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ABSTRACT. Spectral Graph theory has been utilized frequently in the field of Computer Vision and Pattern 

Recognition to address challenges in the field of Image Segmentation and Image Classification. In the 

proposed method, for classification techniques, the associated graph's Eigen values and Eigen vectors of 

the adjacency matrix or Laplacian matrix  created from the images are employed. The Laplacian spectrum 

and a graph's heat kernel are inextricably linked. Exponentiating the Laplacian eigensystem over time yields 

the heat kernel, which is the solution to the heat equations. In the proposed technique K-Nearest 

neighborhood and Delaunay triangulation techniques are used to generate a graph from the 3D model. The 

graph is then represented into Normalized Laplacian (NL) and Laplacian matrix (L). From each Normalized 

Laplacian and Laplacian matrix, the feature vectors like Heat Content Invariant and Laplacian Eigen values 

are extracted. Then, using all of the available clustering algorithms on datasets, the optimum feature vector 

for clustering is determined. For clustering various manifolding techniques are employed.  In the suggested 

method, the graph heat kernel is constructed using industry-standard objects which are taken from the 

Engineering bench mark Data set.  

Keywords: Graph clustering; laplacian matrix; delaunay triangulation; graph heat kernel; manifolding techniques; 

structural pattern recognition. 
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Introduction 

Graph representation 

Graphs are structures with a long history in mathematics and have been used practically in various 

disciplines of science and engineering. A graph is a representation of a set of components and their pair wise 

relationships. The elements are known as nodes or vertices, while the connections are known as edges. The 

set G = (V, E) define Graph G, which considers graphs with self-loops. Also, graphs with many edges of the 

same orientation linking the same node pair are not taken into account. In the proposed method the graph is 

taken as an unweighted and undirected graph.  

A graph (Raveaux, Adam, Héroux, & Trupi, 2011) can be represented using one of several popular matrices, 

as shown in Figure 1. A matrix representation may provide cost-effective storage because most graphs used in 

image processing are sparse, but each matrix representation can also be thought of as an operator that acts 

on functions associated with the nodes or edges of a graph. (Spielman, 2007; Blondel, Gajardo, Heymans, 

Senellart, & Van Dooren, 2004). 

The adjacency matrix representation of graph G is shown in the Equation 1 

 
(1) 

The Laplacian matrix of an undirected graph G is shown in the Equation 2 

 

(2) 
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Adjacency lists have the advantage of using less memory than matrix representations. O (|V| x |E|) memory 

is required for the full incidence matrix, while O (|V|2) memory is required for full adjacency matrix. On the 

other hand sparse graphs, utilized for the purpose of significantly more economical storage. Figure 1 depicts 

weighted directed graph, adjacency list, and graph adjacency. 

 

Figure 1. A Weighted directed graph, adjacency list, adjacency Graph. 

Pattern matching (Fan, Medioni, & Nevatia, 1989) is the crucial function in high-level vision because it 

allows abstract graphical descriptions to be matched to one another. Many attempts have been made in the 

recent years to employ spectral graph theory in graph matching (Caetano, McAuley, Cheng, Le, & Smola, 2009; 

Abu-Aisheh, Raveaux, & Ramel, 2016) and point-set matching problems. One of the most crucial applications 

of spectral graph theory in computer vision is graph clustering, and another fascinating application is pattern 

recognition (Flickner, 1995; Schiele & Crowley, 2000; Vento, 2015) and routing, which can be used to 

streamline graph topologies. (Brun, Foggia, & Vento, 2020). 

Literature Review 

Spectral graph theory, can reduce a complex network to a lower dimensional state, making it easier to solve. 

The Fiedler vector is formed from the Laplacian eigenvalue of the second smallest eigenvalue and their related 

eigenvectors in that graph. This Fiedler vector holds the graph's maximal property and represents it in two-

dimensional Euclidean space rather than other dimensions. As a result, these operate well in image 

segmentation and social networking processing, as well as any other complicated network. Wilson, Luo, and 

Hancock (2003) proposed, graph embedding method (Bunke & Riese, 2011) based on the graph's feature vector 

in vector space. The authors tested their technique on three different 3D polyhedral datasets of houses, each with 

a different view-based sequence. To construct graphs, corner detection and Delaunay triangulation techniques are 

utilised, and features of graphs such as leading eigenvalue, eigenmode volume, eigenmode perimeter, cheeger 

constant, and inter-mode of adjacency are discovered to form the matrix of each property. The objects are then 

classified using PCA, ICA, and MDS classification algorithms. 

The structural graph representation of image objects was researched by Luo and Hancock (2001). To 

recognise the objects, the authors employed a mixture model of EM techniques and singular value 

decomposition. The research used these techniques to handle polyhedral 3D objects (Marini, Spagnuolo, & 

Falcidieno, 2007) with numerous view-based image sequences. Graphs are generated from images by applying 

a corner detection algorithm and then recovering the locations of those points as nodes. To generate the 

graphs and adjacency matrix the Delaunay triangulation process was utilized and  the spectral graph theory 

is used  to characterize graphs which are generated from the 3D polyhedral object. In their article the heat 

kernel graph (Kashima, Tsuda, & Inokuchi, 2004) is used for classification purpose. Corner detection and 

Delaunay triangulation methods are applied over an image to generate the graph. The matching Laplacian 

matrix of graphs is determined after the graph is formed. (Foggia, Percannella, Vento, 2014; Cordella, Foggia, 

Sansone, & Vento, 2004). 

Inexact and exact graph matching (Bougleux, Gaüzère, & Brun, 2017; Bunke & Allermann, 1983) are the 

two major types of graph matching approaches introduced by Riesen, Jiang, and Bunke (2010). Because precise 

https://www.sciencedirect.com/science/article/pii/S003132031000542X#!
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resemblance between the two graphs is required, exact matching approaches are computationally difficult; 

yet, in real-time applications, this is the key requirement. In inexact graph matching, a variety of techniques 

are used to match graphs, including ANN, Spectral methods, and Graph Kernels (Vishwanathan, Schraudolph, 

Kondor, & Borgwardt, 2010). 

A method for learning graph matching was presented by Caetano et al. (2009). The training examples are 

pairs of graphs and the “labels” are matches between them. The authors used real image data to explore the 

experimental results, demonstrating that learning can increase the effectiveness of typical graph matching 

techniques. Linear assignment with such a learning method, in particular, appears to outperform state-of-

the-art quadratic assignment relaxations. This conclusion implies that, for a variety of situations where the 

quadratic assignment was previously assumed to be required for acceptable results, linear assignment, which 

is significantly more efficient, may be sufficient if learning is done. 

Spectral graph theory is used by Bai, Song, and Hall (2011) to characterise invariant picture structures. The 

authors proved that structure as a class identity for visual classification (Binford, 1971). They introduced 

graph energy as an effective method for extracting image structure. 

Graph spectral approaches to the problem of point pattern matching (Conte, Foggia, Sansone, & Vento, 

2004; Raveaux et al., 2011). were investigated by Tang, Shao, and Jones (2014) It focuses on how to employ 

graph spectral features (Batson, Spielman, Srivastava, & Teng, 2013) to successfully characterise point 

patterns in the presence of positional jitter and outliers. The attribute domain of feature points is represented 

by a set of 17 new local spectral descriptors (Xiao & Nelson, 2008) Weight graphs on nearby points are 

generated for each point in a given point collection, and then their normalised Laplacian matrices are 

produced. The distribution of the eigenvalues of these normalised Laplacian matrices is summed as a 

histogram to produce a descriptor based on the known spectral radius of the normalised Laplacian matrix. 

Finally, for retrieving correspondences between point-sets, the suggested spectral descriptor is merged with 

the estimated distance order.  

A fully automated content-based image query system analysed  the problem of matching point (Foggia, et 

al., 2014) sets over features taken from photographs. A novel solution to the problem proposed, is based on a 

combination of techniques from the literature. It provides a non-iterative technique for feature matching 

based on spectral methods, which combines a number of similarity metrics that quantify measures of 

correspondence between the two sets of features. The technique's versatility allows it to be easily applied in a 

variety of contexts, eliminating the domain-specific constraints of previous methodologies. The  suggested 

technique is to test in a variety of case studies, including synthetic case studies, experimental biological data, 

and case studies based on well-known computer vision benchmarks. 

A method for image recognition using an exact graph matching technique based on a genetic algorithm 

was suggested by Auwatanamongkol (2007). This method takes into consideration of differences between two 

graphs in terms of their shapes, numbers of nodes, and rotational radii. The proposed algorithm provides a 

high degree of accuracy in graph matching. 

Numerous other techniques have also been proposed in the literature in addition to those of already 

mentioned. These techniques include probabilistic relaxation (Bengoetxea, Larranaga, Bloch, & Perchant, 

2001); an Expectation-Maximization algorithm (Cross & Hancock 1998; Finch, Wilson, & Hancock, 1998), neural 

networks (Lee & Park, 2002), decision trees (Messmer & Bunke, 1999). However, some adjustments are needed to 

improve the efficiency and accuracy of graph matching, which is used in the image classification. It is also 

recommended to consider the entropy of the graph approach used for classification (Bai & Hancock, 2013).   

3D Model Processing Using Graph 

To generate the graph from an image or any 3D model, K-Nearest Neighbourhood (Kuncheva, 1995) graphs 

and Delaunay Triangulation logic are employed in the suggested method. The k-nearest neighbour graph 

(KNNG) is a directed graph in which each member is connected to its k closest neighbours. As a result, the 

KNNG is a graph G (V, E) given the element set V. As a result, in 3D CAD models, the object is represented by 

a set of vertices and directed edges. The proposed approach utilising the K-NN algorithm to determine the 

neighbourhood from the point clouds to group it. Each node's groups are represented in tree data structures. 

Therefore the 19 neighbourhood is used to build edges between the points. Figure 2 shows how the K-nearest 

neighbour graph is generated from the point cloud object. 
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Figure 2. Appiied KNNG to Point Cloud.  

After determining the location of critical points in an image, the node points are considered and these 

points are given to build the Delaunay triangulations. These points are extracted from the various feature 

detectors (Andreopoulos & Tsotsosb, 2013). As a result of the 1-Ring adjacency, the computational 

complexity of triangulation is reduced to O (n log n) instead of O(n4). Figure 3 depicts the use of 3D point 

cloud object data for Delaunay triangulation and also shows that the graph has 19638 nodes and 117558 edges. 

 

Figure 3. Delaunay Triangulation to Point Cloud. 

Figure 4 depicts the steps that are involved in creating a graph from 3D image provided as input to the 

proposed Algorithm. The adjacency matrix of the image is created either using Delaunay Triangulation or the 

KNNG method from the 3D input models. 

 

Figure 4. Various steps in Graph formation. 
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Table 1 represents the 3D point objects and the graph generated using proposed algorithm. In the table 

the number of nodes, edges of the graph are generated and time in seconds required to generate the graph 

from the 3D object using the proposed algorithm is listed.  

Table 1. 3D Point Cloud objects, Graph Generated and Properties.  

S.No Object 3D View Graph Generated Nodes Edges Time 

1. 90 Elbow 

 

 3069 

 

 

17116 0.158 

2. Collector 

 

 3202 

 

 

18262 0.1797 

3. Ball Cutter 

 

 3427 

 

 

 

23704 0.3185 

4. Oil Plane 

  

1445 

 

 

 

7525 0.0821 

5. Gear 

 

 1336 

 

 

 

4879 0.2202 

Heat kernel invariant 

In the spectral graph theory, the heat kernel is very essential. The graph's heat kernel matrix encapsulates how 

information travels along the edges of the graph over time. A set of invariants like heat kernel trace, the zeta 

function, and heat content invariants can be computed using the graph's heat kernel matrix.  

Heat kernel trace 

Equation 3 shows the heat kernel trace, which is the sum of the diagonal elements of the graph's heat 

kernel matrix, where 𝜆𝑖 is the eigenvalue of the normalised Laplacian matrix. 

 

(3) 

Figure 5 depicts the heat kernel trace as a function of t for the various graphs (Xiao et al., 2005). As observed 

in the figure, the curves have a distinct shape that could serve as the basis for an appropriate representation 



Page 6 of 14  Usha et al. 

Acta Scientiarum. Technology, v. 46, e62608, 2024 

to identify graphs. For example, the stronger the trace of the heat kernel at the origin, the more "hypercube" shaped 

graph will be the result. The size of 𝜆2 has an effect on the rate of decay of the trace over time, which is the measure 

of the degree of separation of the graph into tightly connected sub graphs (Bunke & Shearer, 1998) or clusters. 

 

Figure 5. Heat Kernel Trace as a function of t 

Equation 4 shows the extension of the heat kernel trace.  

 
(4) 

Zeta function 

The zeta function characterises graph structure by using the shape of the heat kernel trace function. The 

zeta function is coupled with the Laplacian eigenvalue and is strongly related to the heat kernel trace. In the 

Equation 5, the zeta function is defined. 

 
(5) 

Heat Content Invariants (HCIs) 

Because Zeta function offers a single scalar property for each value of time, the heat kernel trace is the 

only invariant useful for describing graphs. As a result, it must either be sampled throughout time or at a fixed 

time value. The heat content is calculated using Equation 6. 

 

(6) 

The heat content can be expanded as a polynomial in time and it is shown in Equation 7. 

 

(7) 

Because the co-efficient values are represented as a set of unique values for each graph, the Heat Content 

Kernel (QM) can be viewed as a set of invariants that can be used for graph characterization. 

Results and discussion 

This method will be applied to the Engineering Shape Benchmark (ESB) datasets and the heat invariants 

can be used for graph characterization. The dataset object is first separated into three structures based on the 

object's dimensionality. The second section demonstrates how to extract graph representations from a 3D 

point cloud. Third, using heat content invariant and symmetric polynomials, clustering has been done. 
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Database description and formulations 

Engineering Models or Engineering Parts are having high genus, rounding features, and the existence of 

internal structure are used in the proposed method. Engineering models are waterproof, closed volumes that can 

represent pieces or assemblies. A wheel, for example, is a part, whereas a bike is an assembly. Part families and 

parametric models, which differ by relative dimensions of distinct local geometries, are popular in the engineering 

context. Engineering Shape Benchmark (ESB) is a database of engineering models with a well-established dataset. 

There are 867 parts and models in the neutral format in the ESB. Flat-thin walled, rectangular cubic prism and solid 

rotation are the three major super classes in the ESB classification. As a result, the ESB databases contain 45 classes. 

There exists an issue while using this dataset as is because it is designed for meshes. Hence forth,  dense 

point sets to represent engineering models are used  in the proposed method. These model point sets were 

turned into a graph and used in the proposed algorithm. Here, ESB database models must be divided or 

grouped according to the complexity of the structures or the number of nodes in the models. As a result, the 

ESB was divided into three groups based on the number of nodes and structures.  

First, Basic Structures (BST) which contains five classes of models, which are Prismatic stock, T Shaped, Bearing, 

Bolts, and Gears.  This BST contain 25 objects and each class consists of five objects. BST objects based on the basic 

structure of models or model can be used to assemble the other parts. Second, Complex Structure (CST) contains 

ten classes of Engineering models, which are backdoor, pipe, bearing, cylindrical, intersection, clips, bearing block, 

elbow, handles, and 90-degree elbows. Contoured surface, handles, motor bodies, and flange are the third type of 

High Density Node (HDN). This HDN object is made up of extremely dense point sets. As a result, increased 

calculation overhead is required. Table 2 displays the list of Engineering model classes BST, CST, or HDN. 

Table 2. List of Engineering Model Classes. 

BST CST HDN 

•Prismatic stock 

•T Shaped 

•Bearing 

•Bolts 

•Gear 

 

 

 

 

 

•Backdoor 

•Pipe 

•Bearing 

•Cylindrical 

•Intersection 

•Clips 

•Bearing block 

•Elbow 

•Handles 

•90-degree elbows 

•Contoured surface 

•Handles 

•Motor bodies 

•Flange 

 

Figure 6 depicts the models selection from the established ESB datasets that have been grouped into 

specific classifications.  

 

Figure 6. BST CST and HDN Models from ESP Dataset. 
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For the classification purposes, the proposed approach uses the BST dataset. 

Heat Kernel Trace for ESB Models 

The heat kernel trace is applied to the ESB datasets to verify if it can differentiate between different 

models. Engineering models are translated into graphs using Delaunay triangulation or KNN graph algorithm. 

The sum of the diagonal elements of the graph's heat kernel matrix, where 𝜆𝑖 is the eigenvalue of the 

normalised Laplacian matrix, transforms the model into a graph.  

Figure 7 represents the heat kernel trace as a function of “t” for ESB models of the various ESB dataset 

images. As observed in the figure 7, the curves have a distinct shape that could serve as the basis for an 

appropriate representation to identify graphs. For instance, the more “Longer Driller” shaped the graph the 

more strongly peaked the trace of the heat kernel at the origin.  

 

Figure 7. Heat kernel Trace of ESB. 

Graph clustering 

All engineering models from BST are represented as graphs using Delaunay triangulation or KNN graphs 

utilising Normalised Laplacian (NL) and Laplacian matrix (L) in the proposed method. From each Normalized 

Laplacian and Laplacian matrix, the feature vectors like Heat Content Invariant  𝑆 = [𝐵1 
⃗⃗⃗⃗  ⃗|𝐵2

⃗⃗⃗⃗  |…𝐵𝑘   
⃗⃗⃗⃗⃗⃗  ⃗| … |𝐵𝑀

⃗⃗ ⃗⃗  ⃗ |]  

and  Laplacian Eigenvalues 𝐵  =(𝑙1,𝑙2,…𝑙𝑘)𝑇are extracted. While, using all of the available clustering 

algorithms on BST datasets, determine the optimum feature vector for clustering. The Manifold learning 

techniques for clustering has been applied in the proposed method. They are Locally Linear Embedding (LLE), 

Local Tangent Space Alignment (LTSA), Hessian LLE, Modified LLE, Isometric Mapping (ISOMAP), Multi 

Dimensional Scaling (MDS), Spectral Embedding T Distributed Stochastic Neighbour Embedding (T-SNE).  

Figure 8(a) shows the Euclidean distance between graphs in the BST datasets using Normalised Laplacian 

(NL) and Delaunay Triangulation. It also depicts the best pattern blocks for classifying each block. For 

instance, from 1-5 show a similar color and likewise, each 5-10, 11-15, 16-20, and 21-25 are showing the same 

color block. As a result, it is easier to determine which feature vector is best for the classification purposes. 

Figure 8(b) depicts the outcome of applying heat content kernels (QM) to PCA procedures. As seen in the figure, 

QM classifies the greatest number of models. The outcomes of various learning approaches like LLE, Hessian 

LLE, Modified LLE, ISOMAP, and Spectral Embedding are shown in Figure 8(c). 

Figure 9(a) depicts the poor pattern block construction utilising Eigenvalues with Laplacian (L) and 

Delaunay triangulation that failed to distinguish the classes. The PCA of heat kernel content is displayed in 

Figure 9 (b). In comparison to the prior approaches, the PCA yields the poor outcome. The graph learning 

manifold results are displayed in Figure 9 (c). The input BST has no effect on the graph learning algorithms. 

Figure 10(a) portrays the Euclidean distance between graphs heat content invariant values in the BST 

datasets using a KNN graph. From the result it is easier to determine which feature vector is the best for 

classification purposes. Figure 10(b) depicts the outcome of applying heat content kernels (QM) to PCA 

procedures. It is identified from the diagram AM is non-linear data; hence it is unable to classify the BST 
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model. The outcomes of various learning approaches are shown in Figure 10(c). Hessian LLE, Modified LLE, 

ISOMAP and Spectral Embedding are the best clustering approaches for QM in manifolding techniques. 

 

  
a. QM(NL) b. QM-PCA(NL) 

  

1.90 Elbow LLE (0.004 sec) 

 
 

LTSA (0.005 sec) 

 

Hessian LLE (0.008 sec) 

 

Modified LLE (0.006 sec) 

 

 2.Intersection pipes 

 3.Oil Pan 

  5. Wheel 

4. Post 

 

 Isomap (0.002 sec) 

 

MDS (0.004 sec) 

 

Spectral Embedding (0.005 sec) 

 

LSNE (0.22 sec) 

 

c. QM-Manifold(NL) 

Figure 8. QM using NL and Delaunay Triangulation (BST). 

  
a. QM(L) b. QM-PCA(L) 
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1.90 Elbow LLE (0.004 sec) 

 
 

LTSA (0.006 sec) 

 

Hessian LLE (0.007 sec) 

 

Modified LLE (0.006 

sec) 

 

 2.Intersection pipes 

 3.Oil Pan 

  5. Wheel 

4. Post 

 

 Isomap (0.002 sec) 

 

MDS (0.002 sec) 

 

Spectral Embedding (0.006 sec) 

 

LSNE (0.19 sec) 

 

c. QM-Manifold (L) 

Figure 9. QM of L and Delaunay Triangulation (BST). 

  
a. QM(NL) b. QM-PCA(NL) 

  

1. 90 Elbow LLE (0.005 sec) 

 
 

LTSA (0.006 sec) 

 

Hessian LLE (0.007 sec) 

 

Modified LLE (0.004 sec) 

 

 2. Intersection pipes 

 3.Oil Pan 

  5. Wheel 

4. Post 

 

 Isomap (0.29 sec) 

 

MDS (0.019 sec) 

 

Spectral Embedding (0.007 sec) 

 

LSNE (0.23 sec) 

 
c. QM-Manifold(NL). 

Figure 10. QM of NL and KNNG (BST). 
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In Figure 11(a) the Euclidean distance between graphs heat content invariant values in the BST datasets 

by KNN graph of Laplacian is demonstrated. Figure 11(b) shows the result of heat content kernel (QM) applied 

to the PCA techniques. Figure 11(c) shows the results of manifold learning techniques. In manifold techniques 

for QM gives best clustering results to LLE, Hessian LLE, Modified LLE, ISOMAP, and Spectral Embedding.  

  

a. QM(L) b. QM-PCA(L) 

  

1.90 Elbow LLE (0.48 sec) 

 
 

LTSA (0.008 sec) 

 

Hessian LLE (0.032 sec) 

 

Modified LLE (0.008 sec) 

 

 2.Intersection pipes 

 3.Oil Pan 

  5. Wheel 

4. Post 

 

 Isomap (0.02 sec) 

 

MDS (0.032 sec) 

 

Spectral Embedding (0.14 sec) 

 

LSNE (0.36 sec) 

 

c.  QM-Manifold(L). 

Figure 11. QM of L and KNNG (BST). 

The same method is employed using Eigen value feature and the results are tabulated. Table 3 shows the 

outcomes of various approaches on the BST datasets. According to Table 3, the model classification using KNN 

graph produces only average results when compared to the Delaunay triangulation. The results show that the 

Delaunay Triangulation methodology with Normalized Laplacian and Heat Content Invariant yields the best 

results. As a result, it is determined that QM is an invariant feature vector which produces good classification 

results with LLE, Modified LLE, Hessian LLE, ISOMAP, Spectral Embedding, and LTSA. 
 

The CST dataset of the Engineering bench mark consists of 67 objects which include backdoor(7), pipes 

(15), bearing (8), cylindrical objects (7), intersection (9), clips (4), bearing block (4) ,elbow (5), handles (5) and 

90 degree elbow( 3).  

The HDN dataset of the Engineering bench mark consists of 20 objects which include contoured surface, 

handles, motor bodies and flange. 

The proposed method is applied to the CST data set and also HDN dataset for validation purpose.  

Table 4 shows the outcomes of various manifolding techniques over CST and HDN datasets. The results 

show that the Delaunay Triangulation methodology with Normalized Laplacian and Heat Content Invariant 
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yields the best results. As a result, it is determined that QM is an invariant feature vector that produces good 

classification results with LLE, LTSA and Hessian LLE manifold techniques.  

Table 3. Comparative result of classification using delaunay triangulation and KNG Graph over BST ENG Data set. 

Dataset BST 

Techniques Delaunay Triangulation  (Proposed One) KNN 

Methodology NL L NL L 

Features Qm Eigen Qm Eigen Qm Eigen Qm Eigen 

PCA 22 20 7 15 7 23 18 13 

LLE 25 19 7 20 22 23 23 20 

LTSA 25 25 8 17 22 22 22 23 

HESSIAN LLE 25 12 2 19 22 23 22 23 

Modified LLE 23 13 10 19 23 19 21 20 

ISOMAP 23 8 6 4 22 22 21 23 

MDS 5 5 7 7 7 12 7 11 

Spectral Embedding 25 16 19 18 23 23 23 21 

T-SNE 14 4 12 6 17 17 22 6 

Table 4. Comparative result of Classification using Delaunay Triangulation over CST dataset and HDN dataset. 

Manifolding techniques CST/67 HDN/20 

Delaunay Triangulation 

Normalized Laplacian 

QM Eigen QM Eigen 

PCA 37 32 19 13 

LLE 59 37 20 13 

LTSA 62 49 20 12 

HESSIAN LLE 62 49 20 22 

Modified LLE 61 51 17 11 

ISOMAP 40 29 18 12 

MDS 17 25 06 09 

Spectral Embedding 42 40 14 07 

T-SNE 40 11 05 05 

 

Conclusion 

The proposed approach makes an attempt at structural pattern recognition on a 3D point set engineering 

model. The suggested method integrates linear deformable model and heat kernel embedding to provide the 

generative model for graph structure. On ESB datasets, Delaunay triangulation produces the best graphs, and 

it can classify all objects using all classification methods using Normalised Laplacian feature vectors (QM), which 

outperform the Laplacian of graph in terms of results. The best classification outcomes on the BST, CST, and HDN 

datasets are found to be provided by Normalised Laplacian, LLE, M.LLE, LTSA, and HESSIAN LLE. 
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