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ABSTRACT. The Gini coefficient emerged more than a hundred years ago, but it is still the well-known and 

most used measure for assessing the degree of inequality in a distribution. Historically, the Gini coefficient 

has mainly been used to study income or wealth distributions, but, as highlighted by Gini himself, the 

coefficient's power to measure inequality extends to other contexts. In order to adapt it to the needs and 

points of view of those who use it, both in its classical and non-traditional applications, the Gini coefficient 

is frequently modified and extended, which resulted in a multitude of mathematical expressions, 

interpretations and generalizations of this coefficient. The so-called True Gini coefficient, one of the 

multiple formulations of the Gini coefficient for discrete distributions that can be found in the literature, is 

a correction of the Gini coefficient that is directly derived from the mean difference between n quantities, 

originally proposed by Gini, in 1912, and follows from the exclusion of self-on-self differences in the 

calculation. References to the main motivation for using the Gini coefficient point to its good properties, 

however, the fulfilment of the criteria for inequality measures is not common to the different formulations 

of the Gini coefficient. In this work we assessed the fulfillment of the four basic criteria for inequality measures 

by the True Gini coefficient, having shown that this formulation of the coefficient fulfills the principle of transfers, 

symmetry, and scale invariance. However, it does not comply with the principle of population, therefore, it 

cannot be included in the class of relative inequality indexes. 
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Introduction 

For many people, inequality rhymes with Gini coefficient. In fact, even though the Gini coefficient emerged 

more than a hundred years ago, it is still the well-known and popular measure of inequality (Luebker, 2010; Langel 

& Tilé, 2011). Conrado Gini's contribution to Statistics was quite extensive, in such a way that Gini (1884, Motta di 

Livenza, Italy – 1965, Rome, Italy) is considered by many to be the greatest Italian statistician (Montanari & Monari, 

2008) although Gini's worldwide recognition is due to the coefficient that carries his name. 

Gini had a wide range of scientific interests. As evidence of this, we can mention his change of direction to 

Statistics after studying Law at the University of Bologna (Boldrini, 1966), during his academic career having 

taught, in addition to Statistics, subjects such as Political Economy, Constitutional Law, Demography and 

Economic Statistics, and the motivation of many of his contributions to Statistics lay in his desire to apply 

statistics to practical problems (Giorgi, 2011). 

Gini's contribution to Statistics, in an initial phase, focused on developments to the theory of averages, 

variability, and statistical relations, progressed later to issues related to social and economic problems. This 

change of focus is framed by the beginning of the 1st World War and Gini's activity as advisor to the Italian 

Government and expert to the League of Nations. In a third phase, Gini was involved in a critical review of the 

foundations of Statistics, which ended up giving unity to his method (Montanari & Monari, 2008). 

The vastness and diversity of Gini´s scientific work can be framed fundamentally in the areas of the 

statistical methods, demography and biometrics, sociology, and economics (Boldrini, 1966). Between 1906 and 

1915, among the approximately four dozen most important Italian works on statistical methodology, almost 

two dozen belong to Gini (Prévost, 2016). 

In a link between theory and statistical practice, in his 1912 book ‘Variabilità e Mutabilità’ (Variability and 

Mutability) Gini introduced his most famous contribution to Statistics, the Gini coefficient, also known as the 

Gini index or the Gini (concentration) ratio, or rather, introduced a preliminary form of this measure, 
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suggesting different variations reflecting Gini's view that the nature of the characters, that being studied, 

shapes the purpose of a measure of dispersion. In his 1912 work, Gini also highlights what differentiates his 

measure from the popular variability measures at the time: the simple, squared, or probabilistic mean 

deviation of the arithmetic mean; and the simple or probabilistic mean deviation from the median. An 

extensive analysis of the original version of the Gini coefficient(s) can be found in Ceriani and Verme (2012), 

where some extracts from the book ‘Variabilità e Mutabilità’ are presented and commented on. 

Historically, the Gini coefficient has mostly been used to study income or wealth distributions, where its 

adoption by the United Nations development program and the World Bank stands out. However, as Gini 

himself highlighted, the coefficient´s power to measure inequality extends to other contexts. To name just a 

few, we refer the applications of the Gini coefficient to topics on the agenda such as the Environment and 

Ecology, or Covid-19 pandemic, as in Teng, He, Pan, and Zhang (2011), where the Gini coefficient is used in 

climate change area, to measure inequality of carbon space allocation, in Lexerød and Eid (2006), in which the 

coefficient is used to discriminate forest structural types, in the work in which Valbuena, Eerikäinen, Packalen, 

and Maltamo (2016) use the Gini coefficient as an ecological indicator highlighting differences in forest 

structure driven by human activity, in Rouvinen and Kuuluvainen (2005) who use the Gini coefficient as a 

concise indicator for describing the variability in tree diameter distributions of forests, and in the work by 

Sobieszek, Lipniacka, and Lipniacki (2022) on Covid-19 deaths and vaccination. But also, applications in the 

field of transportation (e.g. Hörcher & Graham, 2021), criminology (e.g. Bernasco & Steenbeek, 2017), 

epidemiology (Abeles & Conway, 2020), tourism (e.g. Fernández-Morales, Cisneros-Martínez, & McCabe, 2016), 

logistics (Gutjahr & Fischer, 2018) or education (e.g. Thomas, Wang, & Fan, 2001; Castelló & Doménech, 2002). 

Both in the context in which it was initially used, and in its non-traditional applications, the Gini 

coefficient was frequently modified and extended to suit the needs and points of view of those who use it, 

which resulted in a multitude of mathematical expressions, interpretations, and generalizations of this 

coefficient, which can be found in the vast literature where it is addressed. In Yitzhaki and Schechtman (2013) 

extensive analysis of multiple representations of the Gini coefficient can be found. 

Choosing the measure of inequality to be adopted for a given purpose involves, from the outset, the 

difficulty of selecting from a wide range of measures of inequality.  

Faced with such diversity, researchers often “[…] base their choice on convenience, familiarity, or vague, 

methodological reasons” (Allison, 1978, p. 865). The literature on the various practical applications of 

inequality measurement in the most diverse fields, and the evidence of transferability of that studies, provide 

the researcher with important indications on the measure that best suits the object of his study, but, as 

highlighted by Cowell (2009), in choosing the inequality measure, one should consider the type of work one 

performs, whether it is adequately sensitive to changes in the distribution pattern and whether it adequately 

reflects changes in the general (income) scale. Selecting one measure over another, therefore, requires 

knowing the strengths and weaknesses of each measure, understanding its ability to provide the full picture. 

Just as the use of different measures of inequality does not necessarily result in equal ranking of 

distributions, the use of different formulations of the Gini coefficient also may lead to the perception of 

different intensities of inequality.  

The ability of a given inequality measure to assign a value to a specific distribution, which allows the 

characterization of that distribution in order to provide direct and objective comparisons between different 

distributions, is closely related to the fulfillment of certain properties by that measure. 

There are four properties that appear in the literature as the basic requirements for an inequality measure. 

This basic criteria for measures of inequality are symmetry, scale invariance, the population principle, and the 

principle of transfers (Jenkins & Van Kerm, 2009). The compliance of these four properties ensure that the 

inequality measures behave in a reasonable manner, however not all inequality measures meet all of these 

requirements (e.g. Allison, 1978; Costa & Pérez-Duarte, 2019). 

The Gini coefficient has been the default choice in many works addressing inequality. The good properties 

of this coefficient may be the main motivation for this use, however, the similarity and relation between 

different formulations of the Gini coefficient can be misleading as to the assumption that the properties are 

common to the entire family of Gini coefficients. 

In the literature, it is widely assumed that the ‘Gini coefficient’ meets the basic criteria for inequality 

measures, however, as we will see in this work, there are formulations of the Gini coefficient that do not fulfil 

all basic criteria for inequality measures. 
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A widely used formulation of the Gini coefficient for discrete distributions considers the inclusion of self-

on-self differences in its calculation. Based on this detail, Bowles and Carlin (2020) reject this formulation of 

the Gini coefficient as a measure of inequality, despite being a Lorenz based measure, and present an 

alternative that excludes the self-on-self differences, which they call the True Gini coefficient.  

Our interest lies in studying the True Gini coefficient compliance with the four basic criteria for measures 

of inequality. 

The outline of the current paper is as follows. In next section we mention the mean difference between n 

quantities, as a basis for the introduction of the Gini coefficient, we address the Gini coefficient associated 

with the Lorenz curve and we emphasize the formulation of the Gini coefficient, called the ‘True Gini 

coefficient’. Following we present the four basic criteria for measures of inequality. In the central section of 

this work, we assess fulfilment of the basic criteria for measures of inequality by the True Gini coefficient. The 

paper is closed with some concluding remarks. 

The true Gini coefficient 

Measures of statistical dispersion describe the inequality between the values of a frequency distribution, 

revealing how concentrated or diffuse the distribution is. The Gini coefficient, like other measures of 

dispersion, such as the variance, the standard deviation, or the coefficient of variation, summarizes the 

information on the entire distribution in a single figure. This is considered one of the most advantageous 

features of the Gini coefficient (Morton & Blair, 2015). When compared with those and other measures, such 

as the standard deviation of logarithms, the Gini coefficient has the advantages of not focusing on differences 

from the mean, and avoiding the arbitrary squaring procedure (Sen, 1973). However, the Gini coefficient is not 

ideal in all circumstances, for example, it is not suitable for heavy-tailed distributions (Sitthiyot & Holasut, 

2020) and it has the great disadvantage of being able to have the same value in two very different distributions 

(Bendel, Higgins, Teberg, & Pyke, 1989; González Abril, Velasco Morente, Gavilán Ruiz, & Sánchez-Reyes 

Fernández, 2010). 

Since its inception, the Gini coefficient has been refined, improved and frequently modified to suit the 

numerous applications for which it has been adopted, however the essence of this coefficient was, and 

continues to be, the fact that it provides a direct measurement of the differences between individuals, as is so 

well shown by the ‘mean of differences between n  quantities’ that constituted the starting point for the 

introduction of the Gini coefficient. 

Covering the evolution of the Gini coefficient or exploring its numerous variants is beyond the scope of 

this work, however, it seems important to begin by presenting the measure that triggered it, to better 

understand its essence and potential.  

Let us consider n quantities, x1, x2, … , xn, assumed in ascending order such that xi−1 < xi, i = 1,2, . . . , n. 

The mean difference between the n quantities, is given by 

∆=
2

n(n−1)
∑ (n + 1 − 2i)

n+1

2
i=1

(xn−i+1 − xi) (Gini, 1912).  (1) 

This formulation only considers the differences between each quantity and the others, however we can 

include the difference between each quantity and itself, since these self-on-self differences are null. So, the 

sum of the n2 differences between all possible pairs of quantities will be equal to the sum of the n(n − 1) 

differences between each quantity and the other. Taking this into consideration, Gini presented the mean 

difference with repetition between n quantities, 

∆R=
2

n2
∑ (n + 1 − 2i)

n+1

2
i=1

(xn−i+1 − xi)    (2) 

As Gini (1912) pointed out, both measures are relevant, adapting to particular situations, and the 

relationship between the two measures is 

∆=
n

n−1
∆R.       (3) 

The measure we know today as Gini coefficient, introduced two years later, is an updated version of the mean 

difference between n quantities, obtained by dividing it by twice the mean value of the n quantities, x̅, taking 

the form of a measure of relative dispersion, which in Ceriani and Verme (2015) appears as  
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G =
1

2n2x̅
∑ (n + 1 − 2i)n

i=1 (xn−i+1 − xi).    (4) 

Over time, many other ways of representing the Gini coefficient have emerged, both for discrete and 

continuous distributions. Some different ways to express the Gini coefficient can be found in Dorfman (1979), 

Berrebi and Silber (1987), Ceriani and Verme (2015), and Xu (2004). 

Let us consider n individuals, n ≥ 2, and X = (x1, x2, … , xn) the distribution of a variable (e.g. income) 

over these individuals, with xi  the value of the variable for the i -th individual. One of the most usual 

formulations to measure inequality is the Gini coefficient given by  

G =
∑ ∑ |xi−xj|n

j=1
n
i=1

2x̅n2 ,      (5) 

where: n  is the sample size, xi  and xj  are the values of the variable for the i -th and j -th individuals, 

respectively, and x̅ =
∑ xi

n
i=1

n
  is the mean value of X,  which can be found, for example, in Kendall (1948), 

Dagum (1997) and Mussard, Terraza, and Seyte (2003). 

As argued by Bowles and Carlin (2020) the Gini coefficient in (Equation 5) may not be considered a true 

measure of inequality, since 'it includes the fictitious self-on-self zero differences’. To measure inequality 

between real pairs of individuals, a corrected version of this coefficient can be obtained using the unique 

configuration of non-identical pairing. This corrected Gini coefficient, which Bowles and Carlin (2020) call 

the True Gini coefficient, is express as follows: 

GT =
∑ ∑ |xi−xj|n

j=1i<j

x̅ n(n−1)
      (6) 

where: n  is the number of individuals, xi  and xj  are the values of the variable for the i -th and j -th 

individuals, respectively, and x̅ =
∑ xi

n
i=1

n
 is the mean value of X. 

The geometric interpretation of the Gini coefficient translates the ‘distance’ between the measured 

distribution and a perfectly equal distribution (Molander, 2022). 

Deriving the Gini coefficient from the Lorenz Curve (Figure 1), we have the ratio 

GL =
Ab

Au
,        (7) 

where: 𝐴𝑏 is the shadowed area between the Lorenz curve and the absolute equality line (diagonal), andAu 

is the total area under the perfect equality line, corresponding to the triangular region underneath the 

diagonal (Gini, 1914; Golden, 2008). Considering this association, Bowles and Carlin (2020) adopt the 

designation of Lorenz-based Gini coefficient to refer to a Gini coefficient that, like the one in (Equation 4), 

can be deduced from the Lorenz curve. 

 

Figure 1. The Gini coefficient and the Lorenz curve (Molander, 2022). 

As it follows from the derivation of the Gini coefficient from the Lorenz curve, the value of the Gini 

coefficient is lower the smaller the inequality, its maximum value is 1 and its minimum value is 0. 

Since the Gini coefficient may misbehave for variables that assume negative values, falling outside the 

range [0, 1], we assume xi ≥ 0, 𝑖 = 1, … , 𝑛. 
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Proposition 1: When all the individuals have the same income, GT = 0. 

Proof: When all the incomes are equal, xi = a, i = 1, … , n, the differences xi − xj, i = 1, … , n, j = 1, … , n, 

are all null, so GT = 0. 

Proposition 2: When all the individuals have null income except one, GT = 1. 

Proof: When xk = b, with b ≠ 0 and xj = 0, j = 1, … , n, j ≠ k, the mean value is 

x̅ =
∑ xj

n
j=1

n
=

(n−1)×0+b

n
=

b

n
. 

The differences xi − xj are all null except those which involve xk, so 

GT =
0+(n−1)b
b

n
n(n−1)

= 1. 

A null Gini coefficient represents perfect equality and a Gini coefficient of one represents maximal 

inequality.  

Basic criteria for measures of inequality 

Although several authors discuss the difficulty of conceptualizing inequality (e.g. Coulter, 1989), 

considering Sen (1973) proposal, where measures of inequality are classified as positive measures 

(statistical measures of dispersion) and normative measures (connected with a social welfare function), 

the use of positive measures allows to objectively quantify the extent of inequality, making it possible to 

establish a link between the two categories of measures since some positive measures are special cases 

of normative ones and it is not easy to establish a determined line between them. Thus, a starting point 

for defining criteria we want to be satisfied by measures of inequality has been to study the properties of 

different measures of dispersion. 

Allison (1978) studied different candidates for inequality measures, establishing three criteria to 

determine their acceptability, the scale invariance, which states that when all incomes increase (decrease) in 

the same proportion the value of the inequality measure does not change, the ‘principal of transfers’, which 

translates the requirement established by Dalton (1920) that inequality measures must reflect, through an 

decrease in its value, the existence of income transfer from a higher-income individual to a lower-income 

individual, and decomposition, which makes sense in approaches that, instead of focusing on measuring 

inequality among all individuals, consider the population partitioned into relevant sub-groups. 

Chakravarty (1999) states that a possible criterion for choosing a measure of inequality is to derive it from 

a social welfare function, considering a set of axioms that equality or an ordering of social welfare should 

comply with. Referring to the approach adopted in pioneering and relevant development works for inequality 

measures by Dalton (1920), Atkinson (1970), Sen (1973), and others, Chakravarty (1999, p. 1) states that these 

axioms involve “[…] the behavior of the welfare function in relation to changes in income levels, income 

distributions, and population size”. 

According to Foster and Lustig (2019), an admissible approach to considering a measure of inequality as 

‘good’ involves the four basic criteria for measures of inequality that gather broad consensus, although some 

authors add other advisable properties to inequality measures. 

Symmetry (anonymity principle) 

This principle states that does not matter who is earning the income, which means that the degree of 

inequality remains unchanged if there is a shift in the income values of pairs of individuals. 

Pigou-Dalton transfer principle 

This criterion establishes that a progressive [regressive] transfer of a positive amount of income, this is, a 

transfer from a richer [poorer] individual to a poorer [richer] individual without reversing the ranking between 

both, must lead to a decrease [increase] in inequality. 

Scale invariance (relative income principle) 

This criterion establishes that if everyone's income changes by the same proportion then there is no essential 

change in income distribution and therefore the value of the measure of inequality remains the same, so the 

measure cannot be affected by the absolute values of the income, only their relative values matter. 
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Principle of population 

This criterion establishes that the inequality value remains the same if the population is replicated one or more 

times, this is, when a population with n individuals is combined with another similar population resulting in a 

population of Kn individuals and the same proportion of the population receiving any income. 

The properties of Symmetry, Scale invariance, and the Pigou-Dalton transfer principle are concerned with 

the inequality in a population which has a fixed size, in contrast the Principle of Population deals with the 

inequality of different groups (Ebert, 1988). 

In this set of desirable properties for inequality measures, the degree of importance attributed to properties 

varies at various levels, and failure to comply with one of these properties, by a given inequality measure, is not an 

impediment to the use of this measure (United Nations Development Programme [UNDP], 2019). 

The diversity of measures of inequality, and the different degree of importance given to their properties, has 

provided attempts to collect some of these measures of inequality in classes considering some common 

characteristics. An important class is the class of relative inequality indexes (RII), which includes the measures that 

satisfy the principle of transfers, scale invariance and the principle of population at the same time (Calia, 2017). 

In general, the option for a certain measure of inequality aims to obtain the maximum level of information 

on how to rank income distributions, therefore, choice decisions can be guided through other approaches besides 

the axiomatic one. Being outside the scope of our work, we refer those interested in knowing a general procedure 

to select inequality measures to the flow chart proposed by Bellú and Liberati (2006). 

Checking the fulfilment of the basic criteria for measures of inequality by the True 

Gini Coefficient 

The adequacy of inequality measures, and, in particular, the adequacy of the different formulations of the Gini 

coefficient, has been widely discussed, namely regarding their advantages, disadvantages and compliance with the 

set of desirable properties for inequality measures. Strangely, despite the vastness of literature that addresses the 

Gini coefficient, the approach to these properties is often incomplete or superficial or simply based on illustrative 

examples of these properties (e.g. Trannoy, 1986; Lemelin, 2005; Yitzhaki & Schechtman, 2013). 

To ensure an objective analysis of the properties of the True Gini coefficient, in this work we present the proofs 

related to the verification of its fulfilment of the set of desirable properties for the inequality measures. 

For the convenience of exposure, we will, from now on, restrict our mention to the Gini coefficient as a 

measure of income inequality. 

Let us consider (a random sample of) n  non-negative values (incomes) x1, x2, … , xn , (n ≥ 2 ), xi  the 

income of the i-th person, i = 1, … , n, and GT(x1, x2, … , xn) = GT the Gini coefficient given in (Equation 7). 

Proposition 3: GT verifies the anonymity principle (Symmetry). 

Proof: Rearranging the observations in the sample, for example, by placing them in ascending order x1
´ ≤

x2
´ ≤ ⋯ ≤ xn

´ , or considering that two of the individuals, say A and B, who previously had incomes of xl1
 and 

xl2
, respectively, now have incomes xl2

 and xl1
, respectively, the Gini coefficient remains the same, due to 

the commutative property of addition, since all the absolute differences, |xi − xj|, j = 1, … , n, i < j, will occur 

(although in ‘another order’) when each value is replaced by the one that took its position, and also since the 

mean value, x̅, is not influenced by order, ∑ xj
n
j=1 = ∑ xj

´n
j=1 , j = 1, … , n. 

Proposition 4: GT verifies the Pigou-Dalton transfer principle. 

Proof: Let us consider x1 ≤ ⋯ ≤ xi ≤ ⋯ ≤ xj ≤ ⋯ ≤ xn and a transfer of an amount k > 0 from xj to xi, 

without changing the position of any of the elements of the sequence. Let us also consider p < i, i < h < j 

and m > j. 

After transferring the amount k from xj to xi, the sum in the numerator of (Equation 7) will have i − 1 

addends equal to |xi − xp + k| , i − 1  addends equal to |xj − xp − k| , j − i − 1  addends equal to|xh − xi −

k| ,1  addend equal to |xj − xi − 2k| , j − i − 1  addends equal to |xj − xh − k| , j − n − j  addends equal to 

|xm − xi − k|, n − j addends equal to |xm − xj + k|, and n − j addends equal to |xm − xi − k|, in addition to 

the addends corresponding to the differences between the observations not involved in the transfer. These 

addends corresponding to the differences between the observations not involved in the transfer remain 

unchanged after the transfer, so the difference in the value of the Gini coefficient before and after the transfer 

(GTb
  e GTa

 , respectively) is originated by changes in the parcels involving xi  and/or xj . The difference 
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between the numerator of (Equation 4) before and after the transfer is given by −2(j − i − 1)k − 2k =

−2(j − i)k and, therefore, GTb
− GTa

=
−2(j−i)k

x̅n(n−1)
< 0. 

As a result, the transfer caused a decrease in inequality between individuals. 

Proposition 5: GT is scale invariant. 

Proof: Given two income distributions x1, x2, … , xn  and y1, y2, … , yn  corresponding to two random 

variables X  and Y = KX , with k  a positive constant. The Gini coefficient of the distribution Y  is GTY
=

∑ ∑ |yi−yj|n
j=1i<j

y̅n(n−1)
=

∑ ∑ |kxi−kxj|n
j=1i<j

kx̅n(n−1)
=  

k ∑ ∑ |xi−xj|n
j=1i<j

kx̅n(n−1)
=

∑ ∑ |xi−xj|n
j=1i<j

x̅n(n−1)
= GTX

 

so, when all data points increased (decreased) by the same proportion their relative differences remain the 

same, so the value of the Gini coefficient remains the same too. 

Proposition 6: GT does not verify the principle of population. 

Proof: Let us consider replication of an income distribution x1, x2, … , xn  by order k , for k > 2 , x[k] =

x1, . . . , x1, x2, . . . , x2, … , xn, . . . , xn where each xi, i = 1, . . . , n, is repeated k times. 

The Gini coefficient of the distribution x[k] is GTx[k] =
∑ ∑ k2|xi−xj|n

j=1i<j

x̅kn(kn−1)
. 

So GTx[k] =
k(n−1)

kn−1
GTx

, where GTx
 is the Gini coefficient of the ‘before replication’ income distribution, 

x1, x2, … , xn. 

Since k(n − 1) < kn − 1 , we have GTx
> GTx[k] , concluding that replication reduces difference-based 

inequality. 

The replication invariance property, reflected in the Principle of Population, ensures that inequality 

measures are independent of the size of the population, thus, allowing direct comparison of inequality in 

different sizes populations, regardless of their sizes. It is easy to see that the Gini coefficient in (Equation 5) 

is invariant by replication. As we have shown, the True Gini coefficient, expressed by (Equation 6), is not. Thus, 

it does not belong to the class of relative inequality indexes. 

Conclusion 

There are several ways to measure inequality, however there are rules that must be respected. Different 

legitimate choices of inequality measures can lead to different evaluations, so choosing the appropriate 

measure for a given object of study is crucial. 

Choice decisions guided through an axiomatic approach, which involves Allison's criteria for inequality 

measures, is a relevant alternative. 

The Gini coefficient, or rather the family of Gini coefficients that aggregate the variety of Gini coefficient 

formulations, has been the default choice in many works dealing with inequality. References to the main 

motivation for opting for this coefficient have pointed to its good properties, however, it often goes without 

saying that the similarity and relationship between different formulations of the Gini coefficient, in terms of 

its properties as a measure of inequality, can be misleading. 

In this work we evaluated the fulfillment of the four basic criteria for inequality measures by the True Gini 

coefficient, having concluded that this formulation of the Gini coefficient does not comply with the principle of 

population and that, therefore, it cannot be integrated into the class of relative inequality indexes. 
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