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ABSTRACT. Citriculture is one of the most important agricultural activities globally, with Brazil being one 

of the leading world producers. Thus, such activity is essential for the country's economy and the producers 

who depend on it. In this sense, the fight against Huanglongbing, one of the most devastating citrus 

diseases caused by vector insects, is essential to guarantee the quality of the fruit and avoid economic 

losses. The present work analyzed the counting of insect vectors in a commercial orange orchard in an 

observational study carried out in the municipality of Paranavaí, state of Paraná, Brazil, using the 

methodologies of generalized linear mixed models (GLMM) and generalized additive models for location, 

scale, and form (GAMLSS), with Negative Binomial probability distribution. Data were obtained by counting 

insects trapped in sticky traps at twelve fixed points in the orchard at three different heights and collected 

over seven fortnights. The results indicated that the GAMLSS model presented better results by including 

the linear predictor for modeling the scale parameter associated with the study factors based on the AIC 

criterion and diagnostic analysis tools. 
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Introduction 

Agriculture is one of the main bases of the Brazilian economy, and agribusiness is responsible for boosting 

the country's GDP and holding economic activity in times of recession since Brazil is one of the largest 

exporters of agricultural products globally. In this scenario, citrus farming stands out as one of the most 

relevant activities in the sector, given that Brazil is the world leader in the production of sweet oranges and 

concentrated orange juice. Thus, several types of research have been produced in search of answers about 

improvements in production and losses caused by diseases and pests, providing data that must be analyzed 

with the support of statistics to subsidize the researcher’s interests. 

In this sense, the data generated by these surveys are generally discrete, representing counts of organisms 

in a plant and the presence or absence of a particular disease, for example. In addition, in some cases, there 

is an interest in following the behavior of the response over time, characterizing longitudinal data and 

repeated measures. In this way, choosing the appropriate methodology for constructing a model must respect 

the nature of the data and the experimental design. 

In the literature, the use of generalized linear mixed models (GLMM) is highlighted, which allows the 

inclusion of correlation between responses and the definition of a probability distribution for the response 

that is not necessarily the normal distribution, belonging to the exponential family of distributions. More 

recently, Rigby and Stasinopoulos (2001; 2005) introduced generalized additive models for location, scale, 

and shape (GAMLSS). This class of models was proposed to make the assumptions of the previously existing 

classes of models even more flexible and allow the adjustment of responses whose distribution belongs to a 

more generic family of distributions. Furthermore, it allows the modeling of other parameters, in addition to 

the average, by the linear predictor. 

Citrus greening, also called HLB (Huanglongbing), is a disease caused by bacteria Candidatus Liberibacter 

africanus (CLaf), Candidatus Liberibacter asiaticus (CLas), and Candidatus Liberibacter americanus (CLam), 

causing yellowing of leaves and premature fruit drop. The psyllid Diaphorina Citri is the vector insect 

responsible for the transmission and propagation of the disease. Therefore, understanding more about the 

distribution and behavior of HLB vector insects concerning the citrus production environment is essential for 

devising disease control and management strategies since it is known that the insect is capable of dispersing 
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over short and long distances, making it difficult to control. Therefore, the present study consisted of 

monitoring the dispersion height by a flight of insects of the superfamily Psylloidea in commercial orange 

orchards with symptomatic plants. 

This work aimed to fit a negative binomial regression model to the observed insect count, considering 

possible explanatory factors and random effects that may influence insect distribution behavior. In addition, 

we compared the methodologies of generalized linear mixed models (GLMM) and generalized additive models 

for location, scale, and shape (GAMLSS) in estimating model parameters. 

Material and methods 

Data set 

The observational study was carried out in the municipality of Paranavaí, state of Paraná, Brazil, in a 

commercial orange orchard with the incidence of Huanglongbing (HLB), by the student Wérica Bruna da Silva 

Valim in her master’s studies in Agronomy from the State University of Maringá, 2021. Three plots were 

selected, and four bamboos were fixed at randomly chosen points. In each bamboo, sticky traps were set at 

three height levels, namely, 2.5m, 4.5m, and 7m, to capture the insects of the superfamily Psylloidea, disease 

vectors. The traps were collected every fifteen days for three months, totaling seven collections. In addition, 

insects of the superfamily Psylloidea were counted by trap/collection, and the value was recorded (response 

variable), giving rise to a longitudinal study with 252 observations by the combination of factors. 

Generalized linear mixed models 

The generalized linear mixed models (GLMM) were proposed by Breslow and Clayton (1993) as an 

extension to the linear mixed models (LMM) introduced by Laird and Ware (1982) and generalized linear 

models (GLM) (Nelder & Wedderburn, 1972) for modeling non-normally distributed responses as well 

overdispersion and correlation by including random effects. The formulation is given by (i) distribution for 

the response variable that is a member of the exponential family of distributions and (ii) a linear predictor 

that relates to the expected value of the response variable by (iii) an appropriate link function 𝑔(⋅). 

i. Let a random sample of size 𝑁 and 𝑛𝑖 observations for each individual 𝑖, given a vector 𝑏𝑖 of random 

effects, dimension 𝑞 × 1, be the conditional distribution of 𝑦𝑖𝑗  for all 𝑖 =  1,2, … , 𝑁 and 𝑗 =  1,2, … , 𝑛𝑖, belongs 

to the exponential family of distributions with density function: 

𝑓(𝑦𝑖𝑗 , 𝜃𝑖𝑗 , 𝜙 | 𝑏𝑖) = 𝑒𝑥𝑝{𝜙−1[𝑦𝑖𝑗𝜃𝑖𝑗 − 𝑏(𝜃𝑖𝑗)] + 𝑐(𝑦𝑖𝑗 , 𝜙)}. (1) 

where 𝜃𝑖𝑗 is called the canonical parameter, 𝜙 is the dispersion parameter and the functions 𝑏(∙) and 𝑐(∙) are known. 

ii. The linear predictor is given by: 

𝜂𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 , (2) 

with 𝜂𝑖 = (𝜂𝑖1, 𝜂𝑖2, … , 𝜂𝑖𝑛𝑖
)𝑇, 𝑋𝑖, dimension 𝑛𝑖 × 𝑝, is the model matrix associated with the fixed effects and 𝛽, 

dimension 𝑝 × 1, is the vector of coefficients (fixed effects). 𝑍𝑖 is a matrix of dimension 𝑛𝑖 × 𝑞, which can be a 

subset of 𝑋𝑖 (𝑞 ≤ 𝑝), with the explanatory variables modeled as random in the model. The random terms are 

modeled by the vector 𝑏𝑖, dimension 𝑞 × 1, with multivariate normal distribution with zero means vector and 

covariance matrix 𝐺. 

iii. The link function is given by: 

𝑔(𝜇𝑖) = 𝜂𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 
(3) 

where 𝜇𝑖 = (𝜇𝑖1, 𝜇𝑖2, … , 𝜇𝑖𝑛𝑖
)𝑇.  

Maximum likelihood estimation 

The estimation of generalized linear mixed models is based on the maximum likelihood method, although its 

complexity is higher than the models presented above. Specifying the joint probability distribution of 𝒀𝒊 and 𝒃𝑖 as: 

𝑓(𝑌𝑖 , 𝑏𝑖) = 𝑓(𝑌𝑖  | 𝑏𝑖)𝑓(𝑏𝑖), (4) 

the distribution of 𝑓(𝒀𝑖  | 𝒃𝑖) belongs to the exponential family of distributions, and 𝑓(𝒃𝑖) has a normal 

distribution. The marginal likelihood function, in turn, can be determined by integrating over the distribution 

of unobservable effects, 𝒃𝒊, given by: 
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𝐿(𝜃, 𝜙, 𝑦) = ∏ ∫ 𝑓(𝑌𝑖  | 𝑏𝑖)𝑓(𝑏𝑖)𝑑𝑏𝑖

𝑛

𝑖=1

, (5) 

where 𝜽 = (𝜷𝑇 , 𝜶𝑇)𝑇 and 𝜶 represents the vector of the model’s variance parameters, known as variance 

components. 

Thus, the likelihood function maximization in Equation 5 about the parameters will lead to the estimates 

of 𝜽 and 𝜙. The complexity, in this case, is because such maximization has no analytical solution, and 

therefore, numerical integration methods must be used for its resolution, such as the Gaussian quadrature 

method and Laplace approximation, among others. Some functions implemented in the R environment can 

be used to estimate the parameters in this case. For instance, from the glmmTMB package (Brooks et al., 

2017), the function of the same name; however, in its documentation, users are warned that the REML option 

“can also be useful for some non-Gaussian response variables if used with caution.” Another option is to use 

the gamlss function from the gamlss package (Rigby & Stasinopoulos, 2005). 

Generalized additive models for location, scale, and shape (GAMLSS) 

The generalized additive models for location, scale, and shape were proposed by Rigby and Stasinopoulos 

(2005) and allow flexibilization of the assumption associated with the exponential family of distributions by 

a more general family of distributions. In addition, it enables modeling all population parameters of the 

distribution associated with factors and covariates by including a linear predictor. Furthermore, it is possible 

to include nonparametric smoothing functions and random effects in the linear predictor, and, therefore, they 

are known to be semi-parametric. 

Given a random sample of size 𝑁, let 𝑦𝑖 be conditionally independent observations on 𝜃𝑖, for 𝑖 = 1,2, … , 𝑁, 

with probability function 𝑓(𝑦𝑖  | 𝜃𝑖) and 𝜃𝑖𝑇 = (𝜃𝑖1, 𝜃𝑖2, … , 𝜃𝑖𝑝) is a vector of 𝑝 parameters associated with 

explanatory variables and random effects. Taking 𝑦𝑇 = (𝑦1 , 𝑦2, … , 𝑦𝑁) as a vector of observations of the 

response variable whose parameters 𝜃𝑘, with 𝑘 = 1,2, … , 𝑝, will be linked to the explanatory variables and 

random effects through a link function 𝑔𝑘(⋅), we have the following relationship: 

𝑔𝑘(𝜃𝑘) = 𝜂𝑘 = 𝑋𝑘𝛽𝑘 + ∑ 𝑍𝑗𝑘𝛾𝑗𝑘

𝐽𝑘

𝑗=1

, (6) 

where 𝜽𝑘 and 𝜼𝑘 are vectors of size 𝑁, 𝜷𝑘 is the vector of regression parameters of size 𝐽𝑘′, 𝑿𝑘 and 𝒁𝑗𝑘 are 

planning matrices of dimensions 𝑁 × 𝐽𝑘′ and 𝑁 × 𝑞𝑗𝑘. 𝛾𝑗𝑘 is a 𝑞𝑗𝑘-dimensional random variable generally with 

𝛾𝑗𝑘~ 𝑁𝑗𝑘(0, 𝑮−1
𝑗𝑘), where 𝑮−1

𝑗𝑘 is the generalized inverse of 𝑮𝑗𝑘(𝜆𝑗𝑘), and 𝜆𝑗𝑘 is a vector of hyperparameters, 

naming the so-called model GAMLSS. The gamlss function of the gamlss package of the R software is used to 

adjust the model. 

Estimation 

For the estimation of the GAMLSS models, the maximum likelihood and penalized maximum likelihood 

methods are used in the case of parametric and nonparametric models, respectively. The log-likelihood 

function, given an observed sample of size 𝑁, is given by: 

𝑙 = ∑ 𝑙𝑜𝑔 𝑓(𝑦𝑖  | 𝜃𝑖)

𝑁

𝑖=1

 (7) 

while the penalized log-likelihood is given by: 

𝑙𝑝 = 𝑙 −  
1

2
∑ ∑ 𝜆𝑗𝑘𝛾𝑗𝑘

𝑇𝐺𝑗𝑘𝛾𝑗𝑘 .

𝐽𝑘

𝑗=1

𝑝

𝑘=1

 (8) 

In the simplest case of parametric GAMLSS models, estimation of only 𝜷 is required by maximizing the 

function given in Equation 7. For nonparametric GAMLSS models, in addition to 𝜷, it is necessary to estimate 

the parameters 𝛾 given a vector of hyperparameters 𝝀 fixed from the maximization of Equation 8. The 

assumption that 𝝀 is constant is guaranteed from the setting of these parameters or their estimation, which 

is done automatically within the estimation algorithms discussed later. 
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RS and CG algorithms 

According to Rigby and Stasinopoulos (2005), the algorithms used to maximize the (penalized) log-

likelihood function are generalizations of the CG and RS algorithms, based on Cole and Green (1992) and 

Rigby and Stasinopoulos (1996), respectively. The CG algorithm uses the expected or observed value of the 

second derivative and cross-derivatives of the log-likelihood function concerning the distribution 

parameters. However, when the parameters are orthogonal, that is, when the cross derivatives are equal to 

zero, estimation by this method will not be possible. In this way, the RS algorithm can be used, considered 

more straightforward, since it does not use cross derivatives but can be computationally slower. It is still 

possible to use a combination of the two algorithms, alternating between them during iterations until 

convergence is reached. The definition of the algorithm to be used in the gamlss is given by method argument, 

which accepts the RS()inputs, by default, CG() and mixed(). 

Model selection 

The model selection process comes from choosing a probability distribution (𝐷), link functions (𝐺), and 

hyperparameters 𝝀. In addition, the variables/factors to compose the model must be selected, such as its 

shape, using tools that allow analyzing its quality and measures and test statistics. In this way, a 

complementary analysis provides filtering and selecting a model considered adequate, given the assumptions. 

One of the main criteria used in the literature is the Akaike’s Information Criterion (AIC), proposed by 

Akaike (1974), which is a particular case of its generalized form, the GAIC (Generalized Akaike’s Information 

Criterion), given by: 

𝐺𝐴𝐼𝐶(𝑘) = 𝐺𝐷 + 𝑘 ⋅ 𝑑𝑓, (9) 

where 𝐺𝐷 = −2𝑙(𝜃)̂ is the Global Deviation and 𝑘 is a penalty associated with the model’s degrees of freedom, 

𝑑𝑓. We have the AIC criterion taking 𝑘 = 2 and other measures, such as the Bayesian Information Criterion 

(BIC), when 𝑘 = 𝑙𝑛(𝑛) can be calculated, and the model is chosen whose 𝐺𝐴𝐼𝐶 has the smaller value. Since the 

information criteria have a similar form and aim to conclude the same thing, it was decided to calculate only 

the AIC in comparing the models using the GAIC() function of gamlss. 

For the case of nested models, considering two models 𝑀0 and 𝑀1 with 𝑑𝑓0 and 𝑑𝑓1 degrees of freedom, 

respectively, the test statistic is obtained: 

𝛬 = 𝐷𝐺0 − 𝐷𝐺1, (10) 

which has an asymptotic distribution 𝜒2 with 𝑑 = 𝑑𝑓0 − 𝑑𝑓1 degrees of freedom, calling the so-called 

generalized likelihood ratio test. To do this, the LR.test() function of the gamlss package can be used. 

Diagnostic analysis 

Another critical and indispensable step for selecting a final model is a diagnostic analysis, which consists of 

checking the adequacy of the evaluation model. Graphic resources are mainly used for the behavior of the 

residuals, which, in this case, are the randomized quantile residuals; for more details see Dunn and Smyth 

(1996). The worm plot is one of the main diagnostic analysis tools, as it allows to check that the fit has been 

adjusted and identify patterns that can lead to a model correction. For the case-randomization software, 

Stasinopoulos et al. (2017) recommend using the rqres.plot() function from the R software, plotting the 

simulated residuals, and using multiple worm plots. 

Results and discussion 

For modeling discrete data, in particular, count data, the choice of probability distributions with this 

characteristic is limited, such as Poisson and Negative Binomial, in the case of the exponential family of 

distributions. In addition, the link function must also have the necessary support since, for the average, the 

count must be greater than or equal to zero. 

Considering the insect count of the superfamily Psylloidea as a response variable, the Negative Binomial 

probability distribution was defined to adjust the data to compare the models by the GLMM and GAMLSS 

methodologies. There are stand, height, and the collection as fixed effect factors. The collection points, 

represented by bamboos, are considered a random effect factor in the modeling since they represent only a 

sample of all possible locations within the stand. 
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Thus, the interest is in the difference between the levels of field factors and height, the effect of time on 

the insect count distribution, and variability within the stand, represented by the point’s random effect. In 

addition, the height factor can also be included as a random effect factor since, within the same point, there 

are responses at different heights, and possibly there is a correlation between the measures. Since the gamlss 

function of the R software allows adjusting any model by specifying its parameters correctly, all models were 

adjusted by this function, and the analysis tools of the GAMLSS models could be used. 

A very common graph in statistical analysis is the boxplot, which allows to graphically visualize the main 

characteristics of data distribution, such as quartiles, dispersion, and especially, the visualization of outliers. 

In addition, one of the research interests is to verify the behavior of insect distribution over time. Thus, 

Figures 1 and 2 show the insect count boxplots in the collection order by field and height. 

 
Figure 1. Boxplots of Psylloidea counts per stand, throughout the collection. 

 
Figure 2. Boxplots of Psylloidea counts by height, throughout the collection. 
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In all these graphs, it is possible to observe that time, represented by the collection factor, influences the 

average insect count, oscillating throughout the collections. Regarding the field factor, there seems to be no 

difference in the insect count distribution over time in field 1, with the median oscillating in the range of 

approximately 50 to 80, except for collection 2, which had a median above 100 well for dispersion. Concerning 

stands 2 and 3, this difference in the count along the collections is more evident, both in the average and 

dispersion, with growth and decrease patterns. Comparing the stands to each other, only stand 3 significantly 

differed from the others, with observations primarily concentrated in the range from 0 to 50. 

In Figure 2, there seems to be no effect of height since the distribution of insect counts throughout the 

collection was very similar at the three height levels. It is possible to observe the presence of several outliers, 

reaching the maximum value of the observations in the range of 400. Table 1 lists the descriptive measures 

associated with the study factors. 

Table 1. Summary measures of the Psylloidea count variable. 

  Minimum Maximum Median Mean Std. Deviation 

Stand 1 3.00 331.00 64.00 74.11 58.43 

 2 0.00 406.00 48.00 75.68 76.81 

 3 0.00 149.00 19.50 29.39 29.76 

Heigth 2.5 2.00 231.00 46.00 61.08 57.05 

 4.5 0.00 279.00 42.50 56.87 57.02 

 7.0 0.00 406.00 45.00 61.23 71.27 

Collection 1 2.00 99.00 18.00 28.50 26.34 

 2 0.00 406.00 94.50 110.47 100.91 

 3 3.00 283.00 52.50 71.75 62.22 

 4 0.00 201.00 71.00 68.08 50.71 

 5 0.00 133.00 27.00 34.03 35.25 

 6 3.00 207.00 31.00 54.75 55.53 

 7 1.00 156.00 53.00 50.50 34.50 

 

Finally, to complement the analysis, profile graphs allow viewing the behavior of the distribution over time by 

plotting the points, as in a scatter plot, and joining them by line segments. In Figure 3, stand, height, and point are 

identified, while in Figure 4, there are profile graphs for each subject. The subjects, identified from 1 to 36, refer to 

observational units classified according to the study factors combinations, as shown in Table 2. 

 
Figure 3. Profile plots of Psylloidea counts over time, identified by field, height, and point. 
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Figure 4. Individual profile plot. 

Table 2. Identification of experimental units. 

  Height (m)    Height (m) 

Stand Point 2.5 4.5 7  Stand Point 2.5 4.5 7 

1 1 S1 S2 S3  1 3 S19 S20 S21 

2 2 S4 S5 S6  2 4 S22 S23 S24 

3 3 S7 S8 S9  3 1 S25 S26 S27 

1 4 S10 S11 S12  1 2 S28 S29 S30 

2 1 S13 S14 S15  2 3 S31 S32 S33 

3 2 S16 S17 S18  3 4 S34 S35 S36 

GLMM methodology 

Initially, a generalized linear mixed model modeled only the mean via linear predictor, considering field, 

height, and collection as fixed effects factors and tested point and height and only point as random effects 

factors, as shown in Table 3. Therefore, we have the link function: 

Model M1:  𝑔1(𝜇𝑖𝑗𝑘𝑡) = 𝜂𝑖𝑗𝑘𝑡  = 𝛽0 + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 + 𝑏𝑗|𝑘 + 𝑏𝑘 

(11) 
 = (𝛽0 + 𝑏𝑗|𝑘 + 𝑏𝑘) + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 

Model M2: 𝑔1(𝜇𝑖𝑗𝑘𝑡) = 𝜂𝑖𝑗𝑘𝑡  = 𝛽0 + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 + 𝑏𝑘 

 = (𝛽0 + 𝑏𝑘) + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 

𝛽0 is the model intercept; 𝛼𝑖 is the fixed effect associated with the 𝑖-th field, 𝑖 = 1,2,3; 𝜃𝑗 is the fixed effect 

associated with the 𝑗-th height, 𝑗 = 1,2,3, and 𝛾𝑡 is the fixed effect associated with the 𝑡-th collection, 𝑡 =

1,2, … ,7. 𝑏𝑘 and 𝑏𝑗|𝑘 are the random effects associated with the 𝑘-th point and 𝑗-th height within the 𝑘-th 

point, with 𝑘 = 1,2, … ,12, respectively. Assuming that 𝑏𝑘 and 𝑏𝑗|𝑘 follow Gaussian distribution with zero mean 

and constant variance, i.e., 𝑏𝑘~𝑁(0, 𝜎𝐴
2) and 𝑏𝑗|𝑘~𝑁(0, 𝜎𝐵

2). 

Table 3. Models fitted with Negative Binomial distribution, with two different random structures in the linear predictor and three 

different link functions. 

Model Link function 𝑔1(𝜇) 𝑔2(𝜎) AIC 

 log  - 2342.77 

M1 inverse (𝛽0 + 𝑏𝑗|𝑘 + 𝑏𝑘) + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 - 2382.31 

 sqrt  - 2343.78 

 log  - 2348.15 

M2 inverse (𝛽0 + 𝑏𝑘) + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 - 2382.32 

 sqrt  - 2349.89 
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According to the AIC values in Table 3, the link function “log” should be preferred for both models M1 and 

M2. Therefore, in the following analyses, the log link function will be considered. 

From the worm plots of the models in Figure 5, the adjustments were not adequate since there was a sharp 

curvature in the tails of the graphs with several points outside the confidence bands. However, it was possible 

to verify the presence of an outlier impairing diagnostic analysis, and thus, the observation was removed for 

the readjustment of the model. Also, since the AIC criterion of model M1, with point and height as factors of 

random effects, has a lower value, such a random structure was chosen, corroborated by the conclusion of the 

likelihood ratio test presented in Table 4. In this way, Figure 6 shows the main residual graphs of the selected 

model, readjusted without the outlier. 

 
(a) Model M1                     (b) Model M2 

Figure 5. Worm plot of fitted models, with linear predictor for 𝜇. 

Table 4. Likelihood Ratio Test (LRT). 

Likelihood Ratio Test (LRT) for nested GAMLSS models 

Model M2 (Null): Deviance = 2303.134 with 22.5055 degrees of freedom 

Model M1 (Alternative): Deviance = 2277.628 with 32.5727 degrees of freedom 

LRT = 25.5068 with 10.0671 degrees of freedom, p-value = 0.00464 

 

     
Figure 6. Residual plots of the fitted model, with linear predictor for 𝜇. 

In the residual graphs, even after removing the outlier, the model showed a deviation from normality, 

and the residuals showed a funneling pattern with greater dispersion in the initial range of the adjusted 
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values. The worm plot maintains the previous pattern with curvature and many points outside the 

confidence bands. 

From the previous analysis, it can be concluded that the generalized linear mixed model was not sufficient 

to adequately model the data considering that the variability also seems to fluctuate by the levels of the 

factors, as observed in the descriptive analysis. 

GAMLSS methodology 

Here the GAMLSS model will be used with the inclusion of the linear predictor for the distribution 

dispersion parameter not supported in GLMM models. This is an alternative to solve problems observed in 

Figure 6. So, consider the link functions: 

𝑔1(𝜇𝑖𝑗𝑘𝑡) = 𝑙𝑜𝑔(𝜇𝑖𝑗𝑘𝑡) = 𝜂𝑖𝑗𝑘𝑡
𝜇 = 𝛽0 + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 + 𝑏𝑗|𝑘 + 𝑏𝑘 

(12)  = (𝛽0 + 𝑏𝑗|𝑘 + 𝑏𝑘) + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 

𝑔2(𝜎𝑖𝑗𝑘𝑡) = 𝑙𝑜𝑔(𝜎𝑖𝑗𝑘𝑡) = 𝜂𝑖𝑗𝑘𝑡
𝜎 = 𝛽0 + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 . 

According to Figure 7, the inclusion of the linear predictor for 𝜎 was sufficient to considerably improve the 

fit of the model, appearing to have a good fit. The deviation from normality was corrected, and the variability 

of the residuals, this time, behaved randomly and without outliers. From the model with Negative Binomial 

probability distribution, point and height as random effects factors, and linear predictor for 𝜇 and 𝜎, a more 

parsimonious model is sought after removing some factors, particularly those that did not show significance 

according to Table 5. The models tested are listed in Table 7 and were compared based on the AIC criterion 

and visual inspection of the worm plots. 

      

Figure 7. Residual plots of the fitted model, with linear predictors for 𝜇 and 𝜎. 

Table 5. Estimates of regression coefficients and variance parameters of the Negative Binomial distribution. 

  𝑔1(𝜇)̂    𝑔2(𝜎)̂  

Parameters Estimative Std. Error p-value  Estimative Std. Error p-value 

𝛽0 3.47 0.09 < 0.001  -2.66 0.38 < 0.001 

𝛼2 -0.10 0.09 0.25  0.55 0.32 0.09 

𝛼3 -0.99 0.11 0.001  1.50 0.28 < 0.001 

𝜃2 -0.07 0.08 0.42  0.43 0.25 0.09 

𝜃3 -0.05 0.08 0.54  0.25 0.26 0.35 

𝛾2 1.32 0.12 < 0.001  0.66 0.41 0.11 

𝛾3 0.89 0.12 0.001  0.10 0.45 0.82 

𝛾4 0.84 0.13 < 0.001  0.74 0.43 0.09 

𝛾5 0.14 0.13 0.30  0.92 0.42 0.03 

𝛾6 0.59 0.11 < 0.001  0.39 0.41 0.35 

𝛾7 0.59 0.14 < 0.001  0.70 0.44 0.11 
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Table 6. Models tested with the Negative Binomial distribution, with linear predictors for 𝜇 and 𝜎, location and scale parameters 

respectively. 

Model 𝑔1(𝜇) 𝑔2(𝜎) AIC 

M1.1 (𝛽0 + 𝑏𝑗|𝑘 + 𝑏𝑘) + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡 𝛽0 + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡  2302.46 

M1.2 (𝛽0 + 𝑏𝑗|𝑘 + 𝑏𝑘) + 𝛼𝑖 + 𝛾𝑡 𝛽0 + 𝛼𝑖 + 𝜃𝑗 + 𝛾𝑡  2298.22 

M1.3 (𝛽0 + 𝑏𝑗|𝑘 + 𝑏𝑘) + 𝛼𝑖 + 𝛾𝑡 𝛽0 + 𝛼𝑖 + 𝛾𝑡 2298.14 

M1.4 (𝛽0 + 𝑏𝑗|𝑘 + 𝑏𝑘) + 𝛼𝑖 + 𝛾𝑡 𝛽0 + 𝛼𝑖 + 𝜃𝑗 2294.30 

M1.5 (𝛽0 + 𝑏𝑗|𝑘 + 𝑏𝑘) + 𝛼𝑖 + 𝛾𝑡 𝛽0 + 𝛼𝑖 2293.53 

 

The models presented AIC values very close to each other, with an amplitude of approximately nine units 

between the highest and the lowest (Table 6). The model that best fitted the data, chosen as the final model 

is M1.2, which contains the fixed effects factors field and collection for the predictor of 𝜇, and stand, 

collection, and height for the predictor of 𝜎, with point and height as factors from random effects for 𝜇. 

According to the regression coefficients in Table 7, the estimates and conclusions of the tests are in line with 

the initial model (Table 5). 

Table 7. Estimates of regression coefficients and variance parameters of the Negative Binomial distribution – final model. 

  𝑔1(𝜇)̂    𝑔2(𝜎)̂  

Parameters Estimative Std. Error p-value  Estimative Std. Error p-value 

𝛽0 3.43 0.08 < 0.001  -2.67 0.38 < 0.001 

𝛼2 -0.10 0.09 0.25  0.53 0.32 0.10 

𝛼3 -1.00 0.11 < 0.001  1.48 0.28 < 0.001 

𝜃2 - - -  0.44 0.25 0.08 

𝜃3 - - -  0.26 0.27 0.33 

𝛾2 1.33 0.12 < 0.001  0.67 0.41 0.10 

𝛾3 0.89 0.11 0.001  0.08 0.45 0.85 

𝛾4 0.85 0.13 < 0.001  0.77 0.43 0.07 

𝛾5 0.14 0.13 0.30  0.94 0.42 0.03 

𝛾6 0.60 0.11 < 0.001  0.41 0.41 0.31 

𝛾7 0.60 0.14 < 0.001  0.75 0.43 0.08 

        

Variance components 

Source 𝜎̂ 95% conf. intervals   

Point - 𝑏𝑘 0.6545 0.4272; 1.0027   

Height in point - 𝑏𝑗|𝑘 0.1929 0.1043; 0.3565   

Error 1.0243 0.9325; 1.1251   

 

The diagnostic graphs and worm plot (Figure 8) indicate the fit is adequate, showing evolution compared 

to the mixed generalized linear model. Compared to the initial GAMLSS model, with all factors in the 

predictors, the final model had a similar performance, with the height factor not being significant in 

explaining the average insect count, as observed in the descriptive analysis. Therefore, the proposed model is 

suitable for adjusting the study data and can be written as: 

 

𝑙𝑜𝑔(𝜇̂𝑖𝑗𝑘𝑡) = 𝜂̂𝑖𝑗𝑘𝑡
𝜇 = (3.43 + 𝑏̂𝑘 + 𝑏̂𝑗|𝑘) − 0.10 𝑆𝑡𝑎𝑛𝑑 2 − 

(13) 

 − 1.00 𝑆𝑡𝑎𝑛𝑑 3 + 1.33 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 2 + 0.89 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 3 + 

 + 0.85 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 4 + 0.14 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 5 + 0.60 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 6 + 

 + 0.60 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 7 

𝑙𝑜𝑔(𝜎̂𝑖𝑗𝑘𝑡) = 𝜂̂𝑖𝑗𝑘𝑡
𝜎 = −2.67 − 0.53 𝑆𝑡𝑎𝑛𝑑 2 + 1.48 𝑆𝑡𝑎𝑛𝑑 3 + 

 + 0.44 𝐻𝑒𝑖𝑔ℎ𝑡 4.5 + 0.26 𝐻𝑒𝑖𝑔ℎ𝑡 7 + 0.44 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 2 + 

 + 0.26 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 3 + 0.77 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 4 + 0.94 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 5 + 

 + 0.41 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 6 + 0.75 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 7. 
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Figure 8. Residual plots of the fitted model, with linear predictors for 𝜇 and 𝜎 – final model. 

Interpreting the regression coefficients of the model from Equation 13, about the baseline plot 1 and 

collection 1, negative effects were observed in the other plots for the predictor of 𝜇, with the lowest average 

in plot 3, as previously observed in the exploratory analysis. The estimates of regression coefficients 

associated with the collection factor were all positive, indicating that the average count is lower in collection 

1 and higher in collection 2, which had the highest coefficient. 

Regarding the predictor of 𝜎, from the estimates of the regression coefficients associated with the plot, only 

plot 3 was significant, which presented greater dispersion across the model. Only collection 5 was significant at 5% 

for height and collection, and all other coefficients were not significant. However, the presence of these factors 

was necessary for the model’s suitability since their removal led to a loss of fit quality. 

Conclusion 

In this article, an actual application in the agricultural area was presented based on generalized linear 

mixed models and generalized additive models for location, scale, and shape to model the distribution of 

counts of insects of superfamily Psylloidea, vectors of the Huanglongbing disease. By using the Negative 

Binomial probability distribution, the flexibility of the GAMLSS model was essential to find a good fit since 

the variability differs with the levels of the factors, and the linear predictor for the scale parameter was 

necessary. Also, with GAMLSS, many other probability distributions can be used that may not belong to the 

exponential family of distributions. Thus, it is understood that this class of models is powerful and constitutes 

a viable alternative to classical regression models. 
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