cordeiro & Nadarajah, 2011). The expressions seen in the next sections are written in terms of PWMs. 

Moments are very important in Statistics, since they characterize the probability distributions and 

determine measures of central tendency, dispersion, skewness, and kurtosis. The expressions for the raw 

moments of the NTL-(G1, G2) class are presented in the following lines. 

It is known that 

μm = 𝔼(Xm) = ∫ xmdHG1, G2
(x)

+∞

−∞
.         (13) 

Thus, inserting (12) in (13) we get to: 

μm = ∫ xm
1

√2π
∑ ∑ β1,n,k(2n + 2k + 1)g1(x)[G1(x)]2n+2k

∞

k=0

∞

n=0

 dx
+∞

−∞

 

− ∫ xm 1

√2π
∑ ∑ β2,n,j(2n + j + 1)g2(x)[G2(x)]2n+j∞

j=0
∞
n=0  dx

+∞

−∞
.      (14) 

Making 

∫ xmg1(x)[G1(x)]2n+2kdx
+∞

−∞
= τm,2n+2k,0  
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and 

∫ xmg2(x)[G2(x)]2n+jdx
+∞

−∞
= ηm,2n+j,0,  

Equation (14) can be expressed by: 

μm =
1

√2π
∑ (2n + 2k + 1)β1,n,k

∞
n,k=0 τm,2n+2k,0 −

1

√2π
∑ (2n + j + 1)β2,n,j

∞
n,j=0 ηm,2n+j,0.        (15) 

Equation (15) reveals that the moments of any NTL-(G1, G2) distribution is an infinite weighted sum of 

PWMs of the baselines G1 and G2.  

The mean μ for the NTL-(G1, G2) class can be obtained making 𝑚 = 1 in (15). Thus: 

μ1 = μ =
1

√2π
∑ (2n + 2k + 1)β1,n,k

∞

n,k=0

τ1,2n+2k,0 −
1

√2π
∑ (2n + j + 1)β2,n,j

∞

n,j=0

η1,2n+j,0. 

Central moments 

The m-th central moment is denoted by:  

μm
′ = E[(X − μ)m] = ∫ (x − μ)mdH(x)

+∞

−∞

, 

and  

μm
′ = ∑ (

m
r

)m
r=0 (−1)rμrμm−r.          (16) 

However, 

μm−r =
1

√2π
∑ ∑(2n + 2k + 1)β1,n,kτm−r,2n+2k,0

∞

k=0

∞

n=0

 

 −
1

√2π
∑ ∑ (2n + j + 1)β2,n,jηm−r,2n+j,0

∞
j=0

∞
n=0         (17) 

where 

∫ xm−rg1(x)[G1(x)]2n+2kdx
+∞

−∞
= τm−r,2n+2k,0  

and 

∫ xm−rg2(x)[G2(x)]2n+jdx
+∞

−∞

= ηm−r,2n+j,0. 

Thus, inserting (17) in (16), we get to: 

μm
′ = ∑ (

m
r

)

m

r=0

(−1)rμr
1

√2π
∑ ∑(2n + 2k + 1)β1,n,kτm−r,2n+2k,0

∞

k=0

∞

n=0

 

− ∑ (
m
r

)

m

r=0

(−1)rμr
1

√2π
∑ ∑(2n + j + 1)β2,n,jηm−r,2n+j,0

∞

j=0

∞

n=0

 

=
1

√2π
∑ ∑ ∑ (

m
r

) (−1)rμr(2n + 2k + 1)β1,n,kτm−r,2n+2k,0

∞

k=0

∞

n=0

m

r=0

 

−
1

√2π
∑ ∑ ∑ (

m
r

) (−1)rμr(2n + j + 1)β2,n,jηm−r,2n+j,0
∞
j=0

∞
n=0

m
r=0 .      (18) 

Moreover, considering that 

δ1,m,r,n,k = (
m
r

) (−1)rμr(2n + 2k + 1)β1,n,k  

and 

δ2,m,r,n,j = (
m
r

) (−1)rμr(2n + j + 1)β2,n,j,          (19) 
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Equation (18) can be written as: 

μm
′ =

1

√2π
∑ ∑ δ1,m,r,n,kτm−r,2n+2k,0

∞

n,k=0

m

r=0

−
1

√2π
∑ ∑ δ2,m,r,n,jηm−r,2n+j,0

∞

n,j=0

m

r=0

. 

For 𝑚 = 2, Equation (19) represents the expansion of the variance for the NTL-(G1, G2) class, which is 

given by: 

σ2 = μ2
′ =

1

√2π
∑ ∑ δ1,2,r,n,kτ2−r,2n+2k,0

∞

n,k=0

2

r=0

−
1

√2π
∑ ∑ δ2,2,r,n,jη2−r,2n+j,0

∞

n,j=0

2

r=0

. 

Moment generating function and Characteristic function 

The mgf is considerably useful, but there are cases in which it does not exist. In such cases, one can use 

the cf, that always exists. We present in this section the expansions for both functions. 

The mgf is defined by: 

MX(t) = 𝔼(etX) = ∫ etxdHG1, G2
(x)

+∞

−∞
.         (20) 

Inserting (12) in (20), we have: 

MX(t) =
1

√2π
∑ ∑(2n + 2k + 1)β1,n,k

∞

k=0

∫ etxg1(x)[G1(x)]2n+2kdx
+∞

−∞

∞

n=0

 

−
1

√2π
∑ ∑ (2n + j + 1)β2,n,j

∞
j=0 ∫ etxg2(x)[G2(x)]2n+jdx

+∞

−∞
∞
n=0 .      (21) 

Given that 

etx = ∑
tmxm

m!
∞
m=0 ,            (22) 

we can insert (22) in (21) to obtain: 

MX(t) =
1

√2π
∑ ∑ ∑

(2n + 2k + 1)β1,n,ktm

m!

∞

m=0

∞

k=0

∫ xmg1(x)[G1(x)]2n+2kdx
+∞

−∞

∞

n=0

 

−
1

√2π
∑ ∑ ∑

(2n+j+1)β2,n,jtm

m!
∞
m=0

∞
j=0 ∫ xmg2(x)[G2(x)]2n+jdx

+∞

−∞
∞
n=0 .      (23) 

Making 

∫ xmg1(x)[G1(x)]2n+2kdx
+∞

−∞
= τm,2n+2k,0  

and 

∫ xmg2(x)[G2(x)]2n+jdx
+∞

−∞
= ηm,2n+j,0,  

the Equation (23) may be written as: 

MX(t) =
1

√2π
{ ∑

(2n + 2k + 1)β1,n,ktm

m!

∞

k,m,n=0

τm,2n+2k,0 − ∑
(2n + j + 1)β2,n,jt

m

m!

∞

j,m,n=0

ηm,2n+j,0}, 

namely, the linear representation of the mgf.  

The expression for the linear representation of the cf is derived similarly and it is given by: 

φX(t) =
1

√2π
{ ∑

(2n + 2k + 1)β1,n,kimtm

m!

∞

k,m,n=0

τm,2n+2k,0 − ∑
(2n + j + 1)β2,n,ji

mtm

m!

∞

j,m,n=0

ηm,2n+j,0}. 

Estimation and Inference 

The maximum likelihood method is a mathematical procedure to find estimators for the parameters of a 

statistical model. The method consists in finding the points that maximize the likelihood function. Such 

points also maximize the log-likelihood function, which is generally more tractable than the likelihood 
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function itself. In this section, we bring expressions for the log-likelihood function and the score vector 

considering 𝐱 = (x1, … , xn)  an observed sample of size 𝑛  from a random variable following a distribution 

belonging to the NTL-(G1, G2) class.  

Let 𝛉𝟏 = (θ11, … , θ1s)  be the parametric vector of G1(x) = G1(x|θ1) ,  θ2 = (θ21, … , θ2m)  the parametric 

vector of G2(x) = G2(x|θ2) and fG1,G2
(x) = fG1,G2

(x|θ), where θ = (θ11, … , θ1s, θ21, … , θ2m). The corresponding 

log-likelihood function can be written as: 

ℓ(𝛉; X) = ∑ {log {
π

2
g1(xi; 𝛉𝟏) sec2 [

π

2
G1(xi; 𝛉𝟏)] ϕ [

π

2
G1(xi; 𝛉1)]} +

g2(xi; 𝛉𝟐)

1 − G2(xi; 𝛉𝟐)
ϕ{log[1 − G2(xi; 𝛉𝟐)]}}

n

i=1

. 

The maximum likelihood estimates for θ can also be obtained solving the system U(θ; X) = os+m, where os+m is the 

null vector of size (s + m) × 1 and U(θ; X) =△θ ℓ(θ; X) = (uj)1≤j≤s+m
 is the score vector, whose elements are given by: 

uj = ∑ {
∂

𝜕θ2𝑗
log {

𝜋

2
g1(xi; 𝛉𝟏) sec2 [

𝜋

2
G1(xi; 𝛉𝟏)] ϕ [

𝜋

2
G1(xi; 𝛉𝟏)]} +

g2(xi; 𝛉𝟐)

1 − G2(xi; 𝛉𝟐)
ϕ{log[1 − 𝐺2(xi; 𝛉𝟐)]}}

𝑛

𝑖=1

 

for 1 ≤ j ≤ s, and 

uj = ∑ {
∂

∂θ2k
log {

π

2
g1(xi; 𝛉𝟏) sec2 [

π

2
G1(xi; 𝛉𝟏)] ϕ [

π

2
G1(xi; 𝛉𝟏)]} +

g2(xi; 𝛉𝟐)

1 − G2(xi; 𝛉𝟐)
ϕ{log[1 − G2(xi; 𝛉𝟐)]}}

n

i=1

 

for 1 ≤ j ≤ m. 

Applications to the NTL-(𝐆𝟏, 𝐆𝟐) class 

We bring in this section some applications to the proposed class. 

Theoretical application 

Let NTL-Gompertz-IGamma (NTLGoIGa) denote the distribution generated by the NTL-(G1, G2) class when 

G1, g1, G2 and g2 in (1) are replaced by the cdf and the pdf of the Gompertz (Go) distribution, the cdf and  the 

pdf of the Inverse Gamma (IGa) distribution respectively. Thus, the NTLGoIGa cdf is given by: 

HGo,IGa(x) = ∫
1

√2π
e−

t2

2 dt
tan[

π
2(1−e

−
θ
λ

(eλx−1)
)]

log(1−
Γ(α,

β
x)

Γ(α)
)

. 

Similarly, the NTLGoIGa pdf is obtained by (2). It is given by: 

hGo,GaI(x) =
π

2
θeλxe−

θ

λ
(eλx−1) sec2 (

π

2
(1 − e−

θ

λ
(eλx−1))) ϕ [tan (

π

2
(1 − e−

θ

λ
(eλx−1)))]  +

βα

Γ(α)
(

1

x
)

α+1
e

−β
x

1−
Γ(α,

β
x)

Γ(α)

ϕ [log (1 −
Γ(α,

β

x
)

Γ(α)
)], 

which is a theoretical application of the class.  

Graphs of the pdf and the failure rate considering different values of the parameters 𝜃, 𝜆, 𝛼, and 𝛽 are 

presented in Figure 3.  

 

Figure 3. pdf and failure rate for NTLGolDa. 

(b) failure rate (a) pdf 



Page 10 of 14  Cordeiro et al. 

Acta Scientiarum. Technology, v. 45, e61519, 2023 

According to Figure 3, the shape of the pdf generated by the class can be unimodal or bimodal. It confirms the 

flexibility of the class. Additionally, Figure 3b displays that the failure rate presents a non-monotonic behavior. 

NTLGoIGa distribution applied to simulated data 

In order to assess the performance of the maximum likelihood estimates for the NTLGoIGa distribution, 

we present a Monte Carlo simulation study. It was implemented using the software for statistical computing 

R version 3.4.4 (R Language, 2018) and it was considered the L-BFGS-B method of optimization. We generated 

pseudo-random samples of size n = 50, 100, 200, 500  using the method of acceptance-rejection of von 

Neumann (1951). We calculated the bias and the mean squared error (MSE) for different values of the 

parameters, as shown in Table 1. The bias and MSE are obtained as follows: 

Biasi =
1

10000
∑ (k̂ij − ki)

10000
j=1   

and 

MSEi =
1

10000
∑ (k̂ij − ki)

2
10000

j=1

, 

where ki is the 𝑖-th element of the parametric vector k = (k1, … kr) and k̂ij is the estimative for at the j-th 

replication.  

The values presented in Table 1 indicate that the bigger the sample size, the smaller the MSE, as expected. 

Table 1. Bias and MSE for NTLGoIGa model estimates. 

 Real Value Bias MSE  

n θ λ α β θ̂ λ̂ α̂ β̂ θ̂ λ̂ α̂ β̂ 

 1.3 0.02 1.5 3.2 0.425 0.136 1.136 0.176 0.310 0.093 1.916 1.605  

 0.5 0.1 1.7 4 0.555 0.235 1.022 0.556 0.436 0.214 1.830 3.783  

50 0.5 0.04 2.8 6.2 0.321 0.109 0.418 1.752 0.387 0.130 0.734 1.673  

 0.7 0.2 1.4 3 0.406 0.136 1.366 0.649 0.421 0.041 2.702 2.544  

 0.8 0.02 1.2 1.7 0.180 0.037 0.965 1.560 0.099 0.011 1.237 2.258  

 1.3 0.02 1.5 3.2 0.287 0.064 1.109 0.111 0.307 0.018 1.778 1.507  

 0.5 0.1 1.7 4 0.438 0.119 0.556 0.296 0.276 0.096 1.783 2.265  

100 0.45 0.04 2.8 6.2 0.115 0.026 0.256 1.172 0.094 0.008 0.456 1.512  

 0.7 0.2 1.4 3 0.292 0.126 1.234 0.634 0.247 0.023 2.201 2.416  

 0.8 0.02 1.2 1.7 0.132 0.024 0.890 1.510 0.070 0.002 0.883 2.170  

 1.3 0.02 1.5 3.2 0.191 0.049 1.058 0.099 0.226 0.006 1.598 1.461  

 0.5 0.1 1.7 4 0.283 0.043 0.330 0.197 0.124 0.018 0.358 1.884  

200 0.45 0.04 2.8 6.2 0.047 0.002 0.178 1.047 0.042 0.004 -0.306 1.135  

 0.7 0.2 1.4 3 0.184 0.118 1.176 0.565 0.152 0.021 1.909 1.301  

 0.8 0.02 1.2 1.7 0.072 0.020 0.864 1.478 0.065 0.001 0.879 2.088  

 1.3 0.02 1.5 3.2 0.071 0.046 0.981 0.042 0.218 0.006 1.287 1.307  

 0.5 0.1 1.7 4 0.167 0.018 0.003 0.135 0.044 0.0005 0.050 1.278  

500 0.45 0.04 2.8 6.2 0.037 0.001 0.107 0.804 0.028 0.0008 0.303 1.037  

 0.7 0.2 1.4 3 0.164 0.086 1.032 0.235 0.134 0.021 1.358 1.214  

 0.8 0.02 1.2 1.7 0.001 0.017 0.024 1.373 0.064 0.0009 0.002 1.942  

 

NTL-(𝐆𝟏, 𝐆𝟐) applied to breaking stress of carbon fibers data (in Gba) 

The data presented in Table 2 are defined in Nichols and Padgett (2006), corresponding to 100 observations 

of breaking stress of carbon fibers in Gba. 

We made comparisons between the fits of the NTLGoIGa, NTL-Normal-IGamma (NTLNIGa), NTL-

IGamma-IWeibull (NTLIGaIW), NTL-IGamma-Cauchy (NTLIGaC) distributions and their analogous mixtures 

Gompertz-IGamma (GoIGa), Normal-IGamma (NIGa), IGamma-IWeibull (IGaIW) and IGamma-Cauchy 

(IGaC), where IW (IGa) stands for inverse Weibull (inverse Gamma). Furthermore, we also made comparisons 

considering the Go, IGa, W and N distributions. Two-component normal and weibull mixture models (denoted 

by NN and WW, respectively) are considered in this application. 
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Table 2. Data defined by Nichols and Padgett (2006) consisting of 100 break observations of carbon fibers by stress (in Gba). 

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11 4.42 2.41 3.19 3.22 

1.69 3.28 3.09 1.87 3.15 4.90 3.75 2.43 2.95 2.97 3.39 2.96 2.53 2.67 

2.93 3.22 3.39 2.81 4.20 3.33 2.55 3.31 3.31 2.85 2.56 3.56 3.15 2.35 

2.55 2.59 2.38 2.81 2.77 2.17 2.83 1.92 1.41 3.68 2.97 1.36 0.98 2.76 

4.91 3.68 1.84 1.59 3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.22 1.12 1.71 

2.17 1.17 5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38 1.84 0.39 3.68 2.48 

0.85 1.61 2.79 4.70 2.03 1.80 1.57 1.08 2.03 1.61 2.12 1.89 2.88 2.82 

2.05 3.65             

 

We determined the Maximum Likelihood estimator (MLE), their standard errors (SE), the Akaike information 

criterion (AIC), the Consistent Akaike information criterion (CAIC), the Bayesian information criterion (BIC), the 

Hannan-Quinn information criterion (HQIC), and the modified statistics of Anderson-Darling (A*) and Cramér-

Von Mises (W*) (Chen & Balakrishnan, 1995) with the software R version 3.4.4 (R Language, 2018). 

Some descriptive statistics of the cited data are summarized in Table 3. They present positive skewness 

and the distribution is leptokurtic. 

Table 3. Descriptive Statistics. 

Mean Median Mode Variance Asymmetry Kurtosis Minimum Maximum 

2.62 2.7 2.17 1.02 0.37 0.17 0.39 5.56 

 

Table 4 brings the MLEs of the parameters and the corresponding SEs. 

Table 4. Estimates and respective standard errors (in parentheses). 

Distributions Estimates 

NTLGoIGa θ̂ λ̂ α̂ β̂  

 1.142 0.022 3.108 6.726  

 (0.201) (0.013) (0.647) (1.837)  

GoIGa θ̂ λ̂ α̂ β̂ ŵ 

 1.784 0.007 4.616 9.313 0.490 

 (0.259) (0.005) (1.021) (2.314) (0.061) 

NTLNIGa σ̂ μ̂ α̂ β̂  

 3.047 1.062 3.062 6.670  

 (0.121) (0.144) (0.692) (2.017)  

NIGa σ̂ μ̂ α̂ β̂ ŵ 

 99.999 99.999 5.802 13.005 0.010 

 (0.121) (0.144) (0.691) (0.045) (0.007) 

NTLIGaIW α̂ β̂ γ̂ δ̂  

 4.075 1.617 4.3423 0.328  

 (0.612) (1.232) (0.684) (0.019)  

GaIW α̂ β̂ γ̂ δ̂ ŵ 

 9.994 25.585 1.780 0.944 0.827 

 (1.283) (0.010) (0.879) (1.476) (0.097) 

NTLIGaC α̂ β̂ ε̂ κ̂  

 1.879 4.591 2.895 0.489  

 (0.370) (1.184) (0.120) (0.118)  

IGaC α̂ β̂ 𝜀̂ κ̂ ŵ 

 3.355 7.104 -3.503 0.003 0.866 

 (1.912) (5.421) (0.080) (0.087) (0.049) 

WW â1 b̂1 â1 b̂2 ŵ 

 2.454 2.854 8.541 3.134 0.783 

 (0.200) (0.109) (2.380) (0.126) (0.093) 

Go 𝜃 λ̂    

 0.791 0.076    

 (0.077) (0.017)    

GaI α̂ β̂    

 4.448 9.519    

 (0.606) (1.375)    
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W â b̂    

 2.792 2.943    

 (0.214) (0.111)    

N σ̂ μ̂    

 2.621 1.008    

 (0.100) (0.071)    

 

The small values suggest that the estimates are fairly precise.  For all models, except for the WW, the 

maximization was performed via the L-BFGS-B algorithm, since it presented the best results and convergence. 

On the other hand, the maximization for the mixtures WW and NN was realized via EM algorithm, although 

without convergence for NN model. 

Table 5 presents AIC, CAIC, BIC, HQIC, and the modified versions of the Anderson-Darling and Cramér-

von Mises statistics (A* and W* respectively) (Chen & Balakrishnan, 1995). 

Table 5. Information Criteria and Test Statistics. 

Distributions AIC AICc BIC HQCI A* W* 

NTLGoIGa 286.398 300.819 296.819 290.615 0.197 0.027 

GoIGa 292.055 310.081 305.081 297.327 0.324 0.048 

NTLNIGa 287.435 301.856 297.856 291.652 0.280 0.046 

NIGa 323.049 341.076 336.076 328.321 2.070 0.337 

NTLIGaIW 292.803 307.224 303.224 297.020 0.379 0.044 

IGaIW 302.633 320.659 315.659 307.904 0.803 0.138 

NIGaC 292.428 306.849 302.849 296.646 0.400 0.053 

IGaC 298.114 316.14 311.14 303.385 0.658 0.130 

WW 289.327 307.354 302.354 294.599 0.272 0.034 

Go 302.25 309.46 307.46 304.359 1.767 0.229 

IGa 321.474 328.684 326.684 323.583 2.871 0.522 

W 287.059 294.269 292.269 289.167 0.420 0.063 

N 289.541 296.751 294.751 291.649 0.471 0.058 

C 324.431 331.641 329.641 326.539 1.676 0.173 

 

The information criteria can be used as relative goodness-of-fit measures, such that the smallest values 

characterize the best fitted models. In spite of not being the best indication to make comparisons between 

non-nested models, the information criteria of the NTLGoIGa model figured among the most competitives 

compared to the remaining models. On the other hand, A* and W* are commonly used to investigate the 

goodness-of-fit of probabilistic models, either nested or not. Similarly, to the information criteria, the smaller 

the values of A* and W*, the better the fit. 

According to the cited statistics, the NTLGoIGa distribution outperforms most of the fitted models, 

including the mixture WW, which is a very competitive model for bimodal data. It is worth pointing that the 

NTLNIGa, NTLIGaIW and NTLIGaC models beat their corresponding mixture versions, namely, NIGa, IGaIW 

and IGaC considering all statistics. 

Figure 4 displays the histogram of the data overlapped by the fitted densities of the NTLGoIGa and the 

best three models according to A* and W*. 

 
Figure 4. Histogram. 
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The density function of the NTLGoIGa and the GoIGa mixture model density have very close shapes. We 

emphasize that numerical analysis, rather than graphical analysis, should be used to choose the best model. 

In this way, the statistics suggest that the proposed model outperforms the mixture. 

Conclusion 

We built a class of probability distributions whose cumulative can be written as a composite function of 

two baselines. The new class was designed using the method for generating classes of probability distributions 

by Brito et al. (2019). The class is called Normal-tangent-logarithm-(G1, G2) and, under certain conditions, it 

produces identifiable distributions. Some structural properties were presented, that is, the linear expansion 

of cumulative and density functions, raw and central moments, moment generating function, characteristic 

function and general coefficient. We also presented the derivatives of the log-likelihood function of the class 

and the study of the support. Moreover, we studied the NTL-Gompertz-IGamma (NTLGoIGa) distribution, 

which was generated by the class. In such study, applications to simulated and real data sets were done.  The 

fitted model was compared to other competitive distributions, including the (convex) mixture of two Weibulls. 

The information criteria AIC, BIC, CAIC and HQIC and the modified statistics of Anderson-Darling and 

Cramér-von Mises were considered in the comparisons. The results suggest that the NTLGoIGa distribution 

defeats the remainder ones considered in the numerical analysis. 
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