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ABSTRACT. Electroencephalogram (EEG) signal classification is a crucial and very difficult task.
Meanwhile, extracting features that are representative and able to discriminate different types of EEG
signals is a complex task. Such features are usually fed to machine learning algorithms to classify the EEG
signals based on the extracted features. This paper proposed a highly accurate and real-time features
extraction method that can be used to help physicians in detecting different types of seizures and states in
EEG signals characterized by a set of features extracted from the power spectrum of the EEG window. This
is achieved by applying the following four steps. First, the EEG signals dataset contains different classes of
EEG signals: Normal Eye Closed, Normal Eye Opened, Focal Seizure, Non-Focal Seizure, and Ictal Seizure
activities. Second, each EEG signal has a length of 4097 samples sampled with a sampling frequency of 173.6
Hz which resulted in 23.6 seconds in length, this signal will be truncated into windows (Sub-signals) with a
length of 349 samples (Approximately 2 seconds) with a total number of 12 windows for each signal.
Afterward, the Fourier Transform (FT) based power spectrum will be computed for each window, then a set
of different features are extracted from each window's FT power spectrum, and these features are classified
using different Machine Learning (ML) algorithms. The results showed that the proposed methodology
yields around 98% accuracy for the five different classification scenarios using different ML algorithms. The
suggested method is hence robust, fast, real-time, accurate, and simple.
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Introduction

The electrical activity of the brain is represented by the electroencephalogram (EEG) signals.
Electroencephalography (EEG) is an investigative non-invasive method that provides information for the
classification, diagnosis, and therapy of brain conditions (Guo, Rivero, Dorado, Rabunal, & Pazos, 2010b;
Oweis & Abdulhay, 2011; Li, Zhou, Yuan, Geng, & Cai, 2013; Pramanick, 2013). The information about the
type and nature of diseases that affect the brain are studied from the frequency and energy contents of the
EEG signals (Al-Fahoum & Al-Fraihat, 2014). The EEG signal contains a time series of potentials that is caused
by the systematic neural activities in a brain. The EEG signal collected by placing the electrodes on the scalp
is plotted as a voltage magnitude against time 6. In general, the voltage range of the scalp EEG is between 10
and 100 micro-volts (Pramanick, 2013; Sinha, 2008). The EEG frequency range of interest for the classification
purpose lies between 0.1Hz and 100Hz. The main important components that are used to characterize the
EEG are delta rhythm (0.5 - 4) Hz, theta rhythm (4 -8) Hz, alpha rhythm (8 - 13) Hz, and beta rhythm (13 - 30)
Hz (Pramanick, 2013; Al-Fahoum & Al-Fraihat, 2014; Sinha, 2008; Kumar, Kanhangad, & Pachori, 2015).

The changes in the electrical activity of the brain can cause dramatic, noticeable symptoms or no
symptoms at all. Neurologists use the EEG signals to detect and categorize the patterns of the neurological
disease and abnormal behaviors such as pre-ictal spikes, seizures Hz (Guo et al., 2010; Oweis & Abdulhay,
2011; Li et al., 2013; Pramanick, 2013; Al-Fahoum & Al-Fraihat, 2014; Sinha, 2008; Kumar et al., 2015) sleep
apnea (Yulita, Rosadi, Purwani, & Suryani, 2018), sleep stages (Fonseca, den Teuling, Long, & Aarts, 2018;
Chambon, Galtier, Arnal, Wainrib, & Gramfort, 2018) and drowsiness detection (Nguyen, Ahn, Jang, Jun, &
Kim, 2017). The analysis of the patient's EEG signal is time-consuming and laborious, and it requires the
services of an expert (Ullah, Hussain, & Aboalsamh, 2018). A lot of research work has been done in recent
years to detect epileptic and non-epileptic signals as a classification problem (Guo et al., 2010; Oweis &
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Abdulhay, 2011; Li et al., 2013; Pramanick, 2013; Al-Fahoum & Al-Fraihat, 2014; Sinha, 2008; Kumar et al.,
2015; Ullah et al., 2018). An epileptic form pattern represented by the presence of spikes in EEG signals has
become a valuable tool for assessing brain disorders, especially epileptic seizures (Ray, 1994; Mukhopadhyay
& Ray, 1998; Molla, Islam, Hassan, Islam, & Tanaka, 2020). Most of the existing methods depend on
decomposing the EEG signal into several levels with various feature parameters to attain better classification
results (Molla et al., 2020).

There is not many much available for training a classifier, so recognition of epileptic and non-epileptic
EEG signals using ML algorithms is a challenging task. Moreover, the noise and artifacts present in the data
in addition to the inconsistency in seizure morphology among patients create difficulty in learning the brain
patterns associated with normal and abnormal cases (Guo et al., 2010; Oweis & Abdulhay, 2011; Li et al.,
2013; Pramanick, 2013; Al-Fahoum & Al-Fraihat, 2014; Sinha, 2008; Kumar et al., 2015; Ullah et al., 2018;
Molla et al., 2020). Seizure sometimes causes unusual behavior, sensations, and loss of awareness (Molla
et al., 2020;) and the number of seizure patients in the world starts to increase in the last years. Therefore, a
robust automatic system with good performance even with fewer training samples is needed to help and assist
neurologists in classifying epileptic and non-epileptic EEG brain signals. Signal processing (SP) and ML
techniques are traditionally used for the existing automatic seizure detection. However, these techniques
might show good accuracy for one problem but fail to accurately perform other problems (Mukhopadhyay &
Ray, 1998; Molla et al., 2020; Khushaba, Takruri, Miro, & Kodagoda, 2014; Khushaba, Al-Ani, Al-Timemy, &
Al-Jumaily, 2016; Al-Timemy, Khushaba, Bugmann, & Escudero, 2015; Zhang & Chen, 2017)

In this paper, a highly accurate and real-time new method based on a set of features extracted from the
power spectrum of the EEG window is proposed. This method can be used to help physicians in detecting
different types of seizures and states in the EEG signal. The EEG signal dataset contains different classes of
EEG signals: Normal Eye Closed, Normal Eye Opened, Focal Seizure, Non-Focal Seizure, and Ictal Seizure
activities. This signal will be truncated into windows (Sub-Signals), then the Fourier Transform (FT) based
power spectrum is computed for each window. Each EEG signal has a length of 4097 samples sampled with a
sampling frequency of 173.6 Hz which results in 23.6 seconds in length, and each signal was truncated into
23 windows. Finally, a different set of features will be extracted from each window's FT power spectrum and
these features are classified using different ML algorithms. In this work, we employed the support vectors
machine (SVM), extreme learning machine (ELM), and K-nearest neighbors (KNN) algorithms. The results
have shown that our suggested method is robust, fast, real-time, accurate, and simple. This method can be
implemented in embedded systems and clinical applications.

The analysis of the brain signal using a computer interface system and intelligent signal segmentation
have very important applications in medicine and military objectives (Al-Hudhud, 2014; Kotchetkov, Hwang,
Appelboom, Kellner, & Connolly Jr., 2010.). To simplify the assembly of the brain-computer interface, a
professional method is needed to extract features from EEG signals. The EEG signal has many sources of
artifacts and noise which affect the main and useful features we are interested to extract from the original
signal (Ullah et al., 2018; Ray, 1994; Mukhopadhyay & Ray, 1998; Molla et al., 2020). These artifacts are caused
during the signal acquisition procedure due to the activities of muscles, eyes blinking, and the electrical noise
from the power line (Al-Fahoum & Al-Fraihat, 2014; Molla et al., 2020).

In general, EEG signal processing goes through several common steps: the step of preprocessing includes
the signal acquisition, artifacts removal, averaging of the signal, the output thresholding, then the resulting
signal will be enhanced, and finally, the edge detection is done for the signal after the enhancement step
(Khushaba et al., 2016; Al-Timemy et al., 2016; Zhang & Chen, 2016). The discriminative feature extraction
step is used to determine the most important features or information for the classification exercise (Al-
Fahoum & Al-Fraihat, 2014; Molla et al., 2020). In the final step, signal classification can be done by
exploiting the algorithmic characteristics of the feature vector using different methods including, adaptive
algorithms, clustering and fuzzy techniques, linear analysis, nonlinear analysis, and neural networks (Sun,
Wang, Min, Zang, & Wang, 2018; Bhowmick, Abdou, & Bener, 2018; Sriraam et al., 2018; Kumar, Sharma, &
Tsunoda, 2019).

The EEG signal is a nonstationary signal with non-linear properties (Pachori & Patidar, 2014; Abdulhay
Alafeef, Abdelhay, & Al-Bashir, 2017; Panahi, Aram, Jafari, Ma, & Sprott, 2017; Wang et al., 2018; Sun et al.,
2018; Bhowmick et al., 2018; Sriraam et al., 2018; Kumar et al., 2019). Several methods have been proposed
to do feature-extraction of the EEG signals for automated detection of epileptic seizures. The most common
methods used for feature extraction include the Fast Fourier transform (Polat & Giines, 2007; Cerna & Harvey,
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2000; Subasi, Kiymik, Alkan, & Koklukaya, 2005; Faust, Acharya, Allen, & Lin, 2008) Wavelet transform (WT)
(Guo et al., 2010; Wang, Miao, & Xie, 2011; Nicolaou, & Georgiou, 2012; Kumar, Dewal, & Anand, 2014;
Tawfik, Youssef, & Kholief, 2016) Eigenvectors (Ubeyli, 2009; Awang, Paulra, & Yaacob, 2012), Time-
Frequency Distributions (Guerrero-Mosquera, & Vazquez, 2009; Tzallas, Tsipouras, & Fotiadis, 2009), and
Autoregressive Methods (AR) (Subasi et al., 2005; Faust et al., 2008).

(Polat & Giines, 2007) have proposed A hybrid system of two stages where FFT was used for feature
extraction and a decision tree classifier was used for decision-making and seizure detection. They have
achieved 98.72% classification accuracy, but their method is not compatible with EEG characteristics since
they considered that EEG is stationary for a short duration. (Tzallas et al., 2009) have performed time-
frequency representation based on the Fourier transform method considering that in a short duration the EEG
is nonstationary. They used the fractional energy of each window as a feature, and they have done the
classification using a neural network and achieved an average classification accuracy of 89.1%.

(Guo, Rivero, & Pazos, 2010a) decomposed EEG signal into multiple sub-bands using multiple orthogonal
and symmetric wavelet functions. They have extracted the approximate entropy from each sub-band and used
them in an artificial neural network for seizure detection and achieved a classification accuracy of 98.27%.
The feature extraction using wavelet packet entropy has been used in epilepsy recognition effectively with a
99.44% average classification accuracy (Wang et al., 2011). Moreover, a support vector machine (SVM) (Zhang
& Chen, 2017) with permutation entropy (PE) implementation of a short-term EEG segment has been used for
automated epileptic seizure detection and 86.10% accuracy was achieved (Nicolaou & Georgiou, 2012). In using
permutation entropy, it was noticed that the value for epileptic EEG is less than that for non-epileptic EEG.

Wavelet-decomposition-based sub-band fuzzy approximate entropy (fAPE) (Kumar et al., 2014) and the
weighted permutation entropy (WPE) (Tawfik et al., 2016) were used as potential features with SVM for
seizure event recognition. The classification accuracy of sub-band fAPE is 98.45% and it is higher than that
of 93.37% for WPE. However, not all features of EEG can be detected using the entropy-based implementation,
and hence other features need to be introduced. (Ubeyli, 2010) used the Burg autoregressive (AR) coefficients
as features for epilepsy detection, they considered that the short-term window of EEG is stationary. They
achieved an accuracy of 99.56% in implementing the least square SVM in epilepsy classification. Genetic
programming (GP)-based feature extraction was used with a k-nearest neighbors (KNN) classifier for seizure
detection (Guo, Rivero, Dorado, Munteanu, & Pazos, 2011). In recent years, the 1-D convolutional neural
network architecture of deep learning algorithm has been used for seizure detection and it provides greater
accuracy and sensitivity compared with the methods that involve manual feature selection (Chowdhury,
Hossain, Fattah, & Shahnaz, 2019; Xu et al., 2019; Zhang, Guo, Yang, Chen, & Lo, 2019).

Ullah, Hussain, & Aboalsamh (2018) have implemented an ensemble model for seizure detection based on
a pyramidal one-dimensional convolutional neural network (P-1D-CNN). The learning of this model was
implemented with a low number of parameters and a classification accuracy of 99.10% was attained. (Raghu,
Sriraam, Hegde, & Kubben, 2019) have implemented epilepsy recognition by arranging artifact-free filtered
EEG time series sequentially to form a square matrix for computing the matrix determinant feature, and they
have employed a multilayer perceptron as a classifier and achieved an accuracy of 97.15%. 1D-local binary
pattern-based features were derived using a Gabor filter bank (Kumar et al., 2015), and seizure events in
recorded EEG were recognized using a KNN classifier. (Molla et al., 2020) have divided the EEG signal into
short time frames and used the discrete wavelet transform to decompose each frame of EEG into a number of sub-
bands. To characterize the spike events, a group of features was extracted from each sub-band signal of a specific
frame. a high-dimensional feature vector was created, and a graph Eigen decomposition (GED)-based approach
was used to select a discriminative subset of features that are effective in characterizing the EEG signals to
recognize seizure events from non-seizure events using a feedforward neural network. Their method can be used
for EEG-based seizure detection with a classification accuracy of 99.55% which is higher than the accuracies of
98.72% for linear discriminant analysis and 99.39%, for support vector machine classifiers.

Material and methods

This section gives information about the used dataset, non-overlapping moving window principle, power
spectrum FT, features extraction, classifier, and the performance evaluation criteria used in this study.
Figure 1 shows the block diagram of the proposed methodology.
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Figure 1. The proposed methodology block diagram.

EEG dataset

Alqudah et al.

The EEG dataset used in this paper has been acquired at the Epilepsy Center of the Bonn University
Hospital of Freiburg (Andrzejak et al., 2001). The dataset consists of five different subsets (A-E) which are
denoted as Z, O, N, F, and S. Each subset consists of 100 single-channel EEG signals with a duration of 23.6
seconds recorded using an analog-to-digital (A/D) converter of 12-bit resolution and a sample rate of 173.61
Hz. Subsets A and B are collected extracranially, while the other subsets (C, D, and E) are captured
intracranially. Both A and B sets are recorded from five different healthy volunteers using a standard 10-20
electrode placement while their eyes open and closed. The other remaining three sets are gathered from
another five epileptic patients. More specifically, both sets C and D are collected from the epileptogenic zone
(D) and hippocampal formation of the opposite hemisphere of the brain (C) respectively during the seizure-
free intervals (i.e., inter-ictal EEG). Finally, set E only contains seizure signals corresponding to seizure
attacks (i.e., ictal EEG), and it is recorded from all the recording sites exhibiting ictal activity (Andrzejak et al.,
2001). Figure 2 shows samples of signals from the used dataset.
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Figure 2. Sample signals from the used dataset.
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The used dataset is unbalanced; this is the nature of the brain-related diseases where there are not enough
patients to collect more data. One of the solutions recently appeared is the augmentation of the dataset to
become balanced (Helwan, & Uzun Ozsahin, 2017). This solution has many drawbacks such as it requires an
extra evaluation system quality of augmented datasets, it needs new research to create new or synthetic data
with an advanced application, the application of few data augmentation techniques like GANs is quite
challenging, and identification of optimal data augmentation strategy is another challenge, and finally, if real
data contains biases the augmented data may contain same biases (Alqudah & Alqudah, 2022). Finally, to
avoid these problems and make the research more practical we keep the dataset without augmentation.

Moving window principle
In this paper, we have applied the non-overlapping moving window technique. In this technique, a window
with a predefined size usually in seconds is selected to slide over the EEG signal, the window size was
converted to samples using equation 1.

_ WLSamples
WLTime - Fq (1)

where WLzp,.is the window length in seconds, WLggnpies is the window size in samples, and Fs is the sampling
frequency. The chosen window size must be suitable for the signal length, enough to extract features from
the signal, and does not require zero padding (Helwan & Uzun Ozsahin, 2017; Alqudah & Alqudah, 2022).
The non-overlapping moving window technique is used to ensure that the feature extraction methods are
paying attention to every detail in the EEG signal and its corresponding FT. Also, splitting the EEG signal into
sub-signals using this technique will result in increasing the number of signals that will be used in building
the classification model (Alqudah & Alqudah, 2022). Figure 3 shows an example of the proposed non-
overlapping moving window technique over the EEG signal. This example shows a signal with a length of 4188
samples using a window of the length of 2 seconds (349 samples).
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Figure 3. An example of the Non-overlapping sliding window over the EEG signal.

Acta Scientiarum. Technology, v. 45, €61684, 2023



Page 6 of 18 Alqudah et al.

The power spectrum based on FT

The FT is one of the common methods used for analyzing signals in general and especially biomedical
signals. It is basically defined as the Fourier transform of the autocorrelation function of a signal (Alqudah,
2019b). It can be defined in the continuous and discrete time domain as follows:

PS(f) =2 [y rex(®) et dt  m=123,.., )
—j2mmn
PS[m] = YN_ . [n] e W m=123,..,N 3)

where 7, (t) and ,.[n] are the autocorrelation functions applied on the signal.

The autocorrelation functions have an even symmetry property, the sine terms in the expansion of the
Fourier series will be all zeros, and equations 2 and 3 can be simplified to include only real (cosine) parts
which are known as cosine transforms as shown in equations 4 and 5.

PS(f) = = J, rx(t) cos(=j2mft)dt  m=123,.., )

PS[m] = ¥N_, 1. [n] cos ( _jz;lmn) m=123,..N (5)

These definitions are not very popular, other popular definitions are used for finding the power spectrum
in a direct method. This direct method is mainly based on the fact that the energy contained in an analog
signal is directly proportional to the integration of the magnitude of the signal squared over time (Helwan &
Uzun Ozsahin, 2017) as shown in equation 6.

E=["|x@®)| dt (6)
By applying the Parseval theorem, this method can be extended as shown in equation 7.
E= [ 1X(N)I? df (7)

Hence that |X(f)|? is the same as the energy density function over frequency which is also known as the
power spectral density (PSD) or what we defined before as the power spectrum (PS). Using the direct method,
we can calculate the power spectrum as the squared magnitude of the Fourier transform of any signal (El-
Shennawy, 2014) as in equation 8.

PS(f) = 1X(O)I? ®

Unlike the conventional FT, since the power spectrum is defined as a magnitude, it does not have any
information related to the phase (Alqudah & Alqudah, 2022). So, in general, the power spectrum is a non-
invertible transformation which means it is not possible to reconstruct the original signal from the power
spectrum. Moreover, the power spectrum has a wider application range than FT and can be applied in
situations where the phase is not useful or can be ignored or in case the data contains a lot of noise (since
the phase is easily corrupted by noise) (Alqudah & Alqudah, 2022). Figure 4 shows an example of EEG
signals in different Power spectrums.

Power spectrum features from moving window
In this section, the power spectrum is calculated for each extracted non-overlapping window, then a set of
features are extracted. The EEG Features in this paper are extracted from the frequency domain (power
spectrum) only and explained in detail in the following sub-sections (Khazaee & Ebrahimzadeh, 2010).
The mean absolute value (MAYV)

The MAYV is one of the popular power spectrum features that have been widely applied in power spectrum
pattern recognition (Khazaee & Ebrahimzadeh, 2010). MAV is defined as the average absolute signal value. It
can be expressed as

MAV =23k 1X| )

The wavelength (WL)

The WL is a frequently used power spectrum feature, which represents the cumulative length of the
waveform over time (Khazaee & Ebrahimzadeh, 2010). WL can be formulated as
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WL = 2%k |X; = Xy | (10)

where |X;| is the power spectrum of the signal and L is the length of the power spectrum.
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Figure 4. An example of EEG signal different power spectrums.

The average amplitude change (AAC)

The AAC is another power spectrum feature that calculates the average number of changes in the power
spectrum (Khazaee & Ebrahimzadeh, 2010). AAC can be formulated as:

ACC = =Tk [X;py — Xil (11)

The log detector (LD)

The LD is a feature that is good at estimating the exerted force (Too, Abdullah, Saad, & Tee, 2019a). LD
can be defined as:

LD=exp (; Zh.{loglXi])) (12)

The root mean square (RMS)

The RMS is one of the popular features that are useful in describing muscle information (Khazaee &
Ebrahimzadeh, 2010). Mathematically, RMS can be calculated as:

RMS = |23, (X)) (13)

The difference absolute standard deviation (DASD)

The DASD is another frequently used power spectrum feature (Khazaee & Ebrahimzadeh, 2010). It can be
expressed as:

DASD = |—=¥L (Xpy — X))? (14)

The signal percentage rate (SOP)

The SOP is defined as the mean of the signal output in which the absolute value of the power spectrum
exceeds a pre-defined threshold value (Khazaee & Ebrahimzadeh, 2010). SOP can be given as follows:

SOP = - ¥k, (X)) (15)
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1 XiZT} (16)

FO) = {0 otherwise
The AAC changes

The AAC Changes is a power spectrum feature that acts as an indicator of the abrupt changes in the power
spectrum (Khazaee & Ebrahimzadeh, 2010). AAC changes can be computed as:

AACC = 3i2] f(X) (17)
N (1 |Xi = Xipa| =T
FX:) { 0 otherwise } (18)

The simple square integral (SSI)

The SSI is defined as the summation of square values of the power spectrum amplitude (Khazaee &
Ebrahimzadeh, 2010). It can be computed as:

SSI =Yk X? (19)
The variance of signal (VAR)
It is good at measuring the signal power (Khazaee & Ebrahimzadeh, 2010). It can be expressed as:

1

The modified mean absolute value (MMAYV)
The MMAV is an extension of the MAV feature in which the weight window function is assigned
mathematically (Khazaee & Ebrahimzadeh, 2010). It can be computed as:

MMAV = =%k W;|X;| 1)

(22)

W, = {1 025L < i< 0.75L}

0.5 otherwise
The modified mean absolute value 2 (MMAV2)

The MMAV?2 is another extension of the MAV feature in which the continuous weight window function is
assigned (Khazaee & Ebrahimzadeh, 2010). and it can be expressed as follows:

1
MMAV2 = -3 Wil Xi| (23)
1 0.25L < i <0.75L
4,
w; = i i <0.25L (24)
2D otherwise

L
The slope sign change (SSC)

The SSC generally is a common feature of a signal that is widely used to determine the number of power
spectrum changes (Khazaee & Ebrahimzadeh, 2010). and can be calculated as:

SSC = X155 f(X) 25)
1 (X > Xim)X > Xip)) | (K < Xim) (X < Xig1))
fX) =1 and ((|1X; — X;_4| = Th)||(|X; — X;11| = Th)) (26)

0 otherwise

Energy

It Provides the sum of squared elements in the power spectrum (Khazaee & Ebrahimzadeh, 2010). Also,
known as uniformity or the angular second moment and can be expressed as:

En =3k, X, 27)

Entropy

The Entropy measures the randomness of intensity distribution (Too et al., 2019a) and can be expressed as:
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— L :
Ent ==Y, P()Log, P (28)

The moment based features
In this part, the moment-based features are extracted (Khazaee & Ebrahimzadeh, 2010). The normalized
root squared zero-order moment can be expressed as:

1

Mg = (,/sumlexiz)T_” (29)

where Th is a predefined threshold value which is selected to be 0.1 in this paper, next we will calculate the
first (d,) and second (d,) derivatives for higher-order moments. After that the normalized root squared 2nd
(m,) and 4th (m,) order moments are calculated as follows:

my = Jump, 4 (30)
1
Th
_ L di1;2
my = |umj_, L—Ll (31)

After calculating the root squared moments values, we can calculate the features using values called
sparseness (SPR) and irregularity factor (IRF) (Khazaee & Ebrahimzadeh, 2010) as follows:

SPR — \/I(mO_mZ)O(mO_m4)| (32)
mo
— m2
IRF = —=2— (33)

The extreme learning machine (ELM)

The ELM is a type of non-linear and feed-forward network with one hidden layer classifier which is scalable
and fast-to-train. The ELM structure consists of an input layer with signals connected to a large number of
non-linear hidden neurons using the tanh function as the activation function. These connection weights are
randomly initialized with values set to random values between-1.5 and 1.5. In the definition of the ELM, there
is a ratio called the fan-out ratio, which represents the number of the input layer neurons to the hidden layer
neurons, and a single iteration can be used to calculate the number of the output neurons and the optimizing
values for the output weights. The definition of extremes in the ELM is referred to a high-speed network in
the classification with low training error (Phung, Tran, Ma, Nguyen, & Pham, 2014; Alqudah, 2019a).

The support vector machine (SVM)

The SVM is one of the most widely used classifiers in the medical field. It is a type of supervised machine
learning technique that is used to solve both problems, classification, and regression. But the main use of the
SVM is for classification problems, especially for two classes classification or what is known as binary
classification. SVM uses the training subset of data and marks them to which labels they belong then use them
to build a hyper line for two classes or a hyperplane for more than two classes to separate between data.
During the testing, the SVM uses the same hyper line or hyperplane to decide to which class the new unlabeled
data belong, this is making the SVM a non-probability binary classifier (Alqudah & Alqudah, 2022).

The K-nearest neighbor (KNN)

The KNN method is one of the oldest and most widely used machine learning algorithms which is very
simple to understand. KNN's basic principle is to classify any feature vector input using the majority voting
technique of the testing input by finding the distances between the nearest neighbor labeled data to find the
final class. The distance which is usually a Euclidean distance is used as a weight and it must be adapted for
each problem being solved. The KNN performance can be improved by using a large dataset for learning the
distance metric (Alqudah, 2019b; Alqudah, Qazan, Alquran, Qasmieh, & Alqudah, 2020)

K-fold cross-validation

Due to differences in the quantity of the dataset utilized, evaluating any machine learning or deep learning
model will be difficult in general. Typically, machine learning experts divide the data set into training and
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testing sets with various ratios, using the training set to train the model and the testing set to test the model,
and then assessing the model's performance using the accuracy metric (Alqudah & Alqudah, 2022). However,
this method is unreliable because the accuracy gained for one test set may differ significantly from that
obtained for another. As a result, K-fold Cross-Validation gives an ideal solution to this problem: the answer
is acquired by folding the data and guaranteeing that each fold is used as a testing set at some time (Alqudah
& Alqudah, 2022). A block diagram of K-fold cross-validation is shown in Figure 5.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration K

Fold 2

Fold 3

Fold 4 Fold 4

Figure 5. Block diagram of K-fold cross-validation.

Performance evaluation

After training and testing the classifiers we can generate the confusion matrix, this matrix represents the
relationship between the original class (target class) of the data with the generated class (predicted class)
using the used classifiers. Using this matrix, we can find four main statistical values called true positive (TP),
true negative (TN), false positive (FP), and false-negative (FN). Then to find the efficiency and performance
of the proposed method, six different statistical values including accuracy, sensitivity, specificity, precision,
F-measure, and Matthew correlation coefficient (MCC) were calculated (Alqudah, 2019b; Alqudah et al., 2020;
Alqudah & Alqudah, 2022). These values are calculated as follows.

Accuracy = L — (34)
TP+TN+FP+FN
Sensitivity = —— (35)
s TN
Specificity = TNIFP (36)
Precision = —— (37)
TP+FP
F1 — Measure = —— (38)
2TP+FP+FN

TN*TP—FNxFP
MCC = \/(TP+FP) (TP+FN)(TN+FP)(TN+FN) (39)

Results and discussion

In this section, the experimental results of the proposed methodology will be shown. Five different
scenarios with five different sets of classes have been used as shown in Table 1. The proposed
methodology with the five scenarios was tested on a computer of Intel core i5-2410M/2.3 GHz and 12 Gb
of RAM computer. The results demonstrate the performance evaluation of all extracted features and
classifiers. Figure 6 shows the violin plot for a subset of features (4 out of 28). Based on Figure 6, we can
notice that the extracted features can be used efficiently to discriminate between the classes. Where the
range of holder exponents in the features and the other features were far away from each other, which
means that the proposed moving windows features extraction is suitable for EEG signals classifications.
All classifiers have been evaluated using the 10-K fold cross-validation technique. This technique is
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generally used to ensure that the classifier model is generalized. Table 2 shows the performance of the
three classifiers used (ELM, SVM, and KNN). The results are obtained with ELM that has 20000 hidden
layers, C with a value of 100e7, and Alpha with a value of 0.0001, while SVM has radial basis function
(RBF) kernel, and finally, KNN using 1 as a number of neighbors (NN). These hyperparameters were
selected after testing different sets of them and then choosing the ones with the highest performance.
Figure 7 shows the confusion matrices for the best classifier among all scenarios. To check if the proposed
methodology can be used in a real-time manner, the time consumption of the features extraction was
measured. It starts from the time of the power spectrum calculation until the time of calculating features
among all scenarios. The time consumption for each classifier is measured in all scenarios. Figure 8 shows
the time consumption for feature extraction and classifiers among all scenarios.

Table 1. Summary of the used dataset.

Scenario Number Number of Classes Class Names Number of Signals Number of Windows
Ictal
1 3 Inter-Ictal 300 3600
Normal
Focal Seizure
2 3 Non-Focal Seizure 300 3600
Normal
Focal Seizure
Ictal Seizure

5 4 Non-Focal Seizure 400 4800
Normal
Focal Seizure
Ictal Seizure
4 5 Non Focal Seizure 500 5000
Normal Eye Closed
Normal Eye Opened
Normal
5 2 Abnormal 500 5000
051 ' ' ' ' 1 0.5f ' ' ' ' ]
~ N
o o
S =] L i
% Of 1 &8 0
0} o
L L
-0.5 : : : : : -0.5 : :
e = ] QO S e < e ) S
S0 Lo g (et o g %e\’l«‘)‘ S o
oc;a\ \0\9\ 00'6\ \%\!e 6\;6 Oo’b\ \0\9\ 00‘3\ \e\!e 6\36
< < & \ < < & N
o® X 2 o X 2
W QO (o WO QO (o
0.5 T T ; T T 0.5 T T T T
™ <
[0) [0}
5 oy 1 2 of 1
3 3
L L
-05¢ ) ) ) ] 05
e = ] QS S e &) e [} QS
e‘\’l«‘)‘ e\’b“‘ e’,\i‘)( 0\0‘5’e e é,\’l«‘)( e\’b& 6‘\‘1«‘)‘ Q\o‘f’e e
\Y N Y (] A} N AN (<]
?009 O ?00'5 a\?)! \(,;ge ?00‘3 O <,oo’é a\?)! \Q/\;e
o® X 2 o X «2
W QO (o WO QO (o

Figure 6. Violine plot for subset of features among all classes.
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Table 2. The results of all used classifiers among all scenarios.

Scenario Number Classifier Accuracy % Sensitivity % Specificity % Precision % F1-Score % MCC
ELM 99.0%0.2 98.0%0.77 98.0%0.77 98.01+0.74 98.0%0.02 0.96x0
1 SVM 90.7%0.9 91.2%2.56 90.2%2.6 90.39+2.1 90.74+0.93 0.81%0.02

KNN 95.65%0.41 91.3%0.82 100+0 1000 95.45%0.45 0.92%0.01
ELM 98.5+0.5 98.1+0.74 98.9+0.74 98.9%0.73 98.49+0.01 0.97+0
2 SVM 88.2%1.68 85.38+2.07 93.84+0.95 86.67+1.76 85.9%1.96 0.8 +0.03

KNN 95.2+0.4 95.7£1.73 94.7£1:35 94.79+1.23 95.22+0.43 0.9+0.01
ELM 97.6+0.32 97.7%0.95 97.5+0.85 97.52%0.81 97.6%0.32 0.95%0.01
3 SVM 87.28%1.16 85.68+1.4 95.6%0.44 86.25%1.24 85.821.31 0.82+0.02
KNN 95.7+0.33 91.4%0.66 100+0 1000 95.51%0.36 0.92%0.01

ELM 97.6%0.32 97.8%1.55 97.4%1.35 97.44*1.3 97.6%0.32 0.95%0.01
4 SVM 85.9%1.95 85.9+1.98 96.48+0.5 85.88+2.03 85.74%2.01 0.82%0.02

KNN 95.1+0.3 95.4+1.43 94.8+1.33 94.86+1.18 95.11%0.32 0.9£0.01

ELM 100£0 100£0 100+0 1000 1000 1000

5 SVM 96+1 96+1 96+1 971 96+1 0.91%0.02
99.67 +0.314 1000 100+0 99.83 £0.16 0.9959
+
KNN 99.8%0.19 £0.0039
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Figure 7. Confusion matrices of the best classifier for A) Scenario 1, B) Scenario 2, C) Scenario 3, D) Scenario 4, and E) Scenario 5.
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Figure 8. Time consumption for features extractions and classifiers.

The proposed methodology was successfully applied to the EEG signal dataset, the newly provided
window-based power spectrum features extraction has been fed to three different types of classifiers
namely: ELM, SVM, and KNN. The methodology was implemented in five different scenarios with
different types of classes, the details of each scenario have been shown in Table 1. The proposed method
was evaluated using 10 K-fold methodologies. The results in Table 2 show that the average achieved
accuracy is 98, 90.7, and 95.65% for ELM, SVM, and KNN respectively in the first scenario, the average
achieved accuracy is 98.50, 88.20, and 95.20% for ELM, SVM, and KNN respectively in the second
scenario, the average achieved accuracy is 97.60%, 87.28%, and 95.70% for ELM, SVM, and KNN
respectively in the third scenario, finally, the average achieved accuracy is 97.60, 85.90, and 95.10% for
ELM, SVM, and KNN respectively in the fourth scenario. Moreover, for the fifth scenario (binary
classification) it is also shown that the ELM classifier yields 100% accuracy, while the SVM and KNN
achieved 96 and 99.8% respectively.

From the results shown in Table 2, we can conclude that the accuracy achieved when using an ELM
classifier is higher than that achieved when SVM and KNN were used in all scenarios, this is because that
ELM performs better than any other classification algorithm when it is fed with a large dataset as what
we have used in our paper. ELM is a very fast and light classifier that can be used either in mobile or web
applications. It saves the weight matrix that is multiplied by the input features which results in the
output decision leading to the possibility of using it in a real-time manner which makes it superior to
other types of classification algorithms. As shown in Table 3, ELM has the shortest time compared with
all other classifiers. Also, we can notice that the total time required to provide a decision by the proposed
methodology using ELM is less than 1 second which typically less than other methods such as wavelet
transform. The fast classification process, the high accuracy for all scenarios, in addition to the ability to
apply this methodology using embedded systems are the main advantages of the proposed methodology
over other methods in the literature.

Finally, our method has a comparable accuracy with all previously published results in the literature
as shown in Table 3. In our work, we have considered up to 5 scenarios in testing 5 classes of EEG signal.
However, the maximum number of scenarios in the published literature was 3 and the number of EEG
classes in most of the published research was only 2% (Nguyen et al., 2017; Molla et al., 2020; Guo et al.,
2010a; Wang et al., 2011; Nicolaou & Georgiou, 2012; Ubeyli, 2010; Raghuet al., 2019). This makes our
method more accurate in terms of real time monitoring and so more applicable in clinical use. Moreover,
we have achieved 100% accuracy in classifying normal EEG vs Abnormal one, but the accuracy achieved
in most of the published literature was less than 99% (Nguyen et al., 2017; Molla et al., 2020; Guo et al.,
2010a; Wang et al., 2011; Nicolaou & Georgiou, 2012; Ubeyli, 2010; Raghuet al., 2019) and the maximum
accuracy achieved was 99.56% by (Ubeyli, 2010).
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Table 3. Comparison between the related works and the proposed method.

Reference Methodology Number of Classes Classes Accuracy %
Epileptic Seizure and Non-

(Nguyen et al., 2017) P-1D-CNN 2 Epileptic Seizure 99.10
Wavelets Graph Eigen e 99.55
(Molla et al., 2020) Decomposition with Artificial 2 Eplleptl_c Sel_zure.and Non
Neural Networks Epileptic Seizure 98.72
99.39
Wavelets and Artificial Neural Epileptic Seizure and Non-
(Guo etal,, 2010a) Networks 2 Epileptic Seizure 98.21
Epileptic Seizure and Non-
(Wang et al., 2011) Wavelets and SVM 2 Epileptic Seizure 99.44
(Nicolaou & Georgiou, 2012) Permutation Entropy and SVM 2 Eplleptl.C Sel.zure‘and Non- 86.10
Epileptic Seizure
(Ubeyli, 2010) AR and least square SVM 2 Epileptic Seizure and Non- 99.56
Epileptic Seizure
Matrix Determinant Features Epileptic Seizure and Non-
(Raghu etal., 2019) and Multilayer Perceptron 2 Epileptic Seizure o7.15
5 Ictal, Inter-Ictal, and 08
Normal
7 Foca% Seizure, Non-Focal 98.5
Seizure, and Normal
Power Spectrum Based Features Focal Seizure, Ictal Seizure,
This Paper P with ELM 4 Non-Focal, Seizure, and 97.6
Normal
Focal Seizure, Ictal Seizure,
5 Non Focal Seizure, Normal 97.6
Eye Closed, and Normal ’
Eye Opened
2 Normal and Abnormal 100
Conclusion

In this paper, we implemented a full classifying system using features extracted from the power spectrum
with three different classification algorithms. The proposed system is used to extract 2 seconds window from
the EEG signal and then extract features from the calculated power spectrum to classify the EEG signal. The
system was tested using the university of Bonn EEG signal database and five different scenarios with different
sets and numbers of classes (2, 3, 4, and 5 classes) have been used. The methodology was applied then the
accuracy, sensitivity, and precision were calculated. The results were compared with different scenarios and
with previously used classification methods found in the literature. The results indicated that the best
evaluation performance was obtained using an ELM classifier among all scenarios and when compared to
other relevant studies in the literature the proposed methodology has the highest accuracy with the highest
number of scenarios and classes. The future work will include applying the present algorithm with a larger
dataset and adding a new type of EEG signals and diseases to be classified. Also, we can use the method
proposed in this paper for clinical applications to diagnose related diseases from patients in a real-time manner.
The main limitation of this paper that even though the results are promising, the main limitation of this study is
the limited size of the used dataset. Also, the number of classes concerning the size of the dataset is low. Finally,
the number of subjects included in the study is also low compared to other biomedical signals datasets.
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