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ABSTRACT. Reinforced concrete is an essential material in the modern world, and the use of genetic 

algorithms that aim at the optimization of the structures of this material is an increasingly widespread tool. 

The objective of the present work was to propose a method by means of a Genetic Algorithm to find the 

optimized geometry of a rectangular reinforced concrete column based on its cost. The two main parts of 

the work were developed as: a geometry verification algorithm that received height, base, layers in x and y 

directions, diameters of transverse and longitudinal steel rebar as the main parameters of the proposed 

sections, and a genetic algorithm that generated 240 random populations and selected them, crossed among 

them and then generated new 100 generations of individuals, followed by selection of optimized ones by its 

penalized cost. The generations had more and more favorable individuals and it was possible to determine 

an optimized geometry for the proposed example. It is, therefore, concluded that genetic algorithms are 

useful tools for optimizing reinforced concrete parts with multiple parameters. The proposed algorithm 

methodology really checks and selects the best individuals for the sections proposed by engineers, and 

larger initial populations are essential to find a minimum global cost among the different options. 
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Introduction 

In the form of the most used industrial product in the world, reinforced concrete has several design 

techniques based on the theories of materials’ behavior, and also on the normalizations provided by the 

countries’ technical associations. In Brazil, the Brazilian Association of Technical Standards determines, by 

the NBR 6118 (Associação Brasileira de Normas Técnicas [ABNT], 2014), that columns are “[…] straight axis 

linear elements, usually arranged vertically, in which normal compression forces are preponderant”. Its 

design, therefore, must be given mainly in the function of the normal compression characteristic, so that the 

main other consideration is the eccentricity to which it is applied and generated by constructive 

considerations of instability, absorption of bending moment coming from the beams, considerations of 

second-order effects or creep. Figure 1 presents the domains for the design of reinforced concrete parts in the 

ultimate limit state, as they should be considered for designers, which represent the elongation (left) and 

shortening (right) of the reinforced concrete cross-section. 

A large part of the problematic about the design of reinforced concrete columns with rectangular cross-

sections is due to the fact that, commonly, the analysis of the domains must be carried out in different 

directions. The main practical design model for columns is presented by Carvalho and Pinheiro (2013) and 

uses approximate equations to define the required cross-section and abacuses for specific dispositions of the 

steel bars in the concrete cross-section that receive dimensionless forces as parameters. This form of design, 

as it gives the professional engineer the freedom to direct the design to a desired geometry, removes the 

possibility of developing techniques of optimization of the referred parts. Araújo (2014), despite not 

presenting a less empirical model for the determination of the reinforced concrete cross-section, presents the 

pure and analytical design high complexity differential equations are used to obtain the required steel bar 

section in terms of its area. The need for column optimization is an ever-present concern in engineering, 

given that the designer's role is to ensure safety with limited resources. 
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Figure 1. Domains and limit state of a transversal cross-section. Source: ABNT (2014). 

Given the multiple physical and geometric parameters that must be analyzed in combination in order to reach 

an optimized design of the column cross-section, computational techniques were developed to study the influence 

of the variation of these parameters and how they can be combined in favor of a more refined result. 

Optimization algorithms can take a deterministic or heuristic approach. Deterministic methods generally 

consider a derivable objective function and, regardless of how many times it is executed, the same result is 

obtained for the same defined starting point. Heuristic methods, usually called probabilistic methods, 

consider random values each time the code is executed, resulting in different results data in each execution. 

The main advantages of heuristic methods when compared to deterministic ones are: not requiring the 

objective function to be derivable and the possibility of using both continuous and discrete parameters or 

even a combination of both. The biggest drawback is the processing time. 

The Genetic Algorithm (GA) is a faster heuristic optimization method than others of the same type. They 

are based on the theory of natural selection and evolution of species, in which the fittest individuals, that is, 

the individuals that have a better value in the function objective, survive. 

The literature shows the frequent use of  the genetic algorithm, and that it can be applied to slabs 

(Alabbasi, Hussein, Abdeljaber, & Avci, 2020; Malveiro, Ribeiro, Sousa, & Calçada, 2018; Theyssen et al., 

2021); beams (Abdel Nour, Vié, Chateauneuf, Amziane, & Kallassy, 2021; Pérez, Cladera, Rabuñal, & Abella, 

2010; Shahnewaz, Machial, Alam, & Rteil, 2016; Solhmirzaei, Salehi, Kodur, & Naser, 2020); frame (Di 

Trapani, Malavisi, Marano, Sberna, & Greco, 2020; Gaetani d’Aragona, Polese, & Prota, 2020); columns (Li, 

Zhang, Shi, Wu, & Li, 2021); bridge elements (Chisari, Bedon, & Amadio, 2015; Kamjoo & Eamon, 2018; 

Martí, Gonzalez-Vidosa, Yepes, & Alcalá, 2013; Pachón, Castro, García-Macías, Compan, & Puertas, 2018; 

Ribeiro, Calçada, Delgado, Brehm, & Zabel, 2012); wind power towels (de Lana et al., 2021); reservoir (Stanton 

& Javadi, 2014); concrete railway barriers (Yin, Fang, Wang, & Wen, 2016); semi-rigid expansion joints made 

of steel and composite (Ramires, Andrade, Vellasco, & Lima, 2012); reinforced concrete beam-column joints 

(Sengupta & Li, 2013); smooth steel bars (Di Sarno, Pugliese, & De Risi, 2021); and the final cost of a 

reinforced concrete building (Sahab, Ashour, & Toropov, 2005). 

Given the exposed idea, the objective of this work was to identify, for a 10-floor building, the optimal 

dimensions of a rectangular reinforced concrete column, as well as an optimized reinforcement arrangement, 

resulting in a lower cost that meets all the requirements of the NBR 6118 (ABNT, 2014), through the 

development of a computational code with a genetic algorithm approach. 

Material and methods 

Case study - Calculation of characteristic forces and eccentricity 

It is considered a 2 m high corner column, that supports beams with 20 x 40 cm cross-section, which, in 

turn, supports a 10 cm high slab with dimensions of 5 x 6 m, as it can be seen in Figure 2. This column is on 

the ground floor of a building with 10 floors. To consider the characteristic load per floor, the weight strength 

of the reinforced concrete pieces (Equation 1) and the occupation load (Equation 2) are calculated using the 

information given by the NBR 6120 (ABNT, 2019), as can be seen in Equation 3: 
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Figure 2. Dimensions of the case study problem. 

𝛾𝑐𝑜𝑛𝑐 =
25𝑘𝑁

𝑚3           (1) 

𝑄 = 1,5 𝑘𝑁/𝑚²          (2) 

𝑁𝑘 = 𝑃𝑠𝑙𝑎𝑏 + 𝑃𝑏𝑒𝑎𝑚 + 𝑄 

= 25 × [(2.5 × 3.0 × 0.1) + (2.5 × 0.10 × 0.40) + (3 × 0.10 × 0.40)] + 1,5 × (2.5 × 3.0) (3) 

𝑁𝑘 = 40,78 𝑘𝑁  

In which 𝛾𝑐𝑜𝑛𝑐 is the concrete’s specific weight, 𝑄 is the beam’s load of occupation, 𝑁𝑘 is the characteristic 

normal force, 𝑃𝑠𝑙𝑎𝑏 is the weight of the slab, and 𝑃𝑏𝑒𝑎𝑚 is the weight of the beams. 

The loads on the beam in the x-direction are calculated by Equation 4 and the maximum moment by 

Equation 5, and equally in the y-direction by Equation 6 and Equation 7: 

𝑞𝑥 = 𝐺𝑠𝑙𝑎𝑏 + 𝑄𝑠𝑙𝑎𝑏 + 𝐺𝑏𝑒𝑎𝑚 =
(𝛾𝑐𝑜𝑛𝑐 × 𝑉𝑠𝑙𝑎𝑏) + (𝑄 × 𝐴𝑠𝑙𝑎𝑏) + (𝛾𝑐𝑜𝑛𝑐 × 𝑉𝑏𝑒𝑎𝑚)

𝑙
 

= {(25 × 0.1 + 1.5) × [(
5×2.5

2
) /5]} + (25 × 0.10 × 0.40) = 6 𝑘𝑁/𝑚   (4) 

𝑀𝑥 =
𝑞𝑙2

12
=

6×52

12
= 12.5 𝑘𝑁 ∙ 𝑚        (5) 

𝑞𝑦 = 𝐺𝑠𝑙𝑎𝑏 + 𝑄𝑠𝑙𝑎𝑏 + 𝐺𝑏𝑒𝑎𝑚 =
(𝛾𝑐𝑜𝑛𝑐 × 𝑉𝑠𝑙𝑎𝑏) + (𝑄 × 𝐴𝑠𝑙𝑎𝑏) + (𝛾𝑐𝑜𝑛𝑐 × 𝑉𝑏𝑒𝑎𝑚)

𝑙
 

{(25 × 0.1 + 1.5) × [(
(6+1)×3

2
) /6]} + (25 × 0.10 × 0.40) = 9

𝑘𝑁

𝑚
                       (6) 

𝑀𝑦 =
𝑞𝑙2

12
=

9×62

12
= 27 𝑘𝑁 ∙ 𝑚                         (7) 

In which 𝑞𝑥 and 𝑞𝑦 are the loads distributed on the beams, 𝐺𝑠𝑙𝑎𝑏 is the slab load on the beams, 𝑄𝑠𝑙𝑎𝑏 is the 

occupation load of the slabs on the beams, 𝐺𝑏𝑒𝑎𝑚 is the load of the weight of the beams, 𝑉𝑠𝑙𝑎𝑏 is the 

contribution volume of the slab, 𝐴𝑠𝑙𝑎𝑏 is the contribution area of the slab, 𝑉𝑏𝑒𝑎𝑚 is the beam volume, 𝑙 is the 

beam length, and 𝑀𝑥 and 𝑀𝑦 are the bending moments that are transferred to the columns. 

The floors are considered equal, so the bending moment at the top and at the base of the columns are 

equal, and in the center is null. As the column cross-section is unknown so far, the following calculations are 

assumed for the purpose of requested forces, considering the dimensions of the column proportional to the 

requesting moments. Equation 8 presents the estimate of the column area, and Equation 9, Equation 10, and 

Equation 11 present the previous calculation of dimensions. 

𝐴0 =
𝑁𝑠,𝑑

0.5×𝑓𝑐𝑘
=

1.4×(10×40.78𝑘𝑁)

0.5×
3.5𝑘𝑁

𝑐𝑚²

= 326.24 𝑐𝑚2 ≥ 360 𝑐𝑚²     (8) 

ℎ𝑥

𝑀𝑠,𝑥
~

ℎ𝑦

𝑀𝑠,𝑦
          (9) 

ℎ𝑥 × ℎ𝑦 = 𝐴0          (10) 

(
𝑀𝑠,𝑥

𝑀𝑠,𝑦
ℎ𝑦) × ℎ𝑦 = 𝐴0     . :     ℎ𝑦 = 27.89     . :     ℎ𝑥 = 12.91     (11) 
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In which 𝐴0 is the column cross-section area, 𝑁𝑠,𝑑 is the design normal force, 𝑓𝑐𝑘 is the characteristic 

compressive strength of concrete, ℎ𝑥 is the horizontal dimension of the cross-section, and ℎ𝑦 is the vertical 

dimension of the cross-section. 

Considering the minimum dimension as 20 cm according to the NBR 6118 (ABNT, 2014), without taking into 

account the increase in load, the initial dimensions of the cross-section for calculation of forces are 20 x 28 cm. 

The calculations of the eccentricities are as follows: 

a)  Geometric information: effective length (Equation 12), bending moments in the columns (Equation 

13), and slenderness coefficient (Equation 14): 

𝑙𝑒 ≥ {  𝑙  ,   𝑙0 + ℎ𝑥,𝑦 }         (12) 

In which 𝑙𝑒 is the effective length, 𝑙 is the axis-to-axis length equal to the floor height, 𝑙0 the value inside 

the beams equal to the value of the ceiling height, and ℎ𝑥,𝑦 the dimensions of the columns in both directions. 

So, if ℎ𝑥 = 20 𝑐𝑚, and ℎ𝑦 = 28 𝑐𝑚, leads to 𝑙𝑒𝑥 = 240 𝑐𝑚 and 

𝑙𝑒𝑦 = 240 𝑐𝑚. 

𝑀𝑡𝑜𝑝 = 𝑀𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑀𝑒𝑛𝑔

3𝐼𝑐𝑜𝑙𝑢𝑚𝑛
𝑙𝑐𝑜𝑙𝑢𝑚𝑛

4𝐼𝑏𝑒𝑎𝑚
𝑙𝑏𝑒𝑎𝑚

+
6𝐼𝑐𝑜𝑙𝑢𝑚𝑛
𝑙𝑐𝑜𝑙𝑢𝑚𝑛

       (13) 

where 𝑀𝑡𝑜𝑝 and 𝑀𝑏𝑜𝑡𝑡𝑜𝑚 are the bending moments absorbed by the top and the bottom of the column, 𝑀𝑒𝑛𝑔 is 

the bending moment previously calculated, 𝐼𝑐𝑜𝑙𝑢𝑚𝑛 and 𝐼𝑏𝑒𝑎𝑚 are the mass moment of inertia of the column 

and the beam, 𝑙𝑐𝑜𝑙𝑢𝑚𝑛, and 𝑙𝑏𝑒𝑎𝑚 are the lengths of the column and the beam. So, 𝑀𝑡𝑜𝑝,𝑏𝑜𝑡𝑡𝑜𝑚 𝑥 = 2.21 𝑘𝑁 ∙ 𝑚 

and  𝑀𝑡𝑜𝑝,𝑏𝑜𝑡𝑡𝑜𝑚 𝑦 = 7.60 𝑘𝑁 ∙ 𝑚. 

𝜆𝑥 =
𝑙𝑒𝑥√12

ℎ𝑥
= 41.57  ;   𝜆𝑦 =

𝑙𝑒𝑦√12

ℎ𝑦
= 29.70      (14) 

In which 𝜆 is the slenderness coefficient, 𝑙𝑒 is the effective length and ℎ is the cross-section’s height in the 

analyzed direction. 

b) First-order eccentricity 

The initial eccentricity values can be seen in Equation 15 with the already represented variables. 

𝑒𝑖𝑥 =
𝑀𝑒𝑛𝑔𝑥

𝑁𝑑
= 0.387 𝑐𝑚  ;   𝑒𝑖𝑥 =

𝑀𝑒𝑛𝑔𝑥

𝑁𝑑
= 1.33 𝑐𝑚      (15) 

The 𝜃 parameter can be calculated by Equation 16 for the accidental eccentricity calculation by Equation 17. 

1

400
≤ 𝜃1 =

1

100√𝑙𝑒𝑓
≤

1

200
   . :   𝜃1𝑥 = 𝜃1𝑦 =

1

154.9
  . :  𝜃1𝑥 = 𝜃1𝑦 =

1

200
    (16) 

𝑒𝑎𝑥 = 𝑒𝑎𝑦 = 𝜃1
𝑙

2
= 0.6 𝑐𝑚        (17) 

The minimum eccentricity to be considered by the NBR 6118 (ABNT, 2014) can be calculated by Equation 18. 

𝑒𝑚𝑖𝑛 = 1.5 + 0,03. ℎ  . :  𝑒𝑚𝑖𝑛,𝑥 = 2.1 𝑐𝑚  ;   𝑒𝑚𝑖𝑛,𝑦 = 2.34 𝑐𝑚                             (18) 

The first-order eccentricity is the largest value between the minimum eccentricity and the sum of the 

initial and accidental eccentricity, as seen in Equation 19. 

𝑒1 = 𝑒𝑖 + 𝑒𝑎 ≥ 𝑒𝑚𝑖𝑛  . :  𝑒1𝑥 = 2.1 𝑐𝑚  ;   𝑒1𝑦 = 2.34 𝑐𝑚     (19) 

c) Slenderness verification 

For the slenderness coefficient in each interval below, it is necessary to make certain considerations to 

increase the eccentricities. For 𝜆 ≤ 𝜆1, it is considered a low slenderness or robust column, considering only 

the first-order eccentricity. For 𝜆1 < 𝜆 ≤ 90, there is an average slenderness column, which requires a 

consideration of second-order effects. For 90 < 𝜆 ≤ 140, there is a high slenderness column, and for 140 <

𝜆 ≤ 200 there is an exceedingly slenderness column, which requires the consideration of the column creeping. 

Reinforced concrete columns with 𝜆 ≥ 200 are not dimensioned. The 𝜆1 parameter depends on the value of 

𝛼𝑏 (Equation 20) and can be calculated by Equation 21. 

0.4 ≤ 𝛼𝑏 = 0.6 + 0.4 ×
𝑀𝑡𝑜𝑝

𝑀𝑏𝑜𝑡𝑡𝑜𝑚
≤ 1   . :   𝛼𝑏,𝑥 = 𝛼𝑏,𝑦 = 1     (20) 
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𝜆1 =
25+12.5×

𝑒1
ℎ

𝛼𝑏
≤ 35   . :   𝜆1,𝑥 = 26.31  ;   𝜆1,𝑦 = 26.04     (21) 

In which 𝜆1 is the limit slenderness, 𝑒1 is the initial eccentricity, ℎ is the height of the cross-section in the 

analyzed direction, and 𝛼𝑏 is calculated based on the bending moments in the top and the base of the column. 

Therefore, it is necessary to carry out second-order considerations for both eccentricities. 

d) Second-order eccentricity depends on the column curvature and dimensionless normal forces, as 

presented in Equation 22. 

𝑒2 =
𝑙𝑒

2

10
.
1

𝑟
  ;    

1

𝑟
=

0.005

ℎ(𝜈 + 0.5)
≤

0.005

ℎ
  ;   𝜈 =

𝑁𝑠𝑑

𝐴𝑐 × 𝑓𝑐𝑑
 

𝜈 =
1.4×(10×40.78)

(20×28)×3.5
= 0.2913   ;    (

1

𝑟
)

𝑥
= 0.00025   ;    (

1

𝑟
)

𝑦
= 0.000179   (22) 

𝑒2,𝑥 = 2.88 𝑐𝑚   ;    𝑒2,𝑦 = 2.06 𝑐𝑚 

In which 𝑒2 is the second-order eccentricity, 𝑙𝑒 is the effective length, 
1

𝑟
  is the column curvature, ℎ is the 

height of the cross-section in the analyzed direction, 𝜈 is the dimensionless normal force, 𝑁𝑠𝑑 is the design 

normal force, 𝐴𝑐 is the concrete cross-section area, 𝑓𝑐𝑑 is the design concrete strength (defined by 𝑓𝑐𝑘/1.4). 

e) Total eccentricities in the x and y direction can be calculated by Equation 23 and Equation 24 as the 

sum of the first and second-order eccentricities. 

𝑒𝑡𝑜𝑡,𝑥 = 𝑒1,𝑥 + 𝑒2,𝑥 = 4.98 𝑐𝑚        (23) 

𝑒𝑡𝑜𝑡,𝑦 = 𝑒1,𝑦 + 𝑒2,𝑦 = 4.40 𝑐𝑚        (24) 

Therefore, the main data for requesting forces are the characteristic normal force of 40.78 kN, eccentricity 

in x and y direction respectively of 4.98 cm and 4.40 cm. 

Algorithm for columns verification 

By using the Scilab programming language, it was possible to develop an engineering software based on 

the definition of the ultimate limit state domains of NBR 6118 (ABNT, 2014), in order to calculate the 

resistance forces of a rectangular and symmetrical reinforced concrete column. The method is based on 

receiving the geometry (height, base, steel layers in x and y directions, diameters of transverse and 

longitudinal steel rebar) and material properties (𝑓𝑐𝑘 and  𝑓𝑦𝑘) of the column, which generate an envelope 

graph of applied design normal forces versus resistant moments for x and y directions. The method is obtained 

by varying the neutral line from zero to a value higher than the studied cross-section. The issue of the actual 

bending effort being oblique and not normal was simplified by the reduction of the resistance efforts in both 

directions, therefore receiving a reduction due to the smallest neutral line found, that is, the most critical 

case between the two directions (Araújo, 2014). The requesting design parameters, characteristic normal 

strength and eccentricities are compared to the envelope strengths and other normative parameters to see if 

the cross-section has design errors. 

Initially, the necessary constants for the calculations used were defined. All constants were taken from 

design parameters or the materials availability from the responsible engineer. They are: requesting force in 

kN; eccentricities in both directions in cm; a concrete layer of coverage in cm according to the NBR 6118 (ABNT, 

2014); maximum aggregate diameter in cm; characteristic strength at 28 days of concrete age in kN ∙ cm−2; 

characteristic strength of steel to yield in kN ∙ cm−2; modulus of elasticity of reinforced concrete in kN ∙ cm−2; 

number of floors; cost of concrete per cubic meter and steel cost per kilogram, in terms of the currency (the 

Brazilian currency was used, as known as real); steel density in kg m-³; slab and column heights in cm. 

In this work, the values of geometric dimensions were generated randomly. The variables that receive 

these values are column cross-section height in cm, column cross-section base in cm, vertical steel layers, 

horizontal steel layers, the diameter of transverse steel in cm (commercial values), and diameter of 

longitudinal steel in cm (commercial values). 

Initially, the normal force design was calculated. The NBR 6118 (ABNT, 2014) defines a multiplicative factor of 

1.4 for the force multiplied by a load factor if any of the dimensions (𝑑) is less than 19 cm, as defined by 𝛾𝑛 = 1.95 −

0.05 × 𝑑. Finally, the characteristic forces from each floor are multiplied by the number of floors. 

The verification of the area also comes from the NBR 6118 (ABNT, 2014), which says that the minimum 

area section of the column must be 360 cm². The diameter of the longitudinal rebar check says that it 
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must be greater than 5 mm and a quarter of the diameter of the longitudinal rebar. The diameter of the 

longitudinal rebar check says that it must be greater than 10 mm and less than an eighth of the smallest 

dimension of the column cross-section. The minimum longitudinal reinforcement rate in terms of area 

of steel is 0.4% of the concrete cross-section area or 0.15 × 𝑁𝑠/𝑓𝑦𝑘, and the minimum rate is 8% of the 

concrete cross-section. The maximum number of longitudinal layers is given by the dimension of the 

cross-section minus the concrete covers, the diameters of the transverse rebar, and the longitudinal rebar 

diameter (distance to the axis) divided by the minimum spacing, which is defined by the longitudinal 

rebar diameter plus the largest value between 1.2 times the aggregate diameter, the longitudinal rebar 

diameter itself and 2 cm. 

Based on the dimensions of the cross-section, the need for supplementary stirrups is calculated if the 

region that is between the outermost longitudinal rebar axis and 20 times the diameter of the transverse rebar 

does not include any rebar. Thus, a supplementary stirrup must be used in this location. 

The constants defined for the envelope calculations are: the bending moments defined by the design 

normal force multiplied by the eccentricities; concrete stress defined by 1.4 design normal divided by 0.85 

area; and the distance to the centroid of the most tensioned rebar, defined by the coverage added to the 

transverse gauge and half of the longitudinal gauge. 

To perform the envelope calculation, first, the steel area of each layer of the cross-section is calculated by 

varying the variable “i”, from 1 to the number of layers, with the number of rebars in the first and last layer 

being equal to the number of layers in the other direction. To define the resistant forces, the neutral line is 

varied from 0 to the limit of 4/3 of the cross-section size in the considered direction with 0.01 intervals. 

Assuming the limit value times 100, that is, if the height is 30 cm, the neutral line assumes 4,000 progressive 

values. The factor “g” then varies from 1 to 100 times the described limit, parallel to the variation of the 

neutral line value. The neutral line defines, based on the domains observed in Figure 1, the values of the 

concrete and steel reactions, which also define the resistant normal force and the resistant bending moments 

for each normal force. Considering the domain limits, the reactions are defined as it follows (the variable d 

being the distance from the most compressed face to the most tensioned rebar): 

- For the neutral line greater than 1.25 times the analyzed dimension: the force of the concrete is 0.85 of 

the area times the design compressive strength. Force is applied at the center of the cross-section. 

- For the neutral line below the limit previously described and greater than 3.5×d/13.5: the concrete force 

is 0.8 of the area (neutral line value times the dimension in the other direction) times the design compressive 

strength. Force is applied at 0.4 of the neutral line. 

- For the neutral line below the limits described above: the concrete force is 0.8 of the area (neutral line 

value times the dimension in the other direction) times the design compressive strength weighted by the 

neutral line factor divided by 3.5×d /13.5. Force is applied at 0.4 of the neutral line. 

- For the neutral line less than 3.5×d/13.5: the steel traction force in each layer below the neutral line is 

proportional to the distance between the most tensioned rebar (with a maximum design yield stress) to the 

neutral line. The force is applied at the proportional centroid of the forces (constant stress at 1% deformation). 

- For the neutral line above the limit described previously and below 3.5×d/5.5704: the steel traction force 

in each layer under the neutral line is proportional to the distance between the most tensioned rebar (with 

maximum yield stress of design) to the neutral line. The force is applied at the proportional centroid of the 

forces (deformation ranging from 1% to 0.30704%). 

- For the neutral line above the limits described previously and below the size of “d”: the steel traction 

force in each layer under the neutral line is proportional to the distance between the most tensioned rebar 

and the neutral line. The force is applied at the proportional centroid of the forces (steel tension varies from 

maximum yield with 0.30704% deformation linearly to zero tension at 0% deformation). 

- For the neutral line above “d”, the steel reaction is zero. 

The normal resistance as a function of the neutral line is given by the sum of forces, in this case, 

concrete reaction force minus steel reaction forces. The resistant bending moment as a function of the 

neutral line is given by the reaction of the concrete and steel multiplied by the respective application 

distances, added to the normal resistant reaction multiplied by the neutral line value. Therefore, the 

normal resistance is reduced as a function of the proportion of the neutral line value divided by th e 

dimension “d” for each neutral line value, in order to obtain the graph reduced in both directions. 

However, the reduction is not performed only if the neutral line is greater than the analyzed section size. 
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A graph of the normal force lessened by the resistant bending moments is plotted. For the lessened 

normal resisting force that is equal to the design requesting force, the resistive bending moment in that 

direction is adopted, which is also compared to the requesting moments, as defined by the request ing 

design normal force times the eccentricities. If the moment does not suffice this verification, an error is 

indicated in the steel of the analyzed direction. 

To calculate the column value, the concrete column volume is calculated and multiplied by the previously 

defined concrete value. The value of steel is simply defined by the sum of weights from the longitudinal rebar, 

transverse rebar, and stirrups multiplied by the value of the steel as a function of the weight. In the end, it 

sums up to obtain the final value of the column. 

Genetic algorithm 

The Genetic Algorithm (GA), created by John Holland in the 1960s, consists of an optimization algorithm 

inspired by Charles Darwin's theory, which defends the idea that only individuals with more advantageous 

characteristics could survive and reproduce (Coley, 1999). The structure of the AG is shown in Figure 3. 

 

Figure 3. Genetic Algorithm Structure. 

For the genetic algorithm, a population of 280 individuals was established. These individuals have as 

variable characteristics: the height of the cross-section (H), the base of the cross-section (B), the number of 

layers in the direction of the Y-axis (cy), the number of layers in the direction of the X-axis (cx), the transverse 

reinforcement steel bar (bittrans) and the longitudinal reinforcement rebar (bitlong). In this work, each 

individual fills a column of information in the matrix of population versus characteristics. Variables were 

randomly defined for each individual by a tool that randomizes a factor between 0 and 1 and multiplies values 

that were initially determined as maximum value. For example, if it was previously defined that the maximum 

height of the cross-section was 100 cm, the algorithm would randomize any value between 0 and 100 cm. In 

the case of the reinforcement steel bar diameter, which has defined values, it was randomized and rounded 

to the closest diameter. Once defined those variables, all individuals were evaluated and verified according to 

the NBR 6118 (ABNT, 2014), as previously explained. 

The objective function of this algorithm and the main characteristic that will define what is the most 

optimized cross-section for the column is the cost of the column, which considers the amount of concrete and 

steel used.  For the cost evaluation of all individuals of the population, they were penalized with an increase 

in the value of individuals who do not meet the normative verifications. The more unverified characteristics, 

the bigger the penalization, which will increase its final cost. 

The selection operator compares individuals randomly and selects those with the lowest penalized costs 

to reproduction, thus generating new individuals in a new population. The crossover operator used was the 

Simulated Binary Crossover (SBX), which, from the two selected individuals, generates two new individuals 
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with similar characteristics (Deb & Agrawal, 1995). As in genetics, a mutation may occur in which the heirs 

do not resemble their parents, so, for the mutation operator, a rate of 5% of mutation was adopted by using a 

randomized variable. When this random tool returns a number between 0 and 0.05, only the variable is 

randomized again, just like in the first calculation of the population.  The stopping criteria was defined by the 

number of generations equal to 100. 

The code was executed thirty times to verify that the result obtained was in fact the global best, and not 

just a local best. 

Results and discussion 

After processing the genetic algorithm, the characteristics of the column with the lowest cost are shown 

in Table 1. The optimized cross-section for this column would have this characteristic because it was the 

minimum cost achieved through the algorithm, making it the most economical solution based on the part of 

the algorithm that makes the verification. 

Table 1. Characteristics of the column with the lowest cost. 

H B cy cx Bittrans Bitlong Cost 

31.60 cm 31.65 cm 2 3 0.5 cm 1.0 cm R$ 138.55 

 

For the analysis of how the genetic algorithm works, it was chosen five graphical representations of all the 

individuals that had passed through evaluation in the algorithm. 

The first graph (Figure 4) shows cross-section areas of all individuals that passed through the algorithm 

versus their penalized costs, demonstrating how the algorithm uses the fitness function to separate 

individuals based on the number of errors detected. The noticeable lines are the amount of errors considered, 

and they show how the penalty separates the verified columns, in blue, from the unverified ones, in red. It 

was demonstrated that the verified individuals maintain a lower cost because they were not penalized, which 

allow them to be more likely to produce heirs. 

 

Figure 4. Area (cm²) vs Penalized cost of the total individuals (R$). 

The second graph (Figure 5) plots cross-section areas of all the verified individuals that passed through 

the algorithm versus its cost and shows that the dispersion of the best-selected individuals creates a density 

in smaller values that may or may not be related to smaller areas, which reinforces the proposition that the 

cheapest columns will have more generations associated with them. 
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The third graph (Figure 6) shows cross-section areas of all individuals that passed through the 

algorithm versus their costs without penalization, evidencing that if there were no fitness function, 

several individuals with an error would be vying for the lowest value. It also shows that, despite the 

errors, these individuals could generate others who approached the optimal values without errors (near 

the blue cloud). 

The fourth graph (Figure 7) plots the generations when a cheaper verified individual appears, evidencing 

that not all generations of the code were able to generate better individuals than the previous generations, 

which justifies the use of 100 generations to find an ideal individual. The more generations, the more possible 

it is to find the most optimized individual based on its cost. 

Finally, the last graph (Figure 8) brings the average cost of all individuals through the generations and 

shows that over the generations, the average penalized cost of the entire population approaches the optimal 

value, thus generating a population with more individuals without errors and penalties. Once again, this 

shows the functioning of a genetic algorithm based on the best individuals within a population. 

 
Figure 5. Area (cm²) vs Penalized cost of the non-errors’ individuals (R$). 

 

Figure 6. Area (cm²) vs Real cost of the total individuals (R$). 
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Figure 7. Generations vs Penalized cost of the lower-cost individual (R$). 

 

Figure 8. Generation vs Average of penalized costs (R$). 

Conclusion 

It was possible to perform a column verification code with oblique requests. The developed algorithm can 

be used for field engineering checks and it can also be adapted for optimizing beams or slabs. In addition, it 

was possible to implement the GA with cost evaluation. Furthermore, it was concluded that genetic 

algorithms are good sources of different parameters that make up the cross-sections of reinforced concrete 

pieces. The different algorithms with different numbers of populations and generations proposed during the 

production of this work showed that larger populations increase the chance of getting the global minimum in 

cost, that is, the most optimized column.  
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