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ABSTRACT. Electroencephalogram (EEG) signal classification is a crucial and very difficult task. 

Meanwhile, extracting features that are representative and able to discriminate different types of EEG 

signals is a complex task. Such features are usually fed to machine learning algorithms to classify the EEG 

signals based on the extracted features. This paper proposed a highly accurate and real-time features 

extraction method that can be used to help physicians in detecting different types of seizures and states in 

EEG signals characterized by a set of features extracted from the power spectrum of the EEG window. This 

is achieved by applying the following four steps. First, the EEG signals dataset contains different classes of 

EEG signals: Normal Eye Closed, Normal Eye Opened, Focal Seizure, Non-Focal Seizure, and Ictal Seizure 

activities. Second, each EEG signal has a length of 4097 samples sampled with a sampling frequency of 173.6 

Hz which resulted in 23.6 seconds in length, this signal will be truncated into windows (Sub-signals) with a 

length of 349 samples (Approximately 2 seconds) with a total number of 12 windows for each signal. 

Afterward, the Fourier Transform (FT) based power spectrum will be computed for each window, then a set 

of different features are extracted from each window's FT power spectrum, and these features are classified 

using different Machine Learning (ML) algorithms. The results showed that the proposed methodology 

yields around 98% accuracy for the five different classification scenarios using different ML algorithms. The 

suggested method is hence robust, fast, real-time, accurate, and simple. 
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Introduction 

The electrical activity of the brain is represented by the electroencephalogram (EEG) signals. 

Electroencephalography (EEG) is an investigative non-invasive method that provides information for the 

classification, diagnosis, and therapy of brain conditions (Guo, Rivero, Dorado, Rabunal, & Pazos, 2010b; 

Oweis & Abdulhay, 2011; Li, Zhou, Yuan, Geng, & Cai, 2013; Pramanick, 2013). The information about the 

type and nature of diseases that affect the brain are studied from the frequency and energy contents of the 

EEG signals (Al-Fahoum & Al-Fraihat, 2014). The EEG signal contains a time series of potentials that is caused 

by the systematic neural activities in a brain. The EEG signal collected by placing the electrodes on the scalp 

is plotted as a voltage magnitude against time 6. In general, the voltage range of the scalp EEG is between 10 

and 100 micro-volts (Pramanick, 2013; Sinha, 2008). The EEG frequency range of interest for the classification 

purpose lies between 0.1Hz and 100Hz. The main important components that are used to characterize the 

EEG are delta rhythm (0.5 - 4) Hz, theta rhythm (4 -8) Hz, alpha rhythm (8 - 13) Hz, and beta rhythm (13 - 30) 

Hz (Pramanick, 2013; Al-Fahoum & Al-Fraihat, 2014; Sinha, 2008; Kumar, Kanhangad, & Pachori, 2015). 

The changes in the electrical activity of the brain can cause dramatic, noticeable symptoms or no 

symptoms at all. Neurologists use the EEG signals to detect and categorize the patterns of the neurological 

disease and abnormal behaviors such as pre-ictal spikes, seizures Hz (Guo et al., 2010; Oweis & Abdulhay, 

2011; Li et al., 2013; Pramanick, 2013; Al-Fahoum & Al-Fraihat, 2014; Sinha, 2008; Kumar et al., 2015) sleep 

apnea (Yulita, Rosadi, Purwani, & Suryani, 2018), sleep stages (Fonseca, den Teuling, Long, & Aarts, 2018; 

Chambon, Galtier, Arnal, Wainrib, & Gramfort, 2018) and drowsiness detection (Nguyen, Ahn, Jang, Jun, & 

Kim, 2017). The analysis of the patient's EEG signal is time-consuming and laborious, and it requires the 

services of an expert (Ullah, Hussain, & Aboalsamh, 2018). A lot of research work has been done in recent 

years to detect epileptic and non-epileptic signals as a classification problem (Guo et al., 2010; Oweis & 
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Abdulhay, 2011; Li et al., 2013; Pramanick, 2013; Al-Fahoum & Al-Fraihat, 2014; Sinha, 2008; Kumar et al., 

2015; Ullah et al., 2018). An epileptic form pattern represented by the presence of spikes in EEG signals has 

become a valuable tool for assessing brain disorders, especially epileptic seizures (Ray, 1994; Mukhopadhyay 

& Ray, 1998; Molla, Islam, Hassan, Islam, & Tanaka, 2020). Most of the existing methods depend on 

decomposing the EEG signal into several levels with various feature parameters to attain better classification 

results (Molla et al., 2020). 

There is not many much available for training a classifier, so recognition of epileptic and non-epileptic 

EEG signals using ML algorithms is a challenging task. Moreover, the noise and artifacts present in the data 

in addition to the inconsistency in seizure morphology among patients create difficulty in learning the brain 

patterns associated with normal and abnormal cases (Guo et al., 2010; Oweis & Abdulhay, 2011; Li et al., 

2013; Pramanick, 2013; Al-Fahoum & Al-Fraihat, 2014; Sinha, 2008; Kumar et al., 2015; Ullah et al., 2018; 

Molla et al., 2020). Seizure sometimes causes unusual behavior, sensations, and loss of awareness (Molla 

et al., 2020;) and the number of seizure patients in the world starts to increase in the last years. Therefore, a 

robust automatic system with good performance even with fewer training samples is needed to help and assist 

neurologists in classifying epileptic and non-epileptic EEG brain signals. Signal processing (SP) and ML 

techniques are traditionally used for the existing automatic seizure detection. However, these techniques 

might show good accuracy for one problem but fail to accurately perform other problems (Mukhopadhyay & 

Ray, 1998; Molla et al., 2020; Khushaba, Takruri, Miro, & Kodagoda, 2014; Khushaba, Al-Ani, Al-Timemy, & 

Al-Jumaily, 2016; Al-Timemy, Khushaba, Bugmann, & Escudero, 2015; Zhang & Chen, 2017) 

In this paper, a highly accurate and real-time new method based on a set of features extracted from the 

power spectrum of the EEG window is proposed. This method can be used to help physicians in detecting 

different types of seizures and states in the EEG signal. The EEG signal dataset contains different classes of 

EEG signals: Normal Eye Closed, Normal Eye Opened, Focal Seizure, Non-Focal Seizure, and Ictal Seizure 

activities. This signal will be truncated into windows (Sub-Signals), then the Fourier Transform (FT) based 

power spectrum is computed for each window. Each EEG signal has a length of 4097 samples sampled with a 

sampling frequency of 173.6 Hz which results in 23.6 seconds in length, and each signal was truncated into 

23 windows. Finally, a different set of features will be extracted from each window's FT power spectrum and 

these features are classified using different ML algorithms. In this work, we employed the support vectors 

machine (SVM), extreme learning machine (ELM), and K-nearest neighbors (KNN) algorithms. The results 

have shown that our suggested method is robust, fast, real-time, accurate, and simple. This method can be 

implemented in embedded systems and clinical applications. 

The analysis of the brain signal using a computer interface system and intelligent signal segmentation 

have very important applications in medicine and military objectives (Al-Hudhud, 2014; Kotchetkov, Hwang, 

Appelboom, Kellner, & Connolly Jr., 2010.). To simplify the assembly of the brain-computer interface, a 

professional method is needed to extract features from EEG signals. The EEG signal has many sources of 

artifacts and noise which affect the main and useful features we are interested to extract from the original 

signal (Ullah et al., 2018; Ray, 1994; Mukhopadhyay & Ray, 1998; Molla et al., 2020). These artifacts are caused 

during the signal acquisition procedure due to the activities of muscles, eyes blinking, and the electrical noise 

from the power line (Al-Fahoum & Al-Fraihat, 2014; Molla et al., 2020). 

In general, EEG signal processing goes through several common steps: the step of preprocessing includes 

the signal acquisition, artifacts removal, averaging of the signal, the output thresholding, then the resulting 

signal will be enhanced, and finally, the edge detection is done for the signal after the enhancement step 

(Khushaba et al., 2016; Al-Timemy et al., 2016; Zhang & Chen, 2016). The discriminative feature extraction 

step is used to determine the most important features or information for the classification exercise (Al-

Fahoum & Al-Fraihat, 2014; Molla et al., 2020). In the final step, signal classification can be done by 

exploiting the algorithmic characteristics of the feature vector using different methods including, adaptive 

algorithms, clustering and fuzzy techniques, linear analysis, nonlinear analysis, and neural networks (Sun, 

Wang, Min, Zang, & Wang, 2018; Bhowmick, Abdou, & Bener, 2018; Sriraam et al., 2018; Kumar, Sharma, & 

Tsunoda, 2019). 

The EEG signal is a nonstationary signal with non-linear properties (Pachori & Patidar, 2014; Abdulhay 

Alafeef, Abdelhay, & Al-Bashir, 2017; Panahi, Aram, Jafari, Ma, & Sprott, 2017; Wang et al., 2018; Sun et al., 

2018; Bhowmick et al., 2018; Sriraam et al., 2018; Kumar et al., 2019). Several methods have been proposed 

to do feature-extraction of the EEG signals for automated detection of epileptic seizures. The most common 

methods used for feature extraction include the Fast Fourier transform (Polat & Güneş, 2007; Cerna & Harvey, 
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2000; Subasi, Kiymik, Alkan, & Koklukaya, 2005; Faust, Acharya, Allen, & Lin, 2008) Wavelet transform (WT) 

(Guo et al., 2010; Wang, Miao, & Xie, 2011; Nicolaou, & Georgiou, 2012; Kumar, Dewal, & Anand, 2014; 

Tawfik, Youssef, & Kholief, 2016) Eigenvectors (Übeyli, 2009; Awang, Paulra, & Yaacob, 2012), Time-

Frequency Distributions (Guerrero-Mosquera, & Vazquez, 2009; Tzallas, Tsipouras, & Fotiadis, 2009), and 

Autoregressive Methods (AR) (Subasi et al., 2005; Faust et al., 2008).  

(Polat & Güneş, 2007) have proposed A hybrid system of two stages where FFT was used for feature 

extraction and a decision tree classifier was used for decision-making and seizure detection. They have 

achieved 98.72% classification accuracy, but their method is not compatible with EEG characteristics since 

they considered that EEG is stationary for a short duration. (Tzallas et al., 2009) have performed time-

frequency representation based on the Fourier transform method considering that in a short duration the EEG 

is nonstationary. They used the fractional energy of each window as a feature, and they have done the 

classification using a neural network and achieved an average classification accuracy of 89.1%. 

(Guo, Rivero, & Pazos, 2010a) decomposed EEG signal into multiple sub-bands using multiple orthogonal 

and symmetric wavelet functions. They have extracted the approximate entropy from each sub-band and used 

them in an artificial neural network for seizure detection and achieved a classification accuracy of 98.27%. 

The feature extraction using wavelet packet entropy has been used in epilepsy recognition effectively with a 

99.44% average classification accuracy (Wang et al., 2011). Moreover, a support vector machine (SVM) (Zhang 

& Chen, 2017) with permutation entropy (PE) implementation of a short-term EEG segment has been used for 

automated epileptic seizure detection and 86.10% accuracy was achieved (Nicolaou & Georgiou, 2012). In using 

permutation entropy, it was noticed that the value for epileptic EEG is less than that for non-epileptic EEG. 

Wavelet-decomposition-based sub-band fuzzy approximate entropy (fAPE) (Kumar et al., 2014) and the 

weighted permutation entropy (WPE) (Tawfik et al., 2016) were used as potential features with SVM for 

seizure event recognition. The classification accuracy of sub-band fAPE is 98.45% and it is higher than that 

of 93.37% for WPE. However, not all features of EEG can be detected using the entropy-based implementation, 

and hence other features need to be introduced. (Übeyli, 2010) used the Burg autoregressive (AR) coefficients 

as features for epilepsy detection, they considered that the short-term window of EEG is stationary. They 

achieved an accuracy of 99.56% in implementing the least square SVM in epilepsy classification. Genetic 

programming (GP)-based feature extraction was used with a k-nearest neighbors (KNN) classifier for seizure 

detection (Guo, Rivero, Dorado, Munteanu, & Pazos, 2011). In recent years, the 1-D convolutional neural 

network architecture of deep learning algorithm has been used for seizure detection and it provides greater 

accuracy and sensitivity compared with the methods that involve manual feature selection (Chowdhury, 

Hossain, Fattah, & Shahnaz, 2019; Xu et al., 2019; Zhang, Guo, Yang, Chen, & Lo, 2019). 

Ullah, Hussain, & Aboalsamh (2018) have implemented an ensemble model for seizure detection based on 

a pyramidal one-dimensional convolutional neural network (P-1D-CNN). The learning of this model was 

implemented with a low number of parameters and a classification accuracy of 99.10% was attained. (Raghu, 

Sriraam, Hegde, & Kubben, 2019) have implemented epilepsy recognition by arranging artifact-free filtered 

EEG time series sequentially to form a square matrix for computing the matrix determinant feature, and they 

have employed a multilayer perceptron as a classifier and achieved an accuracy of 97.15%. 1D-local binary 

pattern-based features were derived using a Gabor filter bank (Kumar et al., 2015), and seizure events in 

recorded EEG were recognized using a KNN classifier. (Molla et al., 2020)  have divided the EEG signal into 

short time frames and used the discrete wavelet transform to decompose each frame of EEG into a number of sub-

bands. To characterize the spike events, a group of features was extracted from each sub-band signal of a specific 

frame. a high-dimensional feature vector was created, and a graph Eigen decomposition (GED)-based approach 

was used to select a discriminative subset of features that are effective in characterizing the EEG signals to 

recognize seizure events from non-seizure events using a feedforward neural network. Their method can be used 

for EEG-based seizure detection with a classification accuracy of 99.55% which is higher than the accuracies of 

98.72% for linear discriminant analysis and 99.39%, for support vector machine classifiers.  

Material and methods 

This section gives information about the used dataset, non-overlapping moving window principle, power 

spectrum FT, features extraction, classifier, and the performance evaluation criteria used in this study. 

Figure 1 shows the block diagram of the proposed methodology. 
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Figure 1. The proposed methodology block diagram. 

EEG dataset 

The EEG dataset used in this paper has been acquired at the Epilepsy Center of the Bonn University 

Hospital of Freiburg (Andrzejak et al., 2001). The dataset consists of five different subsets (A-E) which are 

denoted as Z, O, N, F, and S. Each subset consists of 100 single-channel EEG signals with a duration of 23.6 

seconds recorded using an analog-to-digital (A/D) converter of 12-bit resolution and a sample rate of 173.61 

Hz. Subsets A and B are collected extracranially, while the other subsets (C, D, and E) are captured 

intracranially. Both A and B sets are recorded from five different healthy volunteers using a standard 10-20 

electrode placement while their eyes open and closed. The other remaining three sets are gathered from 

another five epileptic patients. More specifically, both sets C and D are collected from the epileptogenic zone 

(D) and hippocampal formation of the opposite hemisphere of the brain (C) respectively during the seizure-

free intervals (i.e., inter-ictal EEG). Finally, set E only contains seizure signals corresponding to seizure 

attacks (i.e., ictal EEG), and it is recorded from all the recording sites exhibiting ictal activity (Andrzejak et al., 

2001). Figure 2 shows samples of signals from the used dataset. 

 

Figure 2. Sample signals from the used dataset.  
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The used dataset is unbalanced; this is the nature of the brain-related diseases where there are not enough 

patients to collect more data. One of the solutions recently appeared is the augmentation of the dataset to 

become balanced (Helwan, & Uzun Ozsahin, 2017). This solution has many drawbacks such as it requires an 

extra evaluation system quality of augmented datasets, it needs new research to create new or synthetic data 

with an advanced application, the application of few data augmentation techniques like GANs is quite 

challenging, and identification of optimal data augmentation strategy is another challenge, and finally, if real 

data contains biases the augmented data may contain same biases (Alqudah & Alqudah, 2022). Finally, to 

avoid these problems and make the research more practical we keep the dataset without augmentation. 

Moving window principle 

In this paper, we have applied the non-overlapping moving window technique. In this technique, a window 

with a predefined size usually in seconds is selected to slide over the EEG signal, the window size was 

converted to samples using equation 1. 

𝑊𝐿𝑇𝑖𝑚𝑒 =
WL𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝐹𝑠
          (1) 

where 𝑊𝐿𝑇𝑖𝑚𝑒is the window length in seconds, WL𝑆𝑎𝑚𝑝𝑙𝑒𝑠 is the window size in samples, and Fs is the sampling 

frequency. The chosen window size must be suitable for the signal length, enough to extract features from 

the signal, and does not require zero padding (Helwan & Uzun Ozsahin, 2017; Alqudah & Alqudah, 2022). 

The non-overlapping moving window technique is used to ensure that the feature extraction methods are 

paying attention to every detail in the EEG signal and its corresponding FT. Also, splitting the EEG signal into 

sub-signals using this technique will result in increasing the number of signals that will be used in building 

the classification model (Alqudah & Alqudah, 2022). Figure 3 shows an example of the proposed non-

overlapping moving window technique over the EEG signal. This example shows a signal with a length of 4188 

samples using a window of the length of 2 seconds (349 samples). 

 

Figure 3. An example of the Non-overlapping sliding window over the EEG signal. 



Page 6 of 18  Alqudah et al. 

Acta Scientiarum. Technology, v. 45, e61684, 2023 

The power spectrum based on FT 

The FT is one of the common methods used for analyzing signals in general and especially biomedical 

signals. It is basically defined as the Fourier transform of the autocorrelation function of a signal (Alqudah, 

2019b). It can be defined in the continuous and discrete time domain as follows: 

𝑃𝑆(𝑓) =
1

𝑇
∫ 𝑟𝑥𝑥(𝑡)

𝑇

0
𝑒−𝑗2𝜋𝑓𝑡  𝑑𝑡  𝑚 = 1,2,3, …,     (2) 

𝑃𝑆[𝑚] = ∑ 𝑟𝑥𝑥[𝑛]𝑁
𝑛=1 𝑒

−𝑗2𝜋𝑚𝑛

𝑁   𝑚 = 1,2,3, … , 𝑁     (3) 

where 𝑟𝑥𝑥(𝑡) and 𝑟𝑥𝑥[𝑛] are the autocorrelation functions applied on the signal. 

The autocorrelation functions have an even symmetry property, the sine terms in the expansion of the 

Fourier series will be all zeros, and equations 2 and 3 can be simplified to include only real (cosine) parts 

which are known as cosine transforms as shown in equations 4 and 5. 

𝑃𝑆(𝑓) =
1

𝑇
∫ 𝑟𝑥𝑥(𝑡)

𝑇

0
𝑐𝑜𝑠(−𝑗2𝜋𝑓𝑡) 𝑑𝑡  𝑚 = 1,2,3, …,      (4) 

𝑃𝑆[𝑚] = ∑ 𝑟𝑥𝑥[𝑛]𝑁
𝑛=1 𝑐𝑜𝑠 ( 

−𝑗2𝜋𝑚𝑛

𝑁
)   𝑚 = 1,2,3, … , 𝑁    (5) 

These definitions are not very popular, other popular definitions are used for finding the power spectrum 

in a direct method. This direct method is mainly based on the fact that the energy contained in an analog 

signal is directly proportional to the integration of the magnitude of the signal squared over time (Helwan & 

Uzun Ozsahin, 2017) as shown in equation 6. 

𝐸 = ∫ |𝑥(𝑡)|2∞

−∞
 𝑑𝑡        (6) 

By applying the Parseval theorem, this method can be extended as shown in equation 7. 

𝐸 = ∫ |𝑋(𝑓)|2∞

−∞
 𝑑𝑓          (7) 

Hence that |𝑋(𝑓)|2 is the same as the energy density function over frequency which is also known as the 

power spectral density (PSD) or what we defined before as the power spectrum (PS). Using the direct method, 

we can calculate the power spectrum as the squared magnitude of the Fourier transform of any signal (El-

Shennawy, 2014) as in equation 8. 

𝑃𝑆(𝑓) = |𝑋(𝑓)|2        (8) 

Unlike the conventional FT, since the power spectrum is defined as a magnitude, it does not have any 

information related to the phase (Alqudah & Alqudah, 2022). So, in general, the power spectrum is a non-

invertible transformation which means it is not possible to reconstruct the original signal from the power 

spectrum. Moreover, the power spectrum has a wider application range than FT and can be applied in 

situations where the phase is not useful or can be ignored or in case the data contains a lot of noise (since 

the phase is easily corrupted by noise) (Alqudah & Alqudah, 2022). Figure 4 shows an example of EEG 

signals in different Power spectrums. 

Power spectrum features from moving window 

In this section, the power spectrum is calculated for each extracted non-overlapping window, then a set of 

features are extracted. The EEG Features in this paper are extracted from the frequency domain (power 

spectrum) only and explained in detail in the following sub-sections (Khazaee & Ebrahimzadeh, 2010). 

The mean absolute value (MAV) 

The MAV is one of the popular power spectrum features that have been widely applied in power spectrum 

pattern recognition (Khazaee & Ebrahimzadeh, 2010). MAV is defined as the average absolute signal value. It 

can be expressed as 

𝑀𝐴𝑉 =
1

𝐿
∑ |𝑋𝑖|

𝐿
𝑖=1           (9) 

The wavelength (WL) 

The WL is a frequently used power spectrum feature, which represents the cumulative length of the 

waveform over time (Khazaee & Ebrahimzadeh, 2010). WL can be formulated as 



Window based Power Spectrum Features for EEG Signal Classification Page 7 of 18 

Acta Scientiarum. Technology, v. 45, e61684, 2023 

𝑊𝐿 =
1

𝐿
∑ |𝑋𝑖 − 𝑋𝑖−1|𝐿

𝑖=1        (10) 

where |𝑋𝑖| is the power spectrum of the signal and L is the length of the power spectrum. 

 

Figure 4. An example of EEG signal different power spectrums. 

The average amplitude change (AAC) 

The AAC is another power spectrum feature that calculates the average number of changes in the power 

spectrum (Khazaee & Ebrahimzadeh, 2010). AAC can be formulated as: 

𝐴𝐶𝐶 =
1

𝐿−1
∑ |𝑋𝑖+1 − 𝑋𝑖|

𝐿
𝑖=1          (11) 

The log detector (LD) 

The LD is a feature that is good at estimating the exerted force (Too, Abdullah, Saad, & Tee, 2019a). LD 

can be defined as: 

LD=exp (
1

𝐿
  ∑ {𝑙𝑜𝑔|𝑋𝑖|)

𝐿
𝑖=1 )         (12) 

The root mean square (RMS) 

The RMS is one of the popular features that are useful in describing muscle information (Khazaee & 

Ebrahimzadeh, 2010). Mathematically, RMS can be calculated as: 

𝑅𝑀𝑆 = √
1

𝐿
∑ (𝑋𝑖)

2𝐿
𝑖=1           (13) 

The difference absolute standard deviation (DASD) 

The DASD is another frequently used power spectrum feature (Khazaee & Ebrahimzadeh, 2010). It can be 

expressed as: 

𝐷𝐴𝑆𝐷 = √
1

𝐿−1
∑ (𝑋𝑖+1 − 𝑋𝑖)

2𝐿−1
𝑖=1          (14) 

The signal percentage rate (SOP) 

The SOP is defined as the mean of the signal output in which the absolute value of the power spectrum 

exceeds a pre-defined threshold value (Khazaee & Ebrahimzadeh, 2010). SOP can be given as follows: 

𝑆𝑂𝑃 =
1

𝐿
∑ 𝑓(𝑋𝑖)

𝐿
𝑖=1           (15) 
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𝐹(𝑋𝑖) = {
1          𝑋𝑖 ≥ 𝑇

0      otherwise
}         (16) 

The AAC changes 

The AAC Changes is a power spectrum feature that acts as an indicator of the abrupt changes in the power 

spectrum (Khazaee & Ebrahimzadeh, 2010). AAC changes can be computed as: 

𝐴𝐴𝐶𝐶 = ∑ 𝑓(𝑋𝑖)
𝐿−1
𝑖=1           (17) 

𝐹(𝑋𝑖) = {
1          |𝑋𝑖 − 𝑋𝑖+1| ≥ 𝑇

0      otherwise
}         (18) 

The simple square integral (SSI) 

The SSI is defined as the summation of square values of the power spectrum amplitude (Khazaee & 

Ebrahimzadeh, 2010). It can be computed as: 

𝑆𝑆𝐼 = ∑ 𝑋𝑖
2𝐿

𝑖=1            (19) 

The variance of signal (VAR) 

It is good at measuring the signal power (Khazaee & Ebrahimzadeh, 2010). It can be expressed as: 

𝑉𝐴𝑅 =
1

𝐿−1
∑ 𝑋𝑖

2𝐿
𝑖=1           (20) 

The modified mean absolute value (MMAV) 

The MMAV is an extension of the MAV feature in which the weight window function is assigned 

mathematically (Khazaee & Ebrahimzadeh, 2010). It can be computed as: 

𝑀𝑀𝐴𝑉 =
1

𝐿
∑ 𝑊𝑖|𝑋𝑖|

𝐿
𝑖=1           (21) 

𝑊𝑖 = {
1    0.25𝐿 ≤  𝑖 ≤ 0.75𝐿

0.5 otherwise
}          (22) 

The modified mean absolute value 2 (MMAV2) 

The MMAV2 is another extension of the MAV feature in which the continuous weight window function is 

assigned (Khazaee & Ebrahimzadeh, 2010). and it can be expressed as follows: 

𝑀𝑀𝐴𝑉2 =
1

𝐿
∑ 𝑊𝑖|𝑋𝑖|

𝐿
𝑖=1                                                                                                                      (23) 

𝑊𝑖 = {

1    0.25𝐿 ≤  𝑖 ≤ 0.75𝐿
4𝑖

𝐿
 𝑖 < 0.25𝐿

4(𝑖−𝐿)

𝐿
 otherwise

}         (24) 

The slope sign change (SSC) 

The SSC generally is a common feature of a signal that is widely used to determine the number of power 

spectrum changes (Khazaee & Ebrahimzadeh, 2010). and can be calculated as: 

𝑆𝑆𝐶 = ∑ 𝑓(𝑋𝑖)
𝐿−1
𝑖=2                                                                                                                  (25) 

𝑓(𝑋𝑖) = {
1    (((𝑋𝑖 >  𝑋𝑖−1)(𝑋𝑖 >  𝑋𝑖+1)) ||  (((𝑋𝑖 <  𝑋𝑖−1)(𝑋𝑖 <  𝑋𝑖+1)) 
and ((|𝑋𝑖  − 𝑋𝑖−1| ≥ Th)||(|𝑋𝑖  − 𝑋𝑖+1| ≥ Th))

0 otherwise

}    (26) 

Energy 

It Provides the sum of squared elements in the power spectrum (Khazaee & Ebrahimzadeh, 2010). Also, 

known as uniformity or the angular second moment and can be expressed as: 

𝐸𝑛 = ∑ 𝑋𝑖
𝐿
𝑖=1            (27) 

Entropy 

The Entropy measures the randomness of intensity distribution (Too et al., 2019a) and can be expressed as: 
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𝐸𝑛𝑡 = − ∑ 𝑃(𝑖)𝐿𝑜𝑔2
𝐿
𝑖=1 𝑃                                                                                                                   (28) 

The moment based features 

In this part, the moment-based features are extracted (Khazaee & Ebrahimzadeh, 2010). The normalized 

root squared zero-order moment can be expressed as: 

𝑚0 = (√𝑠𝑢𝑚𝑖=1
𝐿 𝑋𝑖2)

1

𝑇ℎ
                                                                                                                            (29) 

where Th is a predefined threshold value which is selected to be 0.1 in this paper, next we will calculate the 

first (𝑑1) and second (𝑑2) derivatives for higher-order moments. After that the normalized root squared 2nd 

(𝑚2) and 4th (𝑚4) order moments are calculated as follows: 

𝑚2 = √𝑢𝑚𝑖=1
𝐿 𝑑1𝑖1

𝐿−1

1

𝑇ℎ

                                                                                                                     (30) 

𝑚4 = √𝑢𝑚𝑖=1
𝐿 𝑑1𝑖2

𝐿−1

1

𝑇ℎ

                                                                                                                     (31) 

After calculating the root squared moments values, we can calculate the features using values called 

sparseness (SPR) and irregularity factor (IRF) (Khazaee & Ebrahimzadeh, 2010) as follows: 

𝑆𝑃𝑅 =
√|(𝑚0−𝑚2)⊙(𝑚0−𝑚4)|

𝑚0
                                                                                                                 (32) 

𝐼𝑅𝐹 =
𝑚2

√𝑚0⊙𝑚4
           (33) 

The extreme learning machine (ELM) 

The ELM is a type of non-linear and feed-forward network with one hidden layer classifier which is scalable 

and fast-to-train. The ELM structure consists of an input layer with signals connected to a large number of 

non-linear hidden neurons using the tanh function as the activation function. These connection weights are 

randomly initialized with values set to random values between-1.5 and 1.5. In the definition of the ELM, there 

is a ratio called the fan-out ratio, which represents the number of the input layer neurons to the hidden layer 

neurons, and a single iteration can be used to calculate the number of the output neurons and the optimizing 

values for the output weights. The definition of extremes in the ELM is referred to a high-speed network in 

the classification with low training error (Phung, Tran, Ma, Nguyen, & Pham, 2014; Alqudah, 2019a).  

The support vector machine (SVM) 

The SVM is one of the most widely used classifiers in the medical field. It is a type of supervised machine 

learning technique that is used to solve both problems, classification, and regression. But the main use of the 

SVM is for classification problems, especially for two classes classification or what is known as binary 

classification. SVM uses the training subset of data and marks them to which labels they belong then use them 

to build a hyper line for two classes or a hyperplane for more than two classes to separate between data. 

During the testing, the SVM uses the same hyper line or hyperplane to decide to which class the new unlabeled 

data belong, this is making the SVM a non-probability binary classifier (Alqudah & Alqudah, 2022). 

The K-nearest neighbor (KNN) 

The KNN method is one of the oldest and most widely used machine learning algorithms which is very 

simple to understand. KNN's basic principle is to classify any feature vector input using the majority voting 

technique of the testing input by finding the distances between the nearest neighbor labeled data to find the 

final class. The distance which is usually a Euclidean distance is used as a weight and it must be adapted for 

each problem being solved. The KNN performance can be improved by using a large dataset for learning the 

distance metric (Alqudah, 2019b; Alqudah, Qazan, Alquran, Qasmieh, & Alqudah, 2020) 

K-fold cross-validation 

Due to differences in the quantity of the dataset utilized, evaluating any machine learning or deep learning 

model will be difficult in general. Typically, machine learning experts divide the data set into training and 
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testing sets with various ratios, using the training set to train the model and the testing set to test the model, 

and then assessing the model's performance using the accuracy metric (Alqudah & Alqudah, 2022). However, 

this method is unreliable because the accuracy gained for one test set may differ significantly from that 

obtained for another. As a result, K-fold Cross-Validation gives an ideal solution to this problem: the answer 

is acquired by folding the data and guaranteeing that each fold is used as a testing set at some time (Alqudah 

& Alqudah, 2022). A block diagram of K-fold cross-validation is shown in Figure 5. 

 

Figure 5. Block diagram of K-fold cross-validation. 

Performance evaluation 

After training and testing the classifiers we can generate the confusion matrix, this matrix represents the 

relationship between the original class (target class) of the data with the generated class (predicted class) 

using the used classifiers. Using this matrix, we can find four main statistical values called true positive (TP), 

true negative (TN), false positive (FP), and false-negative (FN). Then to find the efficiency and performance 

of the proposed method, six different statistical values including accuracy, sensitivity, specificity, precision, 

F-measure, and Matthew correlation coefficient (MCC) were calculated (Alqudah, 2019b; Alqudah et al., 2020; 

Alqudah & Alqudah, 2022). These values are calculated as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                                        (34) 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (35) 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                                                     (36) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (37) 

F1 − Measure =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+FN
                                                                                                                     (38) 

MCC =
TN∗TP−FN∗FP

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
        (39) 

Results and discussion 

In this section, the experimental results of the proposed methodology will be shown.  Five different 

scenarios with five different sets of classes have been used as shown   in Table 1. The proposed 

methodology with the five scenarios was tested on a   computer of Intel core i5-2410M/2.3 GHz and 12 Gb 

of RAM computer. The results  demonstrate the performance evaluation of all extracted features and 

classifiers. Figure 6 shows the violin plot for a subset of features (4 out of 28). Based on Figure 6, we can 

notice that the extracted features can be used efficiently to discriminate between the classes. Where the 

range of holder exponents in the features and the other features were far away from each other, which 

means that the proposed moving windows features extraction is suitable for EEG signals classifications. 

All classifiers have been  evaluated using the 10-K fold cross-validation technique. This technique is 
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generally used to ensure that the classifier model is generalized. Table 2 shows the performance of the 

three classifiers used (ELM, SVM, and KNN). The results are obtained with ELM that has 20000 hidden 

layers, C with a value of 100e7, and Alpha with a value of 0.0001, while SVM has radial basis function 

(RBF) kernel, and finally, KNN using 1 as a number of neighbors (NN). These hyperparameters were 

selected after testing different sets of them and then choosing the ones with the highest performance. 

Figure 7 shows the confusion matrices for the best classifier among all scenarios. To check if the proposed 

methodology can be used in a real-time manner, the time consumption of the features extraction was 

measured. It starts from the time of the power spectrum calculation until the time of calculating features 

among all scenarios. The time consumption for each classifier is measured in all scenarios. Figure 8 shows 

the time consumption for feature extraction and classifiers among all scenarios.  

Table 1. Summary of the used dataset. 

Scenario Number Number of Classes Class Names Number of Signals Number of Windows 

1 3 

Ictal 

Inter-Ictal 

Normal 

300 3600 

2 3 

Focal Seizure 

Non-Focal Seizure 

Normal 

300 3600 

3 4 

Focal Seizure 

Ictal Seizure 

Non-Focal Seizure 

Normal 

400 4800 

4 5 

Focal Seizure 

Ictal Seizure 

Non Focal Seizure 

Normal Eye Closed 

Normal Eye Opened 

500 5000 

5 2 
Normal 

Abnormal 
500 5000 

 

 

Figure 6. Violine plot for subset of features among all classes. 
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Table 2. The results of all used classifiers among all scenarios. 

Scenario Number Classifier Accuracy % Sensitivity % Specificity % Precision % F1-Score % MCC 

1 

ELM 99.0±0.2 98.0±0.77 98.0±0.77 98.01±0.74 98.0±0.02 0.96±0 

SVM 90.7±0.9  91.2±2.56 90.2±2.6 90.39±2.1 90.74±0.93 0.81±0.02 

KNN 95.65±0.41  91.3±0.82 100±0 100±0 95.45±0.45 0.92±0.01 

2 

ELM 98.5±0.5 98.1±0.74 98.9±0.74 98.9±0.73 98.49±0.01 0.97±0 

SVM 88.2±1.68 85.38±2.07 93.84±0.95 86.67±1.76 85.9±1.96 0.8 ±0.03 

KNN 95.2±0.4 95.7±1.73 94.7±1:35 94.79±1.23 95.22±0.43 0.9±0.01 

3 

ELM 97.6±0.32  97.7±0.95 97.5±0.85 97.52±0.81 97.6±0.32 0.95±0.01 

SVM 87.28±1.16  85.68±1.4 95.6±0.44 86.25±1.24 85.82±1.31 0.82±0.02 

KNN 95.7±0.33  91.4±0.66 100±0 100±0 95.51±0.36 0.92±0.01 

4 

ELM 97.6±0.32  97.8±1.55 97.4±1.35 97.44±1.3 97.6±0.32 0.95±0.01 

SVM 85.9±1.95  85.9±1.98 96.48±0.5 85.88±2.03 85.74±2.01 0.82±0.02 

KNN 95.1±0.3  95.4±1.43 94.8±1.33 94.86±1.18 95.11±0.32 0.9±0.01 

5 

ELM 100±0 100±0 100±0 100±0 100±0 100±0 

SVM 96±1 96±1 96±1 97±1 96±1 0.91± 0.02 

KNN 99.8±0.19 
99.67 ±0.314 100±0 100±0 99.83 ±0.16 0.9959 

±0.0039 

 

 

Figure 7. Confusion matrices of the best classifier for A) Scenario 1, B) Scenario 2, C) Scenario 3, D) Scenario 4, and E) Scenario 5. 

 
 

(A) (B) 

  
(C) (D) 

 
(E) 
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Figure 8. Time consumption for features extractions and classifiers. 

The proposed methodology was successfully applied to the EEG signal dataset, the newly provided 

window-based power spectrum features extraction has been fed to three different types of classifiers 

namely: ELM, SVM, and KNN. The methodology was implemented in five different scenarios with 

different types of classes, the details of each scenario have been shown in Table 1. The proposed method 

was evaluated using 10 K-fold methodologies. The results in Table 2 show that the average achieved 

accuracy is 98, 90.7, and 95.65% for ELM, SVM, and KNN respectively in the first scenario, the average 

achieved accuracy is 98.50, 88.20, and 95.20% for ELM, SVM, and KNN respectively in the second 

scenario, the average achieved accuracy is 97.60%, 87.28%, and 95.70% for ELM, SVM, and KNN 

respectively in the third scenario, finally, the average achieved accuracy is 97.60, 85.90, and 95.10% for 

ELM, SVM, and KNN respectively in the fourth scenario. Moreover, for the fifth scenario (binary 

classification) it is also shown that the ELM classifier yields 100% accuracy, while the SVM and KNN 

achieved 96 and 99.8% respectively.  

From the results shown in Table 2, we can conclude that the accuracy achieved when using an ELM 

classifier is higher than that achieved when SVM and KNN were used in all scenarios, this is because that 

ELM performs better than any other classification algorithm when it is fed with a large dataset as what 

we have used in our paper. ELM is a very fast and light classifier that can be used either in mobile or web 

applications. It saves the weight matrix that is multiplied by the input features which results in the 

output decision leading to the possibility of using it in a real-time manner which makes it superior to 

other types of classification algorithms. As shown in Table 3, ELM has the shortest time compared with 

all other classifiers. Also, we can notice that the total time required to provide a decision by the proposed 

methodology using ELM is less than 1 second which typically less than other methods such as wavelet 

transform. The fast classification process, the high accuracy for all scenarios, in addition to the ability to 

apply this methodology using embedded systems are the main advantages of the proposed methodology 

over other methods in the literature.  

Finally, our method has a comparable accuracy with all previously published results in the literature 

as shown in Table 3. In our work, we have considered up to 5 scenarios in testing 5 classes of EEG signal. 

However, the maximum number of scenarios in the published literature was 3 and the number of EEG 

classes in most of the published research was only 2% (Nguyen et al., 2017; Molla et al., 2020; Guo et al., 

2010a; Wang et al., 2011; Nicolaou & Georgiou, 2012; Übeyli, 2010; Raghuet al., 2019). This makes our 

method more accurate in terms of real time monitoring and so more applicable in clinical use. Moreover, 

we have achieved 100% accuracy in classifying normal EEG vs Abnormal one, but the accuracy achieved 

in most of the published literature was less than 99% (Nguyen et al., 2017; Molla et al., 2020; Guo et al., 

2010a; Wang et al., 2011; Nicolaou & Georgiou, 2012; Übeyli, 2010; Raghuet al., 2019) and the maximum 

accuracy achieved was 99.56% by (Übeyli, 2010). 
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Table 3. Comparison between the related works and the proposed method. 

Reference Methodology Number of Classes Classes Accuracy % 

(Nguyen et al., 2017) P-1D-CNN 2 
Epileptic Seizure and Non-

Epileptic Seizure 
99.10 

(Molla et al., 2020) 

Wavelets Graph Eigen 

Decomposition with Artificial 

Neural Networks 

2 
Epileptic Seizure and Non-

Epileptic Seizure 

99.55 

98.72 

99.39 

(Guo et al., 2010a) 
Wavelets and Artificial Neural 

Networks 
2 

Epileptic Seizure and Non-

Epileptic Seizure 
98.27 

(Wang et al., 2011) Wavelets and SVM 2 
Epileptic Seizure and Non-

Epileptic Seizure 
99.44 

(Nicolaou & Georgiou, 2012) Permutation Entropy and SVM 2 
Epileptic Seizure and Non-

Epileptic Seizure 
86.10 

(Übeyli, 2010) AR and least square SVM 2 
Epileptic Seizure and Non-

Epileptic Seizure 
99.56 

(Raghu et al., 2019) 
Matrix Determinant Features 

and Multilayer Perceptron 
2 

Epileptic Seizure and Non-

Epileptic Seizure 
97.15 

This Paper 
Power Spectrum Based Features 

with ELM 

2 
Ictal, Inter-Ictal, and 

Normal 
98 

2 
Focal Seizure, Non-Focal 

Seizure, and Normal 
98.5 

4 

Focal Seizure, Ictal Seizure, 

Non-Focal, Seizure, and 

Normal 

97.6 

5 

Focal Seizure, Ictal Seizure, 

Non Focal Seizure, Normal 

Eye Closed, and Normal 

Eye Opened 

97.6 

  2 Normal and Abnormal 100 

 

Conclusion 

In this paper, we implemented a full classifying system using features extracted from the power spectrum 

with three different classification algorithms. The proposed system is used to extract 2 seconds window from 

the EEG signal and then extract features from the calculated power spectrum to classify the EEG signal. The 

system was tested using the university of Bonn EEG signal database and five different scenarios with different 

sets and numbers of classes (2, 3, 4, and 5 classes) have been used. The methodology was applied then the 

accuracy, sensitivity, and precision were calculated. The results were compared with different scenarios and 

with previously used classification methods found in the literature. The results indicated that the best 

evaluation performance was obtained using an ELM classifier among all scenarios and when compared to 

other relevant studies in the literature the proposed methodology has the highest accuracy with the highest 

number of scenarios and classes. The future work will include applying the present algorithm with a larger 

dataset and adding a new type of EEG signals and diseases to be classified. Also, we can use the method 

proposed in this paper for clinical applications to diagnose related diseases from patients in a real-time manner. 

The main limitation of this paper that even though the results are promising, the main limitation of this study is 

the limited size of the used dataset. Also, the number of classes concerning the size of the dataset is low. Finally, 

the number of subjects included in the study is also low compared to other biomedical signals datasets. 
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