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ABSTRACT. Considered an important source of bioactive compounds and unsaturated fatty acids, Baru oil 

comes from the Brazilian Cerrado ecoregion and is sold with high value. Methods to detect tampering to 

certify the authenticity of this type of product are in great demand for quality control. Herein, this study 

used partial least squares for discriminant analysis (PLS-DA) combined with Fourier-transform infrared 

spectroscopy (FTIR) and portable near-infrared spectroscopy (NIR) for the detection of adulteration in Baru 

oil, using soybean oil as an adulterant. Adulteration concentrations were 10, 30, 50, 60, and 80% for analysis 

by NIR and 10, 30, 50, 60, 70, and 90% for FTIR. After the spectral range selection and pre-processing steps, 

discrimination models showed good discrimination, and the efficiency was confirmed from the figures of 

merit, which highlighted percentages above 99% with both techniques used. Anomalous samples were 

identified in discrimination models obtained with a portable NIR spectrometer in the outlier detection step. 

The methodology evaluated is direct, fast, and non-destructive, in which the PLS-DA models obtained from 

the sets of spectra by FTIR presented superior results than those evaluated with the portable NIR 

spectrometer; however, the latter was also efficient in discriminating as adulterated, reinforcing the 

feasibility of using spectroscopic techniques and chemometric tools. 
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Introduction 

Cerrado is the second-largest Brazilian biome and provides a large diversity of fruits rich in nutritional and 

bioactive properties. Considered the richest savanna in the world, it contains about 12,000 cataloged species 

representing 5% of the planet’s biodiversity (Sano et al., 2019). Thus, studies on the fruits of Cerrado and their 

uses have caused emerging interest. 

Baru, a Dipteryx alata vog species, is a fruit of the family Fabaceae widely distributed in South and Central 

America. This fruit is brown ovoid with one almond and is generally used in food because of its nutritional 

quality (Oliveira-Alves et al., 2020; Pineli et al., 2015; Sousa, Fernandes, Alves, Freitas, & Naves, 2011). The 

oil is one of the Baru almond’s co-products, known for its high content of phenolic compounds, antioxidant 

activity (Pineli et al., 2015) and its role in reducing cholesterol and triglycerides (dos Santos et al., 2016). 

The production of oils, which play functional and sensory roles, is of interest in several industrial segments, such 

as the pharmaceutical and cosmetics industries (Fernandes, Freitas, Czeder, & Naves, 2010). However, its low 

extraction yield makes adulteration a common practice, in which oils with similar physical-chemical characteristics, 

such as soybean oil, are added (Al-Ahmed, Alsowaidi, & Vadas, 2008). This practice causes great concern due to its 

negative effects on the quality of the product, as its attributable and bioactive properties are compromised . 

Instrumental analytical methodologies that do not require long execution times, that are easy to execute, and 

that minimize waste generation have stood out in the field of adulteration identification and quality control in 

several sectors. Among these, infrared spectroscopy stands out (Moreira, Machado, Almeida, & Braga, 2018). 

However, these methodologies generate a significant amount of information, which hinders the processing and 

interpretation of the data obtained. Thus, Chemometrics, a science that employs a set of mathematical, statistical, 

and computational methods for analysis of data obtained in chemical experiments, solves these problems, making 
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it a valuable tool to remove redundant information contained in the spectra, allowing the identification and the 

quantification of several parameters in different matrices (Frank & Friedman, 1993). 

Among the most explored categories in the Chemometrics field, two of the best known for exploratory 

analysis are Principal Component Analysis (PCA) and Partial Least Squares for Discriminant analysis (PLS-

DA). The first is usually aimed at visualizing the data structure, by transforming a large set of variables into a 

smaller one that still contains most of the information, and identifying anomalies in the dataset (Wold, 

Esbensen, & Geladi, 1987), while the latter seeks to discriminate samples based on their predicted values (0’s 

or 1’s) obtained by PLS algorithm (Ballabio & Consonni, 2013; Brereton & Lloyd, 2014). 

PCA is a widely used technique to for reducing the dimensionality of datasets, and thus define those 

pertinent to the analysis without affecting relationships between the samples. In this way, this information is 

expanded to aid in visual inspection, enabling the visualization and interpretation of differences between samples 

and highlighting atypical behaviors, which become even more evident in such a technique. As an unsupervised 

methodology, PCA does not require initial information on the analyzed samples (Wold et al., 1987). 

PLS-DA methodology is a commonly used method that allows the prediction of samples in a predefined 

target class while other samples (such as interferents or samples with different physical-chemical aspects) can be 

predicted in another class. This tool does not require exact knowledge of all the components present in the samples 

under study, as long as they are present in the construction of the model (Ballabio & Consonni, 2013). 

There are several studies on the development of methodologies for the detection of adulteration of olive 

oil (Jiang & Chen, 2019; Wójcicki et al., 2015), biodiesel (Câmara et al., 2017) and copaiba oil (Moreira et al., 

2018). There are also studies to evaluate drug authenticity (Magalhães, Arantes, & Braga, 2019), for 

discrimination of different wood-producing forest species (Pastore et al., 2011), the different stages of human 

milk lactation (Botelho, Reis, Oliveira, & Sena, 2015), non-destructive identification of different types and 

brands of inks (Silva et al., 2014), and the different adulterants in beef meat using infrared spectroscopy and 

chemometric tools (Nunes, Andrade, Almeida, & Sena, 2020). All these examples show the potential of these 

methodologies in the control of vegetable oils and other diverse applications. 

To this end, this aimed to expand the knowledge in the detection of possible adulteration in Baru vegetable 

oil, combining chemometric models based on PLS-DA, with simplified sample preparation, and direct analysis 

using mid- and near-infrared spectroscopy portable equipment.  

Material and methods 

Raw material and processing 

Baru seeds were obtained in the municipality of Gurupi, state of Tocantins, and initially washed, dried, 

and stored in a refrigerator until oil extraction. A Soxhlet extraction was conducted using a 365.1 g sample 

and ethanol (99.8%) for 6 hours. The solvent was evaporated, and the solids were removed by centrifugation. 

Other solvents could be used for extraction, such as hexane, however, ethanol was chosen because of its low 

toxicity (Lôbo, Ferreira, & Cruz, 2009). 

Adulterated sample preparation 

From pure Baru oil, adulterations carried out with different percentages (% v/v) of soybean oil (SO) were 

carried out to cover several levels of adulteration. Samples tested here are listed in Table 1. Adulterations of 

Baru oil with SO were carried out in quintuplicate, and samples were stored in a refrigerator until spectra 

acquisition. Samples with adulteration levels lower than 10% were produced (2.0, 4.0, 6.0, and 8.0%), however, 

the FTIR and NIR techniques could not discriminate them from the sample without adulteration, therefore, 

they were not used for the construction of the models. 

Table 1. Percentages of adulteration of oils, spectral range, and number of variables. 

Sample Adulteration levels (%) Region spectra Number of variables 

NIR 10, 30, 50, 60, 80 1,114.1-1,520.2 nm 116 

FTIR 10, 30, 50, 60, 70, 90 1,250 - 850 and 2,451- 2,111 cm-1 742 

Infrared spectral analysis 

Eight spectra were obtained for each sample (5 samples/adulteration) in each equipment, totaling 40 

spectra measured in the portable NIR, and 40 spectra obtained in the FTIR equipment. 
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Analysis in the near-infrared region was performed using a portable NIR spectrometer from Texas 

Instruments - Dallas® (DLP NIRscan Model Nano Evaluation Module EVM, USA). The spectrometer has an 

Indium Gallium Arsenide (InGaAs) detector. Spectra were obtained in a spectral range from 900 to 1,700 nm 

(11,099 to 5,880 cm-1), with an average resolution of 3.51 nm (17 cm-1), 32 scans, absorbance mode. The 

software used was NIRscanNano GUI version 1.1.9, developed by Texas Instruments - Dallas®. 

Analysis in the mid-infrared region was performed using a Perkin Elmer FTIR spectrometer, in absorption 

mode. Spectra were obtained in the range from 400 to 4,000 cm-1 with a resolution of 4 cm-1, 32 scans, and 

using a CsI pallet. Blank measurement was achieved using a CsI pastille. 

Spectra were obtained as follows: a drop of oil was placed on the pastille surface, and the excess oil was 

removed with rods of cotton. Afterward, the pastille was placed in the device to obtain the spectrum. At each 

new sample, the pastille was cleaned with acetone, and the blank was achieved again. 

Construction of PLS-DA models 

PLS-DA is a supervised classification method, whose objective is to build a classification model in which 

samples are divided into groups and have as a prerequisite the need for prior knowledge of the sample set to 

be analyzed. In short, for the construction of PLS-DA models, a calibration is carried out using all variables 

in relation to a binary vector, in which the property of interest to be determined consists of the samples 

belonging or not to a particular class. Thus, the class values are assigned to the binary vector, with value 1 

referring to samples that will be discriminated, and value 0 assigned to other classes, with a model built for 

each class. Models with three or more classes are usually modeled as a group against all others in a PLS1-DA 

approach, i.e. model 1, which differentiates Class 1 from Classes 2 and 3, etc., model 2 which differentiates 

Class 2 from Classes 1 and 3 and finally, model 3 differentiates Class 3 from Classes 1 and 2 (Ballabio & 

Consonni, 2013; Brereton & Lloyd, 2014). 

For PLS-DA, partial least squares decomposition is performed, simultaneously for matrix X and vector y. 

The PLS-DA model is built from the matrix X of type i x j (Xi,j), where i lines represent the samples and j 

columns represent the instrumental variables (absorbance, relative intensity, etc.). The vector y contains the 

reference values, that is, the binary numerical identification of each sample according to its class, as 

represented by Equations 1 and 2 (Ballabio & Consonni, 2013; Brereton & Lloyd, 2014). 

𝑋 =  ∑ 𝑇𝑎𝑃𝑎
𝑇

𝐴

𝑎−1
+ 𝐸 

 

(1) 

𝑦 =  ∑ 𝑈𝑎𝑞𝑎
𝑇

𝐴

𝑎=1
+ 𝑓 

 

(2) 

where Ta represents the score vectors, P represents weights. The matrix E and vector f represent errors, 

that is, both contain the variance not explained by the PLS model for X and y, respectively. Finally, a identifies 

the number of latent variables, which are positioned to guarantee a smaller dimension to the original variable 

space and obtain a maximum possible covariance between matrix X and vector y. 

For analysis of the obtained spectra and construction of the matrices for the PLS1-DA models, MATLAB 

software version 7.12 (R2011b) was used, and the PLS-Toolbox version 6.5 package was used for the 

construction of the models. 

Initially, a selection of the spectral region was made, considering the most efficient bands. From the 

dataset obtained, approximately two-thirds of the spectra were randomly designed for the training set and 

one-third for the validation set. Thus, the training set consisted of 26 spectra, and the validation set, 14. 

Subsequently, the reference class values to the training set were determined. In this step, value 1 was 

considered to the class to be discriminated against and value 0 to the others. To facilitate visualization, 

individual markers were determined for each class. The same was done for the validation set. The 

simultaneous decomposition of the X training set, which corresponds to the spectral data, and the y vector, 

containing values of each class, was performed. Thus, a model for each analyzed adulteration was obtained. 

The preprocessing is a very important step for the construction of multivariate models to attenuate 

baseline deviations and spectral noise, and to highlight the variation of spectral bands. First-order Savitzky-

Golay derivative (using a 15-point window and a second-order polynomial fit), Spectra Normalization, 

Autoscaling, Mean Centering, Standard Normal Variate (SNV), and Multiplicative Scatter Correction (MSC) 

were applied as preprocessing (Barnes, Dhanoa, & Lister, 1989; Geladi, MacDougall, & Martens, 1985; 
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Helland, Næs, & Isaksson, 1995; Jiao, Chen, & Fei, 2020; Rinnan, Berg, & Engelsen, 2009; Savitzky & Golay, 

1964). The best preprocessing was selected considering the most efficient separation of samples from each 

model. The choice of the number of latent variables (LVs) was made based on the observation of the smallest 

value of the root mean square error of cross-validation (RMSECV). 

In order to obtain the best model, both the number of latent variables (LVs) and the Root Mean Square Errors 

(RMSE) are required. PLS-DA uses the term latent variables to designate the main components that can describe 

the data without losing information after PLS. During the cross-validation process, the number of LVs that will be 

used is determined, based on lower RMSECV values (Botelho et al., 2015; Pastore et al., 2011).  

Outlier-detection procedure 

Outlier exclusion consists of detecting and excluding samples with strong influence and high values of 

non-modeled residuals in the data matrix. In the present study, a procedure for the detection and exclusion 

of outliers based on Borin and Poppi (Borin & Poppi, 2004) and addressed by Magalhães et al. (Magalhães 

et al., 2019) and Martins et al. (Martins, Talhavini, Vieira, Zacca, & Braga, 2017) was adopted. The Outlier 

exclusion was performed first by applying a method in the training set is based on evaluating Q (residues) and 

T2 (Hotelling) statistics, so that, samples that simultaneously present Q residual values and Hotelling’s T2 

above the critical values (Figure 1) are considered anomalous by the model and, consequently, excluded from 

the training and validation set. 

 

Figure 1. Decomposition residual values (Q) versus the influence (Hotelling’s T2). 

Outlier exclusion was performed first by applying a method in the training set. If there are outliers, these 

samples are excluded and the model is reconstructed after outlier removal. Afterward, the model is submitted 

to a second exclusion step where the number of excluded outliers is observed and compared to the previous 

step. If the number is the same, then no exclusion is made and the method is finished. Otherwise, the second 

model is submitted to a third exclusion step, and this last model is considered the final model for the training 

set. For the validation set, the outliers are excluded at once, by the application of the method, and the 

prediction model is reconstructed (Borin & Poppi, 2004; Magalhães et al., 2019; Martins et al., 2017). 

Figures of merit 

Models were validated based on the calculations of figures of merit, which are statistical parameters used 

for validation of classification models, and evaluation of their performance. For this phase, it is necessary to 

know which samples are considered true positives, true negatives, false negatives, and false positives.  

A sample is considered a true positive when belonging to its predefined class (target class) after 

discrimination, and in the final model, it is located above the threshold. The true negative is the opposite: 

samples belonging to the other class and located below the threshold. The sample described as false positive 

is the one that does not belong to the target class and even so, it is above the threshold. Furthermore, the 

false negative considers samples belonging to the target class but below the threshold, classified with 

different samples (Botelho et al., 2015). 
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The False Positive Rate (FPR) and the False Negative Rate (FNR) represent the percentage of samples 

considered as false positive and negative, respectively, in each class, and its calculation is represented by 

equations 3 and 4 (Botelho et al., 2015): 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100 

 

(3) 

 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
× 100 

 

(4) 

From the values found in the two previous equations, the Efficiency Rate (EFR) of the model was calculated 

by equation 5: 

𝐸𝐹𝑅 = 100 − (𝐹𝑁𝑅 + 𝐹𝑃𝑅) (5) 

Results and discussion 

Oil extraction yield 

A final volume of 72 mL Baru oil was obtained (20% yield), which is consistent with the literature on the yield 

of extracting this oil using ethanol at different temperatures, and obtained yield values between 17.43 and 28.95% 

(Souza, Miranda, Sousa, Vieira, & Coimbra, 2020). Although the Soxhlet method favors oil extraction, the refining 

steps to eliminate both residues of the solvent used and solids from the seeds, in addition to the toxicity of some 

solvents, are factors limiting this method (Herrero, Cifuentes, & Ibañez, 2006; Liu et al., 2009). 

Infrared spectroscopy 

As seen in Figures 2 and 3, Baru and soybean oil have a very similar spectral profile, both in the near- and 

mid-infrared, due to similarities in their chemical composition. It highlights the need for pre-processing not 

only to eliminate regions without relevant information but also to smooth out the noise in the raw spectra, 

which can affect the final efficiency of discriminant models. 

Baru and soybean oil NIR spectral profiles (Figure 2) showed two main absorption bands, one from 1,100 

to 1,300 nm with an increase in intensity, related to C-H bonds corresponding to the functional groups -CH2, 

-CH3 and -CH=CH, and another from 1,350 to 1,550 nm, representing a combination of C-H stretching 

vibrations (Basri et al., 2017; Galtier et al., 2007). 

Baru and soybean oil FTIR spectral profiles (Figure 3) showed the main bands from 1,400 to 1,200 cm-1; 1,750 

cm-1; between 2,922 and 2,800 cm-1; and at 3,005 cm-1. Angular deformations on CH2 and CH3 are responsible for 

bands in the region between 1,400 and 1,200 cm-1, whereas a band observed at 1,750 cm-1 is due to carbonyl 

stretching. The band observed from 2,922 to 2,800 cm-1 is related to C-H stretching in the terminal methylene and 

methyl groups of triacylglycerol fatty acid chains (Lumakso, Rohman, Riyanto, & Yusof, 2015; Poiana et al., 2015). 

 

Figure 2. NIR spectra of Baru and soybean oils. 
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Figure 3. FTIR spectra of Baru and soybean oils. 

Development of discrimination models 

After spectra acquisition, 15 models were built, 7 models for the set of spectra obtained from the portable 

NIR, and 8 for the set of spectra obtained using the FTIR equipment. 

The dispersion of samples in predicted values for each model is illustrated in Figures 4 and 5. The classes 

formed by adulteration with soybean oil (SO) were the most dispersed, in compared to the Baru oil (BO) class. 

This behavior can be associated with a little spectroscopic variability of Baru oil caused by adulteration that 

is enhanced in PLS-DA. 

 

Figure 4. PLS1-DA NIR models for Baru oil adulterated with a) 0% (BO) ( ), b) 10% (*), c) 30% (■), d) 50% (+), e) 60% (◊), f) 80% ( ), 

g) 100% (SO) ( ); threshold (– –). 
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Figure 5. PLS1-DA FTIR models for Baru oil adulterated with h) 0% ( ), i) 10% (*), j) 30% (■), k) 50% (+), l) 60% (◊), m) 70% ( ), n) 

90% ( ), o) 100% (SO) ( ); threshold (– –). 

The predicted graph good resolution is explained by the separation of discriminated samples by the 

threshold, the dotted line determining a threshold value, calculated by the Bayes theorem. The calculation of 

the Bayesian threshold assumes that the predicted variance of the classes (y vector) follows a distribution 

similar to that observed in new samples. Thus, to build the PLS1-DA model, samples with predicted values 

above the threshold are considered to belong to the discriminated class, and samples below it, belong to other 

classes (Ballabio & Consonni, 2013; Brereton & Lloyd, 2014). 

PLS1-DA models in Figures 4 and 5 showed good separation between the discriminated samples, with no 

classification errors in the models built with the spectra using FTIR. However, some samples from pure Baru oil in 

the training set were confused with the set discriminated in the 10% adulteration model (Figure 4b) using NIR, 

which also had misclassifications in the test set. However, other FTIR models did not have this problem. 

Table 2 lists the obtained value for the root mean square error of calibration (RMSEC) and cross-validation 

(RMSECV). The similarity between values of RMSEC and RMSECV indicated that was no over-adjustment of 

the training and test models, which gives them efficiency, proving the results illustrated in the discrimination 

graphs. However, these errors represent random and systematic behaviors, thus requiring other indicators to 

validate the proposed model. 

Outlier exclusion 

In the second step of model development, the presence of outliers in the training and validation sets, and the 

calculation of figures of merit were done to improve the built models presented in Figures 6 and 7. Table 3 lists the 

number of outliers excluded from the sets and the value of the root mean square error of prediction (RMSEP). 

For outlier exclusion, the 98% confidence interval was adopted. The best results were found in the 

validation sets, in which only one detected outliers (class with 50% adulteration in the NIR model). Among 

the training sets, the best results were observed in FTIR models, given the lower number of outliers. 
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The RMSEP is the error related to the predictive power of the models, low values demonstrate that the 

models were efficient in discriminating the samples. The low values obtained with the RMSEP referring to the 

built models indicate its good predictive power. 

Table 2. Parameters of NIR and FTIR models of discrimination for Baru oil. 

NIR FTIR 

Adulteration (%) LV* RMSEC RMSECV Adulteration (%) LV* RMSEC RMSECV 

0 (BO) 2 0.26 0.26 O (BO) 3 0.15 0.16 

10 12 0.20 0.23 10 4 0.21 0.22 

30 7 0.15 0.17 30 5 0.14 0.14 

50 6 0.21 0.24 50 7 0.09 0.10 

60 12 0.16 0.22 60 9 0.11 0.11 

80 3 0.28 0.28 70 12 0.10 0.12 

OS 3 0.24 0.24 
90 12 0.09 0.11 

OS 7 0.11 0.12 

* Latent Variable 

Table 3. Outlier detection and RMSEP values for NIR and FTIR models. 

 NIR FTIR 

Adulteration (%) 10 30 50 60 80 10 30 50 60 70 90 

RMSEP 0.23 0.15 0.20 0.16 0.29 0.22 0.11 0.14 0.16 0.14 0.23 

Number of outliers in the training set 4 2 1 6 2 4 1 1 0 1 6 

Number of outliers in the validation set 0 0 1 0 0 0 0 0 0 0 0 

RMSEP: Root mean square error of prediction. 

 

Figure 6. Outlier detection procedure performed on PLS1-DA NIR models for Baru oil adulterated with a) 0% (BO) ( ), b) 10% (*), c) 

30% (■), d) 50% (+), e) 60% (◊), f) 80% ( ), g) 100% (SO) ( ); threshold (– –). 
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Figure 7. Outlier detection procedure performed on PLS1-DA FTIR models for Baru oil adulterated with h) 0% ( ), i) 10% (*), j) 30% 

(■), k) 50% (+), l) 60% (◊), m) 70% ( ), n) 90% ( ), o) 100% (SO) ( ); threshold (– –). 

Validation 

The values obtained are presented in Table 4. Most models presented a percentage of 0% in relation to 

FNR (False Negative Rate) and FPR (False Positive Rate), which resulted in efficiency rates with values above 

98%. The NIR model with 10% adulteration obtained a 71.43% efficiency rate in the validation set, by 

presenting 4 samples as False Negative. 

Table 4. Figures of merit for NIR and FTIR models with adulterated Baru oil. 

 Adulteration (%) FPR (%) FNR (%) EFR (%) 

FTIR 

 T V T V T V 

0 (BO) 0.00 0.00 0.00 0.00 100.00 100.00 

10 0.00 0.00 0.00 0.00 100.00 100.00 

30 0.00 0.00 0.00 0.00 100.00 100.00 

50 0.00 0.00 0.00 0.00 100.00 100.00 

60 0.00 0.00 0.00 0.00 100.00 100.00 

70 0.00 1.05 0.00 0.00 100.00 98.95 

90 0.00 0.00 0.00 0.00 100.00 100.00 

100 (SO) 0.00 0.00 0.00 0.00 100.00 100.00 

NIR 

0 (BO) 0.00 0.00 0.00 0.00 100.00 100.00 

10 0.70 0.00 0.00 28.57 99,3 71.43 

30 0.00 0.00 0.00 0.00 100.00 100.00 

50 0.72 0.00 0.00 0.00 99.28 100.00 

60 0.00 0.00 0.00 0.00 100.00 100.00 

80 0.00 0.00 0.00 0.00 100.00 100.00 

100 (SO) 0.00 0.00 0.00 0.00 100.00 100.00 

FPR: False Positive Rate, FNR: False Negative Rate, EFR: Efficiency Rate, T: Training phase, V: Validation phase. 
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The analysis of Figures 6 and 7 shows that outlier exclusion method, and calculations of the figures of 

merit indicated that the models built with the sets of spectra obtained by the FTIR equipment have better 

performance compared to the portable NIR. This is because the NIR region results in highly overlapped broad 

bands, which is a limiting factor in the identification and quantification of adulterants (Moreira et al., 2018). 

Nevertheless, the developed methodologies were able to discriminate the adulterations, obtaining efficient 

PLS-DA models capable of predicting the presence of this type of fraud in Baru oil.  

Conclusion 

PLS1-DA discrimination models built with Baru oil adulterated with soybean oil showed efficient 

responses when evaluated in the efficiency graphs combined with RMSEC, RMSECV, and RMSEP errors. 

The validation of discrimination models based on the calculations of figures of merit provided evidence of 

high-efficiency rates while excluding a small number of samples using the outlier exclusion method. The 

application of spectroscopic techniques consists of a simple and fast methodology, increasingly widespread 

in academia and laboratory routines specialized at detecting frauds. The use of portable NIR allowed to 

explore the use of equipment still little applied for the detection of oil adulteration. 
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