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ABSTRACT. Due to its advantages, Prestressed Concrete has been used as a structural element in many 

buildings worldwide. In order to overcome large spans, limiting the formation of cracks, its application can 

be visualized, for example, in bridges, viaducts, and building slabs. These structures are executed by 

stretching steel cables with a subsequent release, introducing compressive stresses in the concrete. 

However, during this process, stress losses occur in the active reinforcement, requiring forecast by the 

designers. Quantifying these losses in certain cases is a long and iterative process. The present work aimed 

to present the computational implementation of an alternative method for determining the loss due to 

deformation of the anchorage in post-traction. In order to prove its effectiveness, this method was 

contrasted with two conventional methodologies established in the literature. To this end, two models of 

beams of the same cross-section were simulated, however, with different spans and cable paths. Both 

proposed simulations aimed to cover all possible situations for the development of prestressing stress along 

with the tensioned cables. The alternative method showed minor differences in all measurements compared 

to the conventional methods, proving its effectiveness. Furthermore, the computational tool, entitled 

vProt, proved to be reliable in the two proposed simulations, allowing its use in the elaboration and 

verification of structural projects. 
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Introduction 

To meet the growing demand for construction works such as bridges and buildings, Prestressed Concrete 

emerged as an evolution of Reinforced Concrete. It aims to mitigate the effects of the low tensile strength of 

concrete. Its basic premise is the application of previous compression stresses in the region of the cross-

section of the element that presents tensile stresses due to the other actions. Thus, when external loading is 

applied, the final tensile stresses are mitigated by the compressive stresses pre-applied to the element. igure 

1 exemplifies this premise presented. 

 

igure 1. Simply supported beam in prestressed concrete: Previous compressive stresses (a) External loading applied (b). Source: 

Adapted from Bastos (2019a). 
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Due to its efficiency, many design engineers opt for Prestressed Concrete as a structural alternative to 

overcome large spans, limiting the formation of cracks in the structural elements. Therefore, prestressing 

systems are commonly used in bridges, viaducts, and building slabs (Yang, Gong, & Yang, 2020; Ye, Butler, 

Elshafie, & Middleton, 2020; Michelini, Bernardi, Cerioni, & Belletti, 2020; Araújo, Sales, Silva, Antunes, & 

Ferreira, 2020). 

In Prestressed Concrete, the previous compressive stresses are introduced in the element through the 

stretching of the steel (active reinforcement) that runs through the entire longitudinal section of the element. 

When released from the prestressing jack, the steel tends to return to its original position. However, it is 

prevented by anchorage at the end of the element. This process introduces an initial compressive stress (𝑃𝑖) 

in the element (igure 1a) that is directly related to the elongation that occurred in the active reinforcement. 

However, during the stretching process and subsequent release of the cables, variables such as the friction 

between the strand and the sheath; slipping of the anchor wedge; steel relaxation; concrete shortening; 

among other factors, they produce a series of effects that lead to a decrease in the force 𝑃𝑖. The different 

reductions of this force characterize the prestressing losses. The designer’s responsibility is to estimate them 

so that in any section, combination of loads or moment in the structure’s useful life, both the conditions of 

use and those of ultimate limit states are satisfied (Carvalho, 2012). 

The study of prestressing losses is essential in the elaboration of structural projects, so it is a recurrent 

topic in the literature, contemplating several studies that explore not only the types and methodologies of 

quantification but also the application of its algorithms in the determination of other variables involving the 

prestressing of concrete elements (Caro, Martí-Vargas, & Serna, 2013; Myers & Bloch, 2013; Singh, Yazdani, 

& Ramirez, 2013; Shao, Pan, Zhao, & Shao, 2014; Asamoto, Kato, & Maki, 2014; Cao, Tao, & Ma, 2015; Ward, 

Dang, Floyd, & Hale, 2016; Biswal & Ramaswamy, 2017; Guo, Chen, Lu, & Yao, 2017; Křístek & Kadlec, 2017; 

Breccolotti, 2018; Páez & Sensale, 2018; Abdel-Jaber & Glisic, 2018; Xie, Cui, Yan, & Yu, 2019; Yang, Gong, 

& Yang, 2020; Ye, Butler, Elshafie, & Middleton, 2020; Breccolotti, 2020). 

Based on all the stress losses acting on a prestressed concrete element, the one that will be highlighted in 

this work is the one arising from the slipping of the anchor wedge after the release of the tensioned cables. 

Its quantification depends on the type of process used to fabricate the structural element. 

There are two prestressing processes applied to a concrete piece: pre-tensioning and post-tensioning. In 

general, in the pre-tensioning process, the strands are tensioned before concreting the element. In the post-

tensioning process, the opposite occurs, i.e., the concrete element is manufactured before the steel cables are 

stretched. For this, ducts (sheaths) are located along the longitudinal section, and posteriorly they are filled 

by the strands. 

In both processes, when the active reinforcement is released, it recedes a few millimeters towards “inside” 

the concrete element. With this movement, the anchor wedge is dragged into the conical hole of the wedge 

holder piece until its crimping is complete. This small setback causes a drop (Δ𝜎𝑝) in the tensile stress (𝜎𝑝) of 

the previously stretched cables, characterizing the so-called loss due to deformation or slippage of the anchor. 

In the pre-tensioning process, there is no friction at the moment of regression of the cables, so its deformation 

(𝜀) is assumed to be constant along the longitudinal section. Therefore, the stress reduction (Δ𝜎𝑝) due to slipping 

of the anchorage can be estimated through the Law of Hooke, the result of the product of the deformation of the 

anchorage (𝜀) times the modulus of elasticity of the prestressing steel (𝐸𝑝) (Carvalho, 2012). 

In post-tensioning process, due to the friction between the cable-sheath assembly, the stress reduction 

(Δ𝜎𝑝) decreases until it reaches zero, at the so-called “unmovable” point to the anchorage. Determining the 

position of this undisplaceable point and the values of Δ𝜎𝑝 in each analysis section make the quantification 

process much more laborious than in the case of pre-tensioning. 

Conventional methodologies for obtaining the loss by accommodation of the anchorage in post-tensioning 

are based on iterative processes based on trial and error or approximate estimates (Naaman, 2012; Carvalho, 

2012; Cholfe & Bonilha, 2018; Dolan & Hamilton, 2019). However, Marconato & Sartorti (2015) developed a 

method in which it is possible to determine the stress variation (Δ𝜎𝑝 ) in each analysis section through 

simplified equations. Thus, manual calculation and computational algorithms can be implemented 

alternatively in the structural development routines of structural projects. The advantage of this method over 

others is precisely to eliminate initial estimates or guesses, and to organize the problem in the form of a 

spreadsheet with direct equations. Therefore, it allows for analyzing the number of required sections without 

hindering implementation. 
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Based on what has been presented, the main objective of this study is to present the alternative 

methodology and its efficiency through comparisons with conventional methodologies. The specific 

objectives are as follows: to synthesize the conventional methodologies for determining the loss due to post-

tensioning anchorage deformation proposed by Naaman (2012), Carvalho (2012), Dolan & Hamilton (2019); 

to present the alternative method proposed by Marconato & Sartorti (2015) implemented in a computational 

tool; to evaluate the reliability of the alternative methodology based on the simulation of two beams with 

different spans and cable paths. 

Material and methods 

For the prestressing loss due to anchorage deformation to be realistically quantified, it is vital to know the loss 

that precede the moment of anchorage. The different reductions in prestressing effort are classified by item 9.6.3.1 

of ABNT NBR 6118 (2014) according to their moment (instant) of occurrence. In post-tensioning, the two recurring 

types are the immediate losses and the deferred losses over time. The immediate losses occur during the transfer 

of prestressing to the concrete, while the deferred losses occur progressively over time (ABNT NBR 6118, 2014). 

Figure 2 illustrates the chronology of quantification of these losses in post-tensioned elements. 

 

Figure 2. Flowchart of the instant of occurrence of the prestressing losses in post-tensioning. 

From Figure 2, the only loss that precedes the moment of anchoring is that arising from the friction 

between the strand and the sheath. In post-tensioned elements, the ducts (sheaths) almost always have a 

curved development path and involuntary sinuosities, generating friction during the stretching process. The 

stress [𝜎𝑝(𝑥)] after the friction loss in each section of the active reinforcement is given by Equation 1, adapted 

from ABNT NBR 6118 (2014). 

𝜎𝑝(𝑥) = 𝜎𝑝,𝑖 ∙ 𝑒
−𝜆∙𝑥, and 𝜆 = 𝜇 ∙

∑𝛼

𝑥
+ 𝑘 (1) 

Where, 𝜎𝑝,𝑖: Stress in active reinforcement immediately after prestressing is applied; 𝜇: Apparent friction 

coefficient between the cable and the sheath; ∑𝛼: Sum of the deviation angles between the anchor and the 

x-abscissa point; 𝑘: Coefficient of loss per meter caused by unintentional bending of the cable. In the absence 

of experimental data, 𝑘 is assumed to be equal to 1% of 𝜇; 𝑥: Abscissa of the point where the variation Δ𝜎𝑝(𝑥) 

is calculated, and it is calculated from the anchorage. 

As previously mentioned, the anchor slip loss comes from the slight recoil of the prestressed cables, 

causing a reduction (Δ𝜎𝑝) of the acting tensile stress (𝜎𝑝,𝑖). Figure 3 illustrates the stress development long 

the cable during the anchoring process. 

In situation A (Figure 3a), it is noted that at point a there is a stress drop (Δ𝜎𝑝) up to the point a’, which has its 

value decreased to nullity at point b. The stress variation (Δ𝜎𝑝) decreases until the unmovable point (b) to the 

anchorage due to the friction existing in the cable-sheath assembly. Thus, there are two relevant unknowns: the 

acting stress (𝜎𝑝,𝑅) at the undisplaceable point (b) and the distance (𝑥𝑅) from the active anchorage. With at least 

one of these unknowns, applying geometric relationships and the consequent quantification of stresses in each 

analysis section becomes possible. However, in short beams or even in some cases of active anchoring at both ends 

(situation B, Figure 3b), despite the friction in the cable-sheath assembly, the stress reduction (Δ𝜎𝑝) does not reach 

nullity in the point b, and the distance 𝑥𝑅 is known and equal to ℓ. Therefore, the value of 𝜎𝑝,𝑅, and the stresses in 

the corresponding analysis sections are identified by applying geometric relations. 
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Figure 3. Stress development along the cable in the anchoring process: Situation A (a) and B (b). Source: Adapted from Bastos (2019b). 

Assuming that the frictional stresses acting on stretching and slipping are of the same intensity for 

situation A (Figure 3a), both Naaman (2012) and Dolan and Hamilton (2019) admit that curves a-b and a’-b 

are line segments that form the isosceles triangle a-b-a’. Therefore, the stress drop (Δ𝜎𝑝 ) in the active 

anchorage is given by Equation 2 and the average stress loss (Δ𝜎𝑝,𝑎𝑣) in section 𝑥 = 𝑥𝑅 is given by Equation 3. 

Δ𝜎𝑝 = 𝜎𝑝,𝑖 − 𝜎𝑝,𝑖′ ⇒ Δ𝜎𝑝 = 2 ∙ (𝜎𝑝,𝑖 − 𝜎𝑝,𝑅) ⇒ Δ𝜎𝑝 = 2 ∙ Δ𝜎𝑝,𝑎𝑣 (2) 

𝚫𝝈𝒑,𝒂𝒗 = 𝝈𝒑,𝒊 − 𝝈𝒑,𝑹 (3) 

Where, 𝜎𝑝,𝑖′: Stress in active reinforcement after slipping of the anchor (section 𝑥 = 0). 

Using the Taylor expansion, Naaman (2012) applies Equation 1 to Equation 3, disregarding the higher-

order terms, as presented in Equation 4. 

Δ𝜎𝑝,𝑎𝑣 = 𝜎𝑝,𝑖 − 𝜎𝑝,𝑖 ∙ 𝑒
−𝜆∙𝑥𝑅 ⇒ Δ𝜎𝑝,𝑎𝑣 = 𝜎𝑝,𝑖 − 𝜎𝑝,𝑖 ∙ (1 − 𝜆 ∙ 𝑥𝑅) = 𝜎𝑝,𝑖 ∙ 𝜆 ∙ 𝑥𝑅 (4) 

Considering that the active reinforcement presents a constant shortening along the stretch 𝑥𝑅, the average 

loss (Δ𝜀𝑝,𝑎𝑣) of deformation is given by the ratio between the slip of the anchorage (𝛿) and the abscissa 𝑥𝑅. 

Therefore, applying Hooke’s Law, Naaman (2012) proposes a second expression (Equation 5) to quantify the 

average stress loss Δ𝜎𝑝,𝑎𝑣. 

Δ𝜎𝑝,𝑎𝑣 = Δ𝜀𝑝,𝑎𝑣 ∙ 𝐸𝑝 ⇒ Δ𝜎𝑝,𝑎𝑣 =
𝛿

𝑥𝑅
∙ 𝐸𝑝 (5) 

Where, 𝐸𝑝: Modulus of elasticity of active reinforcement steel. 

Finally, equating Equation 4 with Equation 5, Naaman (2012) determines the distance 𝑥𝑅 through Equation 6. 

𝜎𝑝,𝑖 ∙ 𝜆 ∙ 𝑥𝑅 =
𝛿

𝑥𝑅
∙ 𝐸𝑝 ⇒ 𝑥𝑅 = √

𝛿 ∙ 𝐸𝑝
𝜎𝑝,𝑖 ∙ 𝜆

 (6) 

It is possible to note that 𝑥𝑅 depends on the initial prestressing stress (𝜎𝑝,𝑖) and friction and curvature of 

the cables (𝜆). However, Equation 6 is only valid when 𝜆 is constant over a considered curvature and 𝑥𝑅 is not 

greater than the length of the curvature relative to its 𝜆  (Naaman, 2012; Dolan & Hamilton, 2019). 

Recommended values of 𝜆 are shown in Table 1. 

(Table 1). In that case, the Precast/Prestressed Concrete Institute (PCI, 2017) recommends Equation 7 to 

determine 𝑥𝑅. 

𝑥𝑅 = √
𝛿 ∙ 𝐸𝑝

(𝑧 ℓ⁄ )
 (7) 

Where, ℓ: span or a known distance along the cable; 𝑧: the stress loss over distance ℓ. 
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Table 1. Recommended values for 𝜆 and 𝑥𝑅 to typical passive reinforcement profiles. 

Profile Description 𝝀 𝒙𝑹 ≤ 𝓵 

Linear 
 

𝑘 𝑥𝑅 = √
𝛿 ∙ 𝐸𝑝

𝜎𝑝,𝑖 ∙ 𝑘
 

Parabolic 

 

2 ∙ (
𝜇 ∙ 𝑎

𝑏2
) + 𝑘 𝑥𝑅 = √

𝛿 ∙ 𝐸𝑝

𝜎𝑝,𝑖 ∙ 𝜆
 

Circular 

 

𝜇

𝑅
+ 𝑘 𝑥𝑅 = √

𝛿 ∙ 𝐸𝑝

𝜎𝑝,𝑖 ∙ 𝜆
 

Any shape or combination of 

shapes (approximate model over 

a length 𝓵) 

 

(
𝑧

ℓ
) ∙

1

𝜎𝑝,𝑖
 𝑥𝑅 = √

𝛿 ∙ 𝐸𝑝

(𝑧 ℓ⁄ )
 

Source: Adapted from Naaman (2012). 

Suppose there are different values of  𝜆, and the distance 𝑥𝑅 is greater than the length of a given curvature  

In situation B (Figure 3b), Naaman (2012) admits that the region a-b-b’-a’ corresponds to an isosceles 

trapezoid, whose area is given by Equation 8. Therefore, the variation (Δ𝜎𝑝) of voltage at position 𝑥 = ℓ can 

be written using Equation 9. 

Loss area = [
∆𝜎𝑝(0) + ∆𝜎𝑝(ℓ)

2
] ∙ ℓ = 𝛿 ∙ 𝐸𝑝 (8) 

∆𝝈𝒑(𝓵) = ∆𝝈𝒑(𝟎) − 𝟐 ∙ [𝝈𝒑,𝒊 − 𝝈𝒑(𝓵)] (9) 

Ignoring the higher-order terms, the stress (𝜎𝑝) at position 𝑥 = ℓ is simplified through Taylor expansion, 

as expressed in Equation 10. 

𝜎𝑝(ℓ) = 𝜎𝑝,𝑖 ∙ 𝑒
−𝜆∙ℓ ⇒ 𝜎𝑝(ℓ) = 𝜎𝑝,𝑖 ∙ (1 − 𝜆 ∙ ℓ) = 𝜎𝑝,𝑖 − 𝜎𝑝,𝑖 ∙ 𝜆 ∙ ℓ (10) 

Substituting Equation 10 in Equation 9 and adjusting the term ∆𝜎𝑝(0) through Equation 8, it is possible to 

obtain the stress variation at position 𝑥 = ℓ and consequently the stress 𝜎𝑝,𝑅, both represented by Equation 11. 

∆𝜎𝑝(ℓ) =
𝛿 ∙ 𝐸𝑝
ℓ

−𝜎𝑝,𝑖 ∙ 𝜆 ∙ ℓ ∴ 𝜎𝑝,𝑅 = 𝜎𝑝(ℓ) −
∆𝜎𝑝(ℓ)

2
 (11) 

Carvalho (2012) disregards the isosceles triangle a-b-a’ (Figure 3a), assuming the area between two curves 

in situation A, as illustrated in Figure 4a. 

Figure 4. Area between curves (a) and division of the domain of integration into areas of trapezoids (b). Source: Adapted from Carvalho (2012). 
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The area (Ω𝑅) of the region a-b-a’ is given by Equation 12. 

∫ 𝜎𝑝 𝑑𝑥

𝑥𝑅

0

= 𝛿 ∙ 𝐸𝑝 ⇒ Ω𝑅 = 𝛿 ∙ 𝐸𝑝 (12) 

Hence, the unknown consists of the distance 𝑥𝑅  needed to produce an area between curves equal to Ω𝑅 . 

Carvalho (2012) proposes dividing the integration domain into arbitrary sections whose areas correspond to 

isosceles trapezoids (Figure 4b). Due to the very remote probability that the sum of these areas will result in a value 

equal to Ω𝑅, attempts are made to identify the sections immediately before (𝑥 = 𝑥𝑅−1) and after (𝑥 = 𝑥𝑅+1) to the 

undisplaceable point (𝑥 = 𝑥𝑅). The area (Ω𝑛) is estimated for each iteration through Equation 13. 

Ω𝑛 =∑{[(𝜎𝑝,𝑖 − 𝜎𝑝,𝑛) + (𝜎𝑝,𝑖+1 − 𝜎𝑝,𝑛)] ∙ (𝑥𝑖+1 − 𝑥𝑖)}

𝑛−1

𝑖=1

 (13) 

Once the coordinates of the immediately previous (𝑥𝑅−1, 𝜎𝑝,𝑅−1) and posterior (𝑥𝑅+1, 𝜎𝑝,𝑅+1) sections are 

known, the formulation of the area Ω𝑅 can be rewritten through Equation 14, assuming that Ω𝑝 (Figure 5) 

corresponds to the area of a parallelogram and Ω𝑡 (Figure 5) to the area of an isosceles triangle. 

Ω𝑅 = Ω𝑅−1 + Ω𝑝 + Ω𝑡 = 

= Ω𝑅−1 + [2 ∙ (σ𝑝,𝑅−1 − σ𝑝,𝑅)
⏞          

∆𝜎1

∙ 𝑥𝑅−1] + [(σ𝑝,𝑅−1 − σ𝑝,𝑅)
⏞          

∆𝜎1

∙ (𝑥𝑅−𝑥𝑅−1)
⏞      

∆𝑥1

] 
(14) 

 

Figure 5. Definition of the areas (Ω𝑝 e Ω𝑡) e similarity of triangles. Source: Adapted from Carvalho (2012). 

By similarity of triangles, the formulation of ∆𝑥1 is in Equation 15. 

(𝑥𝑅−𝑥𝑅−1)
⏞      

∆𝑥1

(𝑥𝑅+1−𝑥𝑅−1)⏟        
∆𝑥2

=
(σ𝑝,𝑅−1 − σ𝑝,𝑅)
⏞          

∆𝜎1

(σ𝑝,𝑅−1 − σ𝑝,𝑅+1)⏟          
∆𝜎2

⇒ ∆𝑥1 =
∆𝑥2
∆𝜎2

∙ ∆𝜎1 (15) 

In situation A (Figure 3a), to determine the variation ∆𝜎1 , Equation 15 is substituted in Equation 14, 

resulting in a polynomial of degree two, as presented in Equation 16. 

Situation A: (
∆𝑥2
∆𝑥1

) ∙ ∆𝜎1
2 + (2 ∙ 𝑥𝑅−1) ∙ ∆𝜎1 + (Ω𝑅−1 − Ω𝑅) = 0 (16) 

As in situation B (Figure 3b) there is no term ∆𝑥2, since the posterior section (𝑥 = 𝑥𝑅+1) is non-existent, 

Equation 16 is rewritten in Equation 17 only for this situation. 

Situation B: ∆𝜎1 =
Ω𝑅 − Ω𝑅−1
2 ∙ 𝑥𝑅−1

 (17) 
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Once the value of ∆𝜎1  has been calculated, it becomes possible to determine the stress (𝜎𝑝,𝑅 ) at the 

undisplaceable point (𝑥 = 𝑥𝑅) to the anchorage. Therefore, the stresses [𝜎𝑝′(𝑥)] after the loss by deformation 

of the anchor in each section are given by Equation 18. 

𝜎𝑝′(𝑥) = 𝜎𝑝(𝑥) − {2 ∙ [𝜎𝑝(𝑥) − 𝜎𝑝,𝑅−1] + ∆𝜎1}     0 ≤ 𝑥 ≤ 𝑥𝑅   (18) 

The quantification of the loss by deformation of the anchor idealized by Marconato and Sartorti (2015) 

starts from the same area premise between two curves Carvalho (2012) proposed. However, contrary to the 

division of the area Ω𝑛  into trapezoids at each iteration, Marconato and Sartorti (2015) use the Gauss 

formulation (Equation 19) for the area of an irregular polygonal, represented by Figure 6, where Ω𝑛 

corresponds to twice the hatched area a-b-c. 

 

Figure 6. Area of an irregular polygonal by the Gaussian formulation. 

 

(19) 

From Figure 6, the area of the sections S1 (𝑥 = 𝑥1) and S2 (𝑥 = 𝑥2) are given by Equation 20. 

 

(20) 

Replacing the common term (𝑥1 ∙ 𝜎𝑝,0) of the area Ω1 in area Ω2, there is the new area of the section S2 (𝑥 =

𝑥2) represented by Equation 21. 
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Ω2 = Ω1 + 𝑥1 ∙ 𝜎𝑝,1 + 𝑥2 ∙ 𝜎𝑝,1 − 𝑥1 ∙ 𝜎𝑝,2 − 𝑥2 ∙ 𝜎𝑝,2 ⇒ 

Ω2 = Ω1 + (𝑥1 + 𝑥2) ∙ (𝜎𝑝,1 − 𝜎𝑝,2)  
(21) 

Therefore, rewriting Equation 21 to cover all sections of analysis, it is possible to obtain the formulation 

presented in Equation 22. 

Ω𝑛 = Ω𝑛−1 + (𝑥𝑛−1 + 𝑥𝑛) ∙ (𝜎𝑝,𝑛−1 − 𝜎𝑝,𝑛)  (22) 

Once the coordinates of the immediately preceding (𝑥𝑅−1, 𝜎𝑝,𝑅−1) and posterior (𝑥𝑅+1, 𝜎𝑝,𝑅+1) sections have 

been determined, Marconato and Sartorti (2015) determine the position of the unmovable point (𝑥𝑅, 𝜎𝑝,𝑅) for 

the two situations (A and B) presented in Table 2. 

Table 2. Different situations in determining the position of the non-displaceable point to the anchorage. 

Situation A Situation B 

  

  

 

In situation A, by the similarity of triangles, the stress (𝜎𝑝,𝑅) at the undisplaceable point (𝑥 = 𝑥𝑅) is given 

by Equation 23. 

𝜎𝑝,𝑅 = 𝜎𝑝,𝑅−1 + (𝑥𝑅 − 𝑥𝑅−1) ∙ (
𝜎𝑝,𝑅+1 − 𝜎𝑝,𝑅−1
𝑥𝑅+1 − 𝑥𝑅−1

)
⏞          

tan𝜃

  (23) 

However, 𝑥𝑅 is still unknown. To determine its value, Equation 23 is substituted in Equation 22, as shown 

in Equation 24, noting that 𝜎𝑝,𝑛 = 𝜎𝑝,𝑅. 

Ω𝑅 = Ω𝑅−1 + (𝑥𝑅−1 + 𝑥𝑅) ∙ {𝜎𝑝,𝑅−1 − [𝜎𝑝,𝑅−1 + (𝑥𝑅 − 𝑥𝑅−1) ∙ tan 𝜃]}  ⇒ 

⇒ 𝑥𝑅 = √𝑥𝑅−1
2 +

Ω𝑅−1 − Ω𝑅
tan 𝜃

 
(24) 

In situation B, 𝑥𝑅 is known and equal to 𝑥𝑅−1. Assuming this premise, Equation 22 is rewritten by isolating 

the term 𝜎𝑝,𝑅, as shown in Equation 25. 

Ω𝑅 = Ω𝑅−1 + (𝑥𝑅−1 + 𝑥𝑅−1) ∙ (𝜎𝑝,𝑅−1 − 𝜎𝑝,𝑅)  ⇒ 𝜎𝑝,𝑅 = 𝜎𝑝,𝑅−1 +
Ω𝑅−1 − Ω𝑅
2 ∙ 𝑥𝑅−1

 (25) 

Finally, the stresses [𝜎𝑝′(𝑥)] after the loss by deformation of the anchor in each section are given by 

Equation 26. 

𝜎𝑝′(𝑥) = 𝜎𝑝(𝑥) − {2 ∙ [𝜎𝑝(𝑥) − 𝜎𝑝,𝑅]} = 2 ∙ 𝜎𝑝,𝑅 − 𝜎𝑝(𝑥)     0 ≤ 𝑥 ≤ 𝑥𝑅   (26) 
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Once the concepts of prestressing losses are presented and the methodologies for quantifying the loss due 

to anchorage deformation, it is necessary to associate them with the main objective of the work, consolidating 

in the computational implementation of the alternative method of Marconato and Sartorti (2015). Therefore, 

the necessary data insertion steps to obtain the final stress values [𝜎𝑝′(𝑥)] will be presented in the following 

topics. The computational tool, vProt, was coded on the Microsoft Office Excel 365 2019 platform through the 

Visual Basic for Applications (VBA) language. Although the software has been programmed to determine all 

prestressing losses in a prestressed concrete element, it should be noted that only the information required 

to quantify the anchor slip loss will be presented in this work. 

In order to cover the two situations (A and B, Figure 3) idealized by Marconato and Sartorti (2015), two 

beams (I and II) of the same cross-section will be simulated; however, they have different spans and cable 

paths. In Figure 7, the respective cross-section is illustrated. In Figure 8 and Figure 9, the static scheme and 

the longitudinal section of beams I and II are respectively shown. 

 

Figure 7. Cross-section of beams I and II (dimensions in centimeters). Source: Sartorti (2018). 

 

Figure 8. Static diagram and longitudinal section of beam I (dimensions in centimeters). Source: Adapted from Sartorti (2018). 

 

Figure 9. Static diagram and longitudinal section of beam II (dimensions in centimeters). Source: Adapted from Sartorti (2018). 

It is observed that the anchorage is active at both ends of beams I and II. Furthermore, the span of beam 

II is relatively smaller than that of beam I, in order to avoid creating the fixed point, thus falling into situation 

B. It is noteworthy that the position of the representative cable is in the center of gravity of the total set of 

cables, whose layout has a parabolic geometry in the non-straight sections.  

In calculating the friction loss (Equation 1), the values of deviation angles (𝛼) in parabolic curvatures are 

quantified through Equation 27. 

𝛼 = tan−1 (
2 ∙ 𝑓

ℓ
)  (27) 



Page 10 of 14  Fraga et al. 

Acta Scientiarum. Technology, v. 46, e62978, 2023 

Where, 𝑓: cable drop in the section in question; ℓ: is the total length of the section. 

The vProt software automatically determines these curvatures according to information pre-established 

by the user. Their values are printed in Table  for both beams I and II. 

Table 3. Deviation angles between the anchorage and the x-abscissa point (beams I and II). 

Section 
Beam I Beam II 

ℓ (m) 𝑓 (cm) 𝛼 (rad) ℓ (m) 𝑓 (cm) 𝛼 (rad) 

S0 – S1 8.750 45.00 0.1025 4.375 33.75 0.1531 

S1 – S2 7.500 0.000 0.0000 4.375 11.25 0.0514 

S2 – S3 6.250 85.00 0.2656 3.750 0.000 0.0000 

S3 – S4 2.500 15.00 0.1194 - - - 

 

In addition to geometry, some prior information regarding prestressing parameters, must be reported to 

quantify anchor slip loss effectively, including:  

• Coefficient of friction between the wire and the duct for determining friction loss: 𝜇 = 0.20; 

• Slip of the anchorage wedge, that is, the distance the anchorage wedge slides towards the “interior” 

of the concrete member: 𝛿 = 8 𝑚𝑚;  

• Ultimate characteristic strength of the prestressing steel: 𝑓𝑝𝑡𝑘 = 1900 𝑀𝑃𝑎; this strength refers to low 

relaxation (LR) prestressing steels supplied by manufacturers. 

The vProt software calculates the initial stress (𝜎𝑝,𝑖) following the recommendations of item 9.6.1.2.1.b of 

ABNT (2014), whose wording is as follows: “The stress 𝜎𝑝,𝑖 of the prestressing reinforcement at the output of 

the tensile device must respect the limits of 0.74𝑓𝑝𝑡𝑘 and 0.87𝑓𝑝𝑦𝑘 for steels of the normal relaxation class, and 

0.74𝑓𝑝𝑡𝑘 and 0.82𝑓𝑝𝑦𝑘 for steels of the low relaxation class”. A low-relaxation steel (LR) is used, then the initial 

stress (𝜎𝑝,𝑖) of prestressing is given by Equation 28. For computational purposes, the lower value between the 

two limits is adopted. However, it should be noted that, technically, both (0.74𝑓𝑝𝑡𝑘 and 0.82𝑓𝑝𝑦𝑘) correspond 

to the same value. 

𝜎𝑝,𝑖  ≤ {
0.74 ∙ 𝑓𝑝𝑡𝑘 = 0.74 ∙ 1900 = 1406.0 𝑀𝑃𝑎

0.82 ∙ 𝑓𝑝𝑦𝑘 = 0.82 ∙ 0.90 ∙ 1900 = 1402.2 𝑀𝑃𝑎
 (28) 

Where, 𝑓𝑝𝑦𝑘: characteristic value of conventional yield strength equal to 0.90 ∙ 𝑓𝑝𝑡𝑘. 

Results and discussion 

Since the friction loss precedes the moment of anchoring, the vProt software determines the stresses 

[𝜎𝑝(𝑥)] after stretching the cables in each section of the active reinforcement, according to Equation 1, 

presented above. Their values are sown in Table 4. 

Table 4. Stresses [σ_p (x)] after the friction loss in each section of active reinforcement. 

Section 
Beam I Beam II 

𝑥 (m) ∑𝛼 (rad) 𝑒−𝜆∙𝑥 𝜎𝑝(𝑥) (MPa) 𝑥 (m) ∑𝛼 (rad) 𝑒−𝜆∙𝑥 𝜎𝑝(𝑥) (MPa) 

S0 0.000 0.0000 1.0000 1402.2 0.000 0.0000 1.0000 1402.2 

S1 8.750 0.1025 0.9627 1349.9 4.375 0.1531 0.9614 1348.1 

S2 16.25 0.1025 0.9484 1329.8 8.750 0.2045 0.9433 1322.7 

S3 22.50 0.3681 0.8882 1245.4 12.50 0.2045 0.9362 1312.8 

S4 25.00 0.4875 0.8629 1209.9 - - - - 

 

As long as the methodology proposed by Marconato and Sartorti (2015) includes simplified equations, the 

estimate of Ω𝑛 is calculated sequentially until the immediately preceding (𝑥𝑅−1, 𝜎𝑝,𝑅−1) and posterior (𝑥𝑅+1, 

𝜎𝑝,𝑅+1) sections are identified. The area Ω𝑅 was obtained by Equation 29. 

Ω𝑅 = 𝛿 ∙ 𝐸𝑝 = 0.008 ∙ 2.0 ∙ 10
8 = 1.6 ∙ 106  𝑘𝑁 𝑚⁄  (29) 

Therefore, the vProt software produced the values for beam I, contained in Table . 
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Table 5. Anchor slip loss on the beam I (alternative methodology). 

Section 𝑥 (m) 𝑥𝑛−1 + 𝑥𝑛 (m) 𝜎𝑝(𝑥) (MPa) 
𝜎𝑝,𝑛−1 + 𝜎𝑝,𝑛 

(MPa) 
Ω𝑛 (kN/m) 𝜎𝑝′(𝑥) (MPa) 

S0 0.000 0.000 1402.2 0.00 0.0000 1219.7 

S1 8.750 8.750 1349.9 52.3 457476 1272.0 

S2 16.25 25.00 1329.8 20.1 959918 1292.1 

S3 22.50 38.75 1245.4 84.5 423255 1245.4 

S4 25.00 47.50 1209.9 - - 1209.9 

 

It is possible to notice that the anchoring point (𝑥 = 𝑥𝑅) is located between sections S2 and S3, then they 

are in situation A. Therefore, from Marconato and Sartorti (2015), it is possible to state Equation 30 and 

Equation 31, the position of the undisplaceable point (𝑥𝑅) and the acting stress (𝜎𝑝,𝑅), respectively. 

𝑥𝑅 = √𝑥𝑅−1
2 +

Ω𝑅−1 − Ω𝑅
tan 𝜃

= √16.252 +
959918 − 1.6 ∙ 106

−13504
= 17.65 𝑚 (30) 

𝜎𝑝,𝑅 = 𝜎𝑝,𝑅−1 + (𝑥𝑅 − 𝑥𝑅−1) ∙ tan 𝜃 = 1329800 + (17.65 − 16.25) ∙ (−13504) = 1310.9 𝑀𝑃𝑎 (31) 

The stresses [ 𝜎𝑝′(𝑥) ] after the loss by accommodation of the anchor in the sections prior to the 

undisplaceable point (𝑥 = 𝑥𝑅) were calculated using Equation 26, presented above. Their results are shown in 

the last column of Table , together with the stresses [𝜎𝑝′(𝑥)] in the later sections, whose values remained equal 

to the friction loss. Figure 10 graphically illustrates the loss of prestressing after friction and slippage of the 

anchor on beam I. 

 

Figure 10. Graphic representation of the loss of prestressing by friction and deformation of the anchor (beam I). 

Analogously to beam I, Table  contains the results of beam II using the alternative methodology of 

Marconato and Sartorti (2015), quantified by the vProt software. 

Table 6. Anchor slip loss on the beam II (alternative methodology). 

Section 𝑥 (m) 𝑥𝑛−1 + 𝑥𝑛 (m) 𝜎𝑝(𝑥) (MPa) 
𝜎𝑝,𝑛−1 + 𝜎𝑝,𝑛 

(MPa) 
Ω𝑛 (kN/m) 𝜎𝑝′(𝑥) (MPa) 

S0 0.000 0.0000 1402.2 0.00 0.00000 1157.8 

S1 4.375 4.3750 1348.1 54.1 236803 1211.9 

S2 8.750 13.125 1322.7 25.4 570268 1237.3 

S3 12.50 21.250 1312.8 9.90 780279 1247.2 

 

It is possible to notice that in this beam, the anchoring point (𝑥 = 𝑥𝑅) is located after section S3. Therefore, the 

variation (∆𝜎𝑝) of stress does not reach null since beam II includes active anchoring at both ends, falling into situation 

B. Therefore, the abscissa 𝑥𝑅 is known and equal to 12.50 m, and the average stress (𝜎𝑝,𝑅) is given by Equation 32. 

𝜎𝑝,𝑅 = 𝜎𝑝,𝑅−1 +
Ω𝑅−1 − Ω𝑅
2 ∙ 𝑥𝑅−1

= 1312800 +
780279 − 1.6 ∙ 106

2 ∙ 12.50
= 1280.0 𝑀𝑃𝑎 (32) 
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As in beam I, the stresses [𝜎𝑝′(𝑥)] after the anchorage accommodation loss were calculated using Equation 

26, presented above. Its results are presented in the last column of Table . Figure 11 graphically illustrates the 

loss of prestressing after friction and slippage of the anchor in beam II. 

 

Figure 11. Graphic representation of the loss of prestressing by friction and deformation of the anchor (beam II). 

To verify the effectiveness of Marconato and Sartorti’s (2015) alternative method, we chose to measure it 

with the two conventional methodologies exposed in item “Material and Methods”. The results of beam I are 

shown in Table . 

Table 7. Measurement of the Marconato and Sartorti (2015) method with conventional methodologies (beam I). 

Section 
1M&S 2N and D&H % difference 1M&S 3C % difference 

𝜎𝑝′(𝑥) (MPa) 𝜎𝑝′(𝑥) (MPa) (%) 𝜎𝑝′(𝑥) (MPa) 𝜎𝑝′(𝑥) (MPa) (%) 

S0 1219.7 1263.8 3.62 1219.7 1219.7 0.00 

S1 1272.0 1316.1 3.47 1272.0 1272.0 0.00 

S2 1292.1 1329.8 2.92 1292.1 1292.1 0.00 

S3 1245.4 1245.4 0.00 1245.4 1245.4 0.00 

S4 120.99 120.99 0.00 120.99 120.99 0.00 
1M&S: Marconato and Sartorti (2015); 2N and D&H: Naaman (2012) and Dolan and Hamilton (2019); 3C: Carvalho (2012). 

Table  shows a slight divergence of the alternative methodology in relation to the method of Naaman (2012) 

and Dolan and Hamilton (2019), in which the abscissa (𝑥𝑅) of the unmovable point is between sections S1 and S2, 

as evidenced in Equation 33. Therefore, the stress (𝜎𝑝,𝑅) also assumes a different value, as shown in Equation 34. 

𝑥𝑅 = √
𝛿 ∙ 𝐸𝑝

(𝑧 ℓ⁄ )
= √

0.008 ∙ 2.0 ∙ 108

(192300 25.00⁄ )
= 14.42 𝑚 (33) 

𝜎𝑝,𝑅 = 𝜎𝑝,𝑖 ∙ (1 − 𝜆 ∙ 𝑥𝑅) = 1402200 ∙ (1 − 3.4213 ∙ 10
−3 ∙ 14.42) = 1333.0 𝑀𝑃𝑎 (34) 

The beam II measurements are shown in Table . 

Table 8. Measurement of the Marconato and Sartorti (2015) method with conventional methodologies (beam II) 

Section 
1M&S 2N and D&H % difference 1M&S 3C % difference 

𝜎𝑝′(𝑥) (MPa) 𝜎𝑝′(𝑥) (MPa) (%) 𝜎𝑝′(𝑥) (MPa) 𝜎𝑝′(𝑥) (MPa) (%) 

S0 1157.8 1181.8 2.07 1157.8 1157.8 0.00 

S1 1211.9 1235.9 1.98 1211.9 1211.9 0.00 

S2 1237.3 1261.3 1.94 1237.3 1237.3 0.00 

S3 1247.2 1271.2 1.93 1247.2 1247.2 0.00 

1M&S: Marconato and Sartorti (2015); 2N and D&H: Naaman (2012) and Dolan & Hamilton (2019); 3C: Carvalho (2012). 

By the method of Naaman (2012) and Dolan and Hamilton (2019), the variation (∆𝜎𝑝) of stress in section 

𝑥 = ℓ was obtained using Equation 35 and the average stress (𝜎𝑝,𝑅) by Equation 36, showing a small divergence 

in relation to the alternative methodology of Marconato and Sartorti (2015). 
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∆𝜎𝑝(ℓ) =
𝛿∙𝐸𝑝

ℓ
−𝜎𝑝,𝑖 ∙ 𝜆 ∙ ℓ =

0.008∙2.0∙108

12.50
− 1402200 ∙ 5.2714 ∙ 10−3 ∙ 12.50 = 35.6 𝑀𝑃𝑎 (35) 

𝜎𝑝,𝑅 = 𝜎𝑝(ℓ) −
∆𝜎𝑝(ℓ)

2
= (1402200 − 1402200 ∙ 5.2714 ∙ 10−3 ∙ 12.50) −

35.6

2
= 1292.0 𝑀𝑃𝑎 (36) 

As the alternative methodology by Marconato and Sartorti (2015) was conceived from Carvalho (2012), 

there is no divergence between both methods. It should be noted that the methodology from Carvalho (2012) 

configure better accuracy in the results since there is a stratification of the longitudinal section, representing 

the area Ω𝑅 more reliably. Thus, the greater the number of sections, the more realistic the loss quantification 

due to anchorage deformation will be. Although the methodology of Naaman (2012) and Dolan and Hamilton 

(2019) has practical applicability, the results differ from those quantified by Marconato and Sartorti (2015) 

and Carvalho (2012). It occurs because the area Ω𝑅  does not represent a perfect isosceles triangle and 

trapezoid for situations A and B, respectively, as shown in Figure 10 and 11. 

Conclusion 

After simulating two beams representing different stress development scenarios (A and B) along the cable, 

the following observations were made: The alternative method by Marconato and Sartorti (2015) accurately 

quantifies prestressing loss from anchorage deformation in post-tensioning, showing minimal differences 

compared to conventional methods. The software is reliable, providing users with flexibility in analysis and 

cable development. Both Carvalho (2012) and Marconato and Sartorti (2015) offer more realistic results than 

Naaman (2012) and Dolan and Hamilton (2019). Marconato and Sartorti's (2015) alternative method presents 

a simpler formulation for quantifying Ω𝑛 , eliminating the need for dividing the integration domain into 

trapezoids. 
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