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ABSTRACT. Nonlinear regression models are widespread in the literature, and one of their main 

applications is in the study of sigmoidal growth curves. There are several models for this purpose, and the 

most used are the logistic, Gompertz, von Bertalanffy, and Brody models. Each one of them has its own 

characteristics and is more suitable for a given curve shape. There are several criteria in the literature for 

selecting the most appropriate model, but there is no consensus on the best criteria. Thus, the present study 

aims to evaluate the accuracy of the main selection criteria via Monte Carlo simulation, considering the 

logistic, Gompertz, von Bertalanffy, and Brody nonlinear regression models. Four simulation scenarios are 

used, each simulated with ideal curves of the logistic, Gompertz, von Bertalanffy and Brody models. Next, 

the 4 models are adjusted for each of the scenarios, and the main quality criteria found in the literature are 

calculated to assess the ability of the criteria to identify the most appropriate model for each scenario. The 

results show that the criteria asymptotic index, mean absolute error and coefficient of determination 

choose the correct model more often than the other criteria studied. Although the measures of the Battes 

and Watts curvature and box bias are important for the evaluation of the goodness-of-fit of the models, 

they are not indicated for the selection of the best model. 
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Introduction 

Regression models are widely used, with applications in many areas. The main objective of regression 

analysis is to identify and quantify some functional relationships between two or more variables. Prediction 

and estimation of parameters for subsequent inference are other objectives of regression analysis, and these 

models can be classified in three ways: linear, nonlinear, and linearizable. 

Nonlinear regression models are often used by researchers in various fields of knowledge, such as 

agriculture, biology, econometrics, engineering, and chemistry. (Mischan & Pinho, 2014). These models are 

deduced from theoretical assumptions inherent to the phenomenon of interest, and the resulting parameters 

are interpretable. Growth curves are an application of nonlinear regression models. A growth curve can be 

characterized by the description of the development of some variables, such as weight, height, and length as 

a function of age. Mischan and Pinho (2014) state that the growth of living beings shows distinct behaviour; 

it starts slowly, moves to an exponential phase, and tends to stabilize at the end, which is also known as 

sigmoidal growth. 

Thus, when the response variable has a sigmoidal aspect of development, nonlinear regression models 

with normal errors are one of the most commonly used methods for describing its behaviour over time, and 

the most common models are the logistic, Gompertz, von Bertalanffy, and Brody models (Fernandes, Muniz, 

Pereira, Muniz, & Muianga, 2015; Diel et al., 2019; Fernandes, Fernandes, Pereira, Meirelles, & Costa, 2019; 

Jane et al., 2020; Prado, Savian, & Muniz, 2020; Silva, Fernandes, Muniz, Muniz, & Fernandes, 2021; Souza 

et al., 2017; Teixeira et al., 2021).  

In practice, different models are fitted to estimate the parameters of the growth curves. When several 

models are fitted to a dataset, it is important to determine which of the models has the best descriptive fit as 

well as the best ability to predict the response variable. It is necessary to be aware that there is no way to 
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define true models; appropriate models are chosen to explain the phenomenon with the least possible loss of 

information. In the choice of the most appropriate model, criteria for evaluating the goodness-of-fit are 

important; however, there is no consensus on which quality criteria are more efficient in this selection. 

Aiming at a lower measurement error, the study of situations controlled by simulations is a viable option. 

Monte Carlo simulation is a way to study situations in computationally controlled environments and refers 

to the use of artificial models to represent real data-generation processes to obtain a greater understanding 

of such processes (Barreto & Howland, 2005). 

Therefore, the present study aims to evaluate the accuracy of the main selection criteria by using Monte 

Carlo simulation and considering the logistic, Gompertz, von Bertalanffy, and Brody nonlinear regression 

models to describe sigmoidal growth curves. 

Material and methods 

Simulation 

The data analysed were selected by sampling from datasets simulated by the Monte Carlo method using 

nonlinear regression model equations according to the flowchart shown in Figure 1. 

 

Figure 1. Structure of the Monte Carlo simulation process 

The idea for modelling the data-generation process was to use the structure of some nonlinear regression 

model (logistic, Gompertz, von Bertalanffy, or Brody) for the construction of the simulation model. Random 

error (𝜀𝑖) generated through a process with pseudorandom numbers assuming a normal distribution with zero 

mean and variance 𝜎2 (constant and known) was added to the results obtained by this structure. 
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The random error terms generated 1,000 values following a normal distribution with a mean of zero and a 

standard deviation proportional to the mean, defined by 𝜏 × 𝑋̅𝑖 . The value 𝜏 was defined after a survey of 

bibliographic references on growth curves in different scenarios for the modelling of animal, plant, and fruit 

growth curves, which provided standard deviation information for the response variable. From the observed 

deviation values in each study, the mean proportion of the standard deviations in relation to the means at 

each age was calculated. After the survey, a value of 0.15 was obtained as an estimate of 𝜏̅. 

The study population was represented by the 1,000 simulated values for the dependent variable and 15 

different ages. Subsequently, a random sampling of 20 values of 𝑌𝑖 in the population for each of the 15 points 

of the axis 𝑋𝑖 was performed, and then the mean of this sampling was calculated. The result formed the final 

set of values of 𝑌𝑖 (15 means) for the estimation of the model parameters; subsequently, the selection of the 

appropriate fit was made by the goodness-of-fit evaluators. As the “original model” was known, the previous 

procedure was repeated 100 times to determine the percentage of correct answers for each evaluator for the 

selection of the correct model. 

For illustrative purposes, suppose that we wish to study the growth of cattle; there are 1,000 cows in the 

herd, 20 of them are randomly selected, and they are weighed every 8 days, totalling 15 longitudinal 

measurements. The mean of the 20 weights at each age are calculated, and the 4 models studied are adjusted 

to this mean weight. We analyse which model had the best fit based on the quality evaluators. 

Nonlinear regression models 

Data were generated in four scenarios, and the values observed in each scenario come from the simulations 

performed using the equations from the following models: logistic, Gompertz, von Bertalanffy, and Brody. 

𝑌𝑖 =
𝛼

1 + 𝑒𝑘(𝛽−𝑥𝑖)
+ 𝜖𝑖 

𝑌𝑖 = 𝛼𝑒−𝑒𝑘(𝛽−𝑥𝑖)
+ 𝜖𝑖 

𝑌𝑖 = 𝛼 [1 −
𝑒𝑘(𝛽−𝑥𝑖)

3
]

3

+ 𝜖𝑖   

𝑌𝑖 = 𝛼[1 − 𝛽𝑒(−𝑘𝑥𝑖)] + 𝜖𝑖 

where i = 1, 2..., n; 𝑌𝑖 is the i-th observation of the dependent variable, 𝑥𝑖 is the i-th observation of the 

independent variable; 𝛼 is the asymptotic value, i.e., the expected value for the maximum growth of the object 

under study; 𝛽 is the abscissa of the inflection point (except in the Brody model, which does not have an 

inflection point), that is, from where the growth decelerates; 𝑘 is an index of maturity or precocity and is 

associated with growth – the higher its value, the less time it takes for the object under study to reach the 

asymptotic value (𝛼); and 𝜖𝑖 is the random error associated with the i-th observation, which is assumed to be 

independent and identically distributed following a normal distribution of zero mean and constant variance, 

that is, 𝜖𝑖  ~𝑁(0, 𝜎2) (Fernandes et al., 2015; Teixeira et al., 2021).  

Goodness-of-fit criteria 

According to Navarro and Myung (2004), there are several factors to consider when evaluating a model. In 

general, statistical methods can be used to measure the descriptive sufficiency of a model (by fitting it to the data 

and testing these adjustments), as well as its generalization ability and simplicity (using model selection tools). 

The quality of a model also depends on its interpretability, its consistency with others, and its overall 

plausibility. This implies inherently subjective judgements but is no less important, explained in Table 1.  

Table 1. The main selection criteria presented in the literature were used to compare and evaluate the model fit. 

 Criterion  Equation  Interpretation 

Coefficient of 

determination 
𝑅2 =  1 −

𝑆𝑆𝐸

𝑆𝑄𝑇𝑜𝑡𝑎𝑙
 

The model with the highest 𝑅2 is considered 

the most appropriate fit. SSE is sum of squares 

of residuals and 𝑆𝑄𝑇𝑜𝑡𝑎𝑙 is the total sum of 

squares. 

Adjusted coefficient of 

determination 
𝑅𝑎𝑗𝑠

2  =  1
(𝑛 − 1)

𝑛 − 𝑝
×  (1 − 𝑅2) 

The model with the highest adjusted 𝑅2 is 

considered the most appropriate fit. Where n 

is the number of data points, p is the number 
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 Criterion  Equation  Interpretation 

of parameters and 𝑅2 is the Coefficient of 

determination. 

Mean square error 𝑀𝑆𝐸 =
𝑆𝑆𝐸

(𝑛 − 𝑝 − 1)
 

For the selection of models, the model with 

the lowest MSE is desired. SSE is sum of 

squares of residuals, n is the number of data 

points and p is the number of parameters. 

𝐶𝑝 of Mallows 𝐶𝑝  =
𝑆𝑆𝐸

𝑆2
 −  (𝑛 −  2𝑝) 

The best model is desired to have the least 

biased estimates, so 𝐶𝑝 close to p is preferable. 

SSE is sum of squares of residuals, 𝑆2 is the 

estimation of residuals variance, n is the 

number of data points and p is the number of 

parameters. 

Akaike information 

criterion (AIC) 
𝐴𝐼𝐶 =  −2 log 𝐿 (𝜃̂)  +  2 (𝑘) 

Models with lower AIC values are classified as 

better. Log 𝐿 (𝜃) is the log-likelihood estimate 

and k is the number of parameters. 

Corrected Akaike 

information criterion 

(AICc) 
𝐴𝐼𝐶 = −2 log 𝐿 (𝜃̂) +  2 (𝑘) + 2

𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 

The selection of the most appropriate model is 

similar to that of the AIC. The terms Log 𝐿 (𝜃) 

and k are equal to AIC and n is the number of 

data points. 

Bayesian information 

criterion (BIC) 
𝐵𝐼𝐶 =  −2𝐿(𝜃̂) +  𝑘 ln(𝑛) 

The model that minimizes the BIC value is the 

best model for the data. 𝐿(𝜃) is the maximized 

values of the likelihood function, n is the 

number of data points and k is the number of 

parameters. 

Root mean square error 

(RMSE) 𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ (𝑦𝑖̂ − 𝑦𝑖)2

𝑛

𝑛=1
 

The closer the RMSE is to zero, the higher the 

quality of prediction in relation to the 

observed data. N is the number of data points, 

𝑦𝑖 is the i-th measurement, and 𝑦𝑖̂ is its 

corresponding prediction. 

Mean absolute error 

(MAE) 𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1

𝑛
 

A model with a lower MAE is preferable. The 

terms are the equal to RMSE. 

Asymptotic index (AI) 𝐴𝐼 =  (𝐴𝐴𝐷 −  𝑀𝐴𝐸) − 𝑅𝑎𝑗𝑠
2  

The model with AI closest to zero is 

considered the best fit model. (AAD – Average 

Absolute Devation) 

Mean prediction error 

(PE) 
𝑃𝐸𝑀 = 100 (

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1

𝑛
) 

For the selection of adjustments, models with 

low 𝑃𝐸𝑀 are chosen. The terms are the equal 

to RMSE. 

Box bias %𝐵(𝜃̂) =
100 × 𝐵(𝜃̂)

𝜃̂
 

An acceptable bias is one in which %𝐵(𝜃) <

1%. 𝐵(𝜃) represents the discrepancy between 

the estimates of the parameters and the true 

values. 

Bates–Watts curvature 
1

2
√𝐹 

Lower values of intrinsic nonlinearity (IN) and 

effect of parameters (EP) indicate a greater 

linear approximation of the model. Where 

𝐹 =  𝐹(𝛼,𝑛 − 𝑝,𝑝) is the inverse of Fisher´s 

probability distribution obtained at 

significance level α = 0.05, p is the number of 

parameters and n is the number of 

observations. 

 

It should be noted that, when choosing a model, parsimony must be considered, models with a large 

number of parameters, in general, present lower residual sum of squares values. When making decisions in 

various scenarios, it is best to stick with the simplest explanation possible. 

Methods 

The estimate of the model parameters was performed by using the Gauss–Newton convergence algorithm 

or the linearization method, which consists of using an expansion of the Taylor series to approximate the 

nonlinear regression model in linear terms and then applying the least squares method and finding the 

estimate of the parameters (Mazucheli, Achcar, 2002). 
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The evaluators used the criteria described above to select the most appropriate model, and the one selected 

by the most evaluators was chosen as the best fit of the four fitted models (logistic, Gompertz, von Bertalanffy, 

and Brody). Ideally, the model selected by the evaluators should be the model whose equation was used as a 

basis for the simulation of the data sampled in the study scenario. 

The correct answer rate was calculated for each of the goodness-of-fit evaluators who correctly selected 

the fit that generated the sampled data of the 100 replicates of the simulation process. The most efficient 

evaluation criteria were those with the highest percentages of correct model selection. 

All analyses and computations were performed in the statistical software R (THE R DEVELOPMENT CORE 

TEAM 2021) by using the packages rlang, tidyverse, dplyr, qpcR, lmtest, nlme, and IPEC, which are available 

for parameter estimation, statistical tests, and preparation of graphs. 

Results 

The results presented here were obtained following the simulation reasoning presented in the previous 

section. Table 2 shows the values of the parameters chosen for each simulation scenario (logistic, Gompertz, 

von Bertalanffy, and Brody) and the initial values assigned to the start of the iterative method: 

Table 2. Values for the parameters chosen in each equation of the simulated model and the initial values used in the subsequent 

adjustment. 

 Simulated models (𝛼;  𝛽;  𝑘)  Initial values of the fitted models (𝛼0; 𝛽0; 𝑘0) 

Logistic (300; 60; 0.1) (250; 40; 0.02) 

Gompertz (300; 60; 0.05) (200; 40; 0.03) 

von Bertalanffy (300; 1; 0.04) (250; 0.03; 0.02) 

Brody (300; 0.3; 0.06) (250; 0.3; 0.04) 

 

The parameter 𝛼, which represents the asymptote (highest point on the curve), was set at 300 to better 

explain the results in all simulations of the models performed, while the other parameters (𝛽, 𝑘) were altered 

according to the curve shape characteristics for each model.  

The parameter 𝑘 is the most sensitive parameter in model estimation, mainly due to the possible 

association with another parameter, depending on the model parameterization, as exemplified by Fernandes 

et al. (2015), where it can be correlated with parameter 𝛽. Therefore, the selection of the initial value of k has 

a significant influence on the convergence of the model compared to the initial values of the other parameters. 

The convergence space of each parameter in the analyzed models is conditioned by the values present in the 

observed data set, with emphasis on the parameter k, whose variation is generally between 0 and 1, as 

evidenced in the literature.  

All 4 simulations of the nonlinear regression models were performed, and the means were obtained for 

each scenario (logistic, Gompertz, von Bertalanffy, and Brody). The same conditions were replicated 100 

times, goodness-of-fit was calculated for all models within these scenarios, and the percentage of the “correct 

model” choice was calculated. This is summarized in Figures 2 to 9.  

There was no simulation convergence using the equations of the logistic and Gompertz models when 

trying to model the curve of the Brody model. A possible explanation is the sigmoidal shape of these models; 

the Brody model has a curve shape with an already decreasing growth rate and is therefore nonsigmoidal, 

different from the other models studied. 

It is important to note that the initial values of the adjustments were chosen to be well below the initial 

simulated values. In all scenarios, this was done to verify how accurately the model estimated its parameters, 

as shown in Table 1. 

After all models were adjusted for each scenario in all 100 replicates, the evaluation of the most 

appropriate model was performed by the goodness-of-fit criteria. Figure 2 shows the percentage of choice of 

the appropriate model for the simulation considering the equation of the logistic model in its 100 replications. 

Each column discriminated by colour in Figure 2 represents the model fitted to the simulated data and the 

respective percentages of the goodness-of-fit choice to the appropriate model for that simulation performed 

by each evaluator. 

In this scenario, there were no discrepancies regarding the choice of the most appropriate model among 

the evaluators shown in Figure 2 considering the simulation through the equation of the logistic model.  



Page 6 of 13  Silva et al. 

Acta Scientiarum. Technology, v. 46, e63428, 2024 

 

Figure 2. Percentage of choice of the evaluators for the model adjustments considering the simulated logistic model. 

Overall, the evaluators chose the fit of the logistic model as the most appropriate to represent scenario 1 

of simulation, which used the equation of the logistic model to generate the data. This represented 100% of 

the choices of the listed criteria, except for the coefficient of determination (𝑅2) and adjusted coefficient of 

determination (𝑅𝑎𝑗𝑠
2 ). In 98% of the replicates, these evaluators considered the logistic model as preferable, 

and the complementary percentage was allocated to the Gompertz model, which shows a behaviour closer to 

the logistic model. 

Evaluators such as 𝑅2 and MAE are used in many studies in the literature. Deprá, Lopes, Noal, Reiniger, 

and Cocco (2016), found that through these evaluators, the fit of the logistic model explained most of the 

variability in the variables plant height and number of leaves per plant for the genotypes of creole corn 

cultivars and maternal half-sib progenies according to the thermal sum. Diel et al. (2020) studied strawberry 

production and selected the logistic model as the most appropriate based on the AIC, R², and Battes and Watts 

curvature measures. 

The results of the box bias are presented in a separate graph. Figure 3 shows the percentage of choice 

information for the smallest biases in each parameter of the fitted models. 

 

Figure 3. Percentage of box bias for the choice of the fit and models considering the simulated logistic model. 
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Once again, the agreement of the most appropriate fit in relation to the parameters and box bias was 

noticeable. All evaluators selected the fit of the logistic model as the most appropriate, and this fit was chosen 

100% of the time for the repetitions. Thus, the fit of the logistic model in the simulation scenario for this 

same model showed lower box biases for all parameters. 

In contrast, Figure 4 shows some changes observed for scenario 2 using the Gompertz model equation in 

relation to the results presented in the simulation of the previous scenario. 

Figure 4 shows that the fit of the Gompertz model was the most appropriate for representing the 

simulation of scenario 2, and it reflects the high percentages of choice of this model for most of the evaluators 

presented here. A total of 11 out of the 12 evaluators (Figure 4) had higher percentages of choice for this 

model, all with percentages greater than 85% choice. 

 

Figure 4. Percentage of choice of evaluators for model fitting considering the simulated Gompertz model 

It can be noted that the evaluators asymptotic index (AI) and mean absolute error (MAE) were slightly 

more accurate than the others for this scenario. In 100% of the replicates, they selected the fit of the Gompertz 

model as the “original equation” for data simulation, while the Akaike information criterion (AIC), corrected 

Akaike information criterion (AICc), Bayesian information criterion (BIC), mean prediction error (𝑃𝐸𝑀), mean 

square error (MSE), 𝑅2, 𝑅𝑎𝑗𝑠
2 , and root mean square deviation (RMSE) selected the same model in only 98% of 

the replicates. 

Drumond et al. (2013) studied meat quail growth and explained that considering the criteria for the model 

goodness-of-fit, 𝑅2 was not a good indicator for choosing the models, as all of the values were high and 

similar. Thus, the models that best fit the data were selected through the AI. Lower AI values were observed 

for the Gompertz model in male quails and for the logistic model in females. 

The Batts and Watts curves (intrinsic and parametric) did not lead to the same conclusion regarding the 

choice of adequate fit. The intrinsic curvature (RMS INT) led to the selection of the correct ideal model in 88% 

of the repetitions, while the parametric curvature (RMS PE) did not lead to the same conclusion in accepting 

the Gompertz model as the original equation. The parametric curvature evaluations led to the conclusion that 

the logistic fit would be the ideal model for 64% of the repetitions and that the Gompertz model fit would be 

satisfactory in only 36% of the replications. 

Considering the choice of the appropriate model with the box bias, Figure 5 shows that the fit of the 

Gompertz model obtained higher percentages of the lowest bias for all parameters. Considering the smallest 

biases, the parameter k, which represents a relationship between the first derivative calculated at the 

inflection point and the asymptotic value, presented the highest percentage of choice for the Gompertz model 

– 98% of the cases. In turn, the parameter 𝛽 considered the fit of the Gompertz model to have the least bias 

in 55% of the fits, while 58% of the adjustments for the asymptote, parameter 𝛼, showed lower biases for the 

fit of the original data equation – the Gompertz model. 
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Figure 5. Percentage of box bias for the choice of the fit and models considering the simulated Gompertz model. 

Figure 6 shows results for the fit quality evaluators by simulating scenario 3 using the von Bertalanffy 

model equation and then fitting the 100 simulation replicates. For the most part, the fit quality evaluators for this 

scenario agreed that the von Bertalanffy model was the appropriate model, which simulated the initial data.  

Despite the high correct answer rate of most evaluators in selecting the ideal fit from the equation that 

simulated the data in this scenario, the for the MAE and AI evaluators had clearer accuracy according to their 

high percentage of “correct model” selection – both evaluators agreed in 89% of the simulations that the von 

Bertalanffy model generated the data, which was a percentage higher than the percentage of all the other 

evaluators discussed here. 

 

Figure 6. Percentage of choice of the evaluators for the model adjustments considering the simulated von Bertalanffy model. 

The use of the AI in growth curve studies and its effectiveness in choosing the appropriate model was 

emphasized by Veloso et al. (2015), who used the AI to select the appropriate model because it is a more 

complete evaluation criterion. Thus, the AI indicated that the best fit was presented by the curve proposed by 

von Bertalanffy, which is recommended for describing the growth pattern of birds of the free-range chicken 

genotypes evaluated in the study. 

The coefficient of determination and its adjusted form (𝑅2 and 𝑅𝑎𝑗𝑠
2 ) demonstrate 87% accuracy in the 

choice of the von Bertalanffy model fit. The evaluators AIC, AICc, BIC, PE, MSE, and RMSE formed a group 
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with similar behaviour regarding the selection of the appropriate fit, where they considered the von 

Bertalanffy model equation to be the simulated data generation matrix in 83% of the replicates. 

It is noteworthy how inaccurate the Battes and Watts curvatures were in selecting the correct model that 

simulated the data from this scenario. According to the intrinsic and parametric curvature measurements, the 

data came from a von Bertalanffy model equation in only 4 and 5%, respectively, of the 100 fitted replicates. 

The accuracy of these evaluators in choosing the correct equation that generated the data in this scenario was 

the lowest of all the simulations. According to these evaluators, the intrinsic curvature indicates that the data 

showed behaviour characteristic of the Brody model in 77% of the replicates and that the parametric curvature 

shows behaviour similar to that of the Gompertz model in 75% of the repetitions. 

Figure 7 shows the percentages for the adjustments with lower biases by parameter. In this scenario, 

parameter k had the highest correct answer rate considering the lowest bias; the von Bertalanffy model was 

considered ideal to represent the simulated data in 61% of the fits. Only 29% of the simulations presented 

lower box bias results for 𝛼 for the initially simulated model, while 69% of the fits show lower biases for the 

Gompertz model for this same parameter. 

 

Figure 7. Percentage of box bias for the choice of the fit and models considering the simulated von Bertalanffy model. 

Finally, there was no fit preference for the parameter 𝛽 considering the smallest bias, and the selection of 

the “real model” – von Bertalanffy – was responsible for 44% of the adjusted replicates, and it tied with the 

Gompertz model. Thus, the results show that the box bias was not efficient in selecting the appropriate fit in 

this simulation scenario. 

Simulation scenario 4 using the Brody model equation led to key results for the evaluation of the fit quality 

criteria and definition of the objective of this study because it presents a growth pattern different from the 

patterns of others (Figure 8). 

According to the results obtained by the goodness-of-fit evaluators in this scenario, most were mistaken 

in relation to the selection of the initial simulation model. According to the evaluators and the highest 

percentages of choice, the fit of the logistic model would be ideal, while the Brody model that generated the 

simulated data was correctly selected only by the evaluators MAE, AI, 𝑅2, and 𝑅𝑎𝑗𝑠
2 . 

The group composed of AIC, AICc, BIC, PE, MSE, and RMSE showed greater choice for the logistic model 

in terms of percentage. In 50% of the replicates, these evaluators indicated that the data came from the 

logistic model equation, while these evaluators were correct regarding the appropriate model only in 46% of 

the total number of simulations, where the Brody model was selected as correct. 𝑅2 and 𝑅𝑎𝑗𝑠
2  chose the Brody 

model as appropriate in this scenario in 47% of the repetitions.  

Veloso et al. (2016) recommended using goodness-of-fit evaluators other than 𝑅𝑎𝑗𝑠
2  because the differences 

between the 𝑅𝑎𝑗𝑠
2  values of the different models used in the growth curve study were negligible. The best 

adjustment groups for the growth of broiler chickens were those that, in general, showed simultaneously 

lower values of MSE, AIC, BIC, and AI.  
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Figure 8. Percentage of choice of the evaluators for the model adjustments considering the simulated Brody model. 

Regarding the accuracy of the selection, the MAE selected the Brody model as adequate in 51% of the 

simulations, and the difference between the Brody model and the second most chosen model (logistic) was 

11%; the MAE evaluator was more assertive than the other indicators. 

The AI was even more precise regarding choosing the Brody model for this scenario, as it initially generated 

the simulated data. This evaluator obtained correct answers in 52% of the adjusted repetitions, a 12% 

difference from the logistic model, which was the second most appropriate fit. Thus, this evaluator obtained 

the highest accuracy of the evaluators studied. 

For this scenario the Battes and Watts curvature did not show convergence of results; thus, it was not 

possible to evaluate the behaviour of this criterion for the selection of the appropriate model. The results for 

the box bias converged only for the fits of the von Bertalanffy and Brody models, and their percentages are 

shown in Figure 9. 

 

Figure 9. Percentage of box bias for the choice of the fit and models considering the simulated Brody model. 

The adjustments of the von Bertalanffy model showed lower biases for the parameters 𝛼 and 𝛽 in 95% and 

75% of the replicates, respectively, in this simulation scenario. The choice for the Brody model was 

satisfactory only for the parameter k, which showed lower biases in 69% of the replicates. 

In general, it can be concluded through the graphs presented (Figures 2 to 9) that most of the evaluators 

studied chose correctly in some of the scenarios. However, some evaluators were more efficient than others 
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in selecting the most appropriate fit equation, the equation that initially simulated the fitted data. The 

accuracy or efficiency of the evaluators 𝑅2, 𝑅𝑎𝑗𝑠
2 , AIC, AICc, BIC, PE, MSE, RMSE, MAE and AI are very close 

for small variations in the curve shape, such as in the case of logistic and Gompertz models. 

In addition, AIC, AICc, and BIC did not differ regarding the ability to select the appropriate model; thus, if 

authors wish to use any of these evaluators, they can choose only one. The same was observed for the 

evaluators PE, MSE, and RMSE, and therefore, it was not necessary to use more than one evaluator from each 

of these groups. 

The effectiveness of the coefficient of determination in choosing the appropriate model is questioned by 

some authors in a study of growth curves. Spiess, and Neumeyer, (2010) used a Monte Carlo simulation to 

evaluate the results of 𝑅2 in adjustments of nonlinear models in pharmacy and biomedicine, and they found 

that the 𝑅2 values decreased and the AICc values increased with the highest error; however, the greatest 

criticism of the authors regarding the use of 𝑅2 is due to its inefficiency in the selection of models in the 

simulated scenario (many ties), where the differences between the 𝑅2 of the various models occurred only in 

the fourth decimal place (ten thousandths).  

Considering all the studied scenarios, the evaluators MAE and AI stand out for their high efficiency in 

choosing the appropriate model. It is noteworthy that the percentage of correct answers of these evaluators 

was always followed by those of the evaluators 𝑅2 and 𝑅𝑎𝑗𝑠
2 , which were also efficient and useful as evaluators 

for the selection of nonlinear regression models, mainly because they provide a simple and clear idea of how 

much the data variation is explained by the model under study. 

Mallows’s Cp is not shown in the figures because it did not present significant results in this study. Its 

value remained constant for all models and different simulation scenarios, and this evaluator was not efficient 

in classifying these nonlinear models. 

The nonlinearity measures, although necessary to evaluate the suitability of the linear approximations at 

the time of parameter estimation, showed that the Battes and Watts curvatures as well as the box bias were 

not effective in selecting the most appropriate model. Therefore, it is suggested that researchers use these 

nonlinearity measures only to verify the suitability of the model and to verify whether the Battes and Watts 

curvatures are significant and whether the biases are small, for example. However, they should not be used as 

selection criteria (the lower the better), as commonly found in studies in the literature such as those by 

Fernandes et al. (2015), Sari et al. (2018), Diel et al. (2019), Silva, and Savian, (2019) and Diel et al. (2020). 

Conclusion 

By considering the simulation scenarios of growth curves with the different shapes and by evaluating the 

fit of the logistic, Gompertz, von Bertalanffy, and Brody models, it is concluded that the following evaluators 

(in this order) should be used for the selection of the best model to decide which model is the most appropriate 

to describe the data: the asymptotic index (AI), mean absolute error (MAE), and coefficient of determination 

(𝑅2) (or 𝑅𝑎𝑗𝑠
2  if there are models with different numbers of parameters). If more than one evaluator is deemed 

necessary, only one of the information criterion – either the Akaike information criterion (AIC), corrected 

Akaike information criterion (AICc), or Bayesian information criterion (BIC) – and only one of the following 

need to be used: the mean prediction error (PE), mean square error (MSE), or root of the mean square error 

(RMSE). The measures of Battes and Watts curvature and box bias, although important for the evaluation of 

the goodness-of-fit of the models, are not indicated for the selection of the best model. 
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