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ABSTRACT. One of the most prevalent clean and sustainable forms of energy produced worldwide is the
power created from wind runoff. Wind turbines ought to be installed in areas with favorable circumstances
to transform mechanical wind energy into electricity. Finding appropriate ways to predict the energy
produced by a wind farm using the Weibull distribution is the main goal of this work. Theoretical techniques
have been applied to calculate Weibull selected characteristics using experimental data gathered at the
campus of Universidade Federal de Mato Grosso do Sul (UFMS) in Brazil. These data were gathered 10 meters
above the surface. The effectiveness of four statistical techniques that are frequently used in the energy
industry are compared: the standard energy factor method; the least squares regression method; the
moment method; and the mean standard deviation method in estimating Weibull parameters. The root
mean square error, Chi-square error, Kolmogorov-Smirnov test, and coefficient of determination are used
to contrast the statistical methodologies. The results demonstrated that the least squares regression
approach performs less well than other methods. The standard energy factor approach, the moment
method, and the mean standard deviation method are the most effective techniques when modifying
Weibull distribution curves for the assessment of wind speed data. The data analysis confirms that these
three strategies are fully applicable if the wind speed distribution closely matches the Weibull distribution.
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Introduction

The survival and progress of human civilization depend on energy. The production of energy problem extends
to affect all of humanity. Together with population expansion and the quickening rise of the world economy,
energy consumption is constantly growing. Concerns have been expressed regarding the rise of greenhouse gases
(GHG) emissions and the growing consequences on the climate change due to the pervasive use of traditional fuels
in almost all aspects of daily life (Liu et al., 2020). The finite nature of fossil fuel reserves must be noted. Humans
may entirely exhaust fossil fuels within a few hundred years, after they gradually developed over millions of years
in nature (Baz et al., 2021). Additionally, the carbon generated by fossil fuels is converted into carbon dioxide (CO,)
that raises the atmospheric CO, concentration and exacerbates the greenhouse gasses, changing the global
temperature and disturbing the ecological balance (Arenas-Lépez & Badaoui, 2020).

Future societies will mostly rely on renewable sources to meet their energy needs. Energy efficiency,
environmental sustainability, carbon reduction and environmental preservation have all become
progressively essential to political leaders. It appears that there is a substantial market for these cleaner
energies. A viable renewable energy source that can be exploited is wind energy. Various nations have
embraced wind energy growth to strengthen their energy grids and safeguard the environment. Furthermore,
wind energy is essential for economic expansion since it expands opportunities for employment and promotes
the progress of technology and research (Liu et al., 2019; Kandpal & Dhingra, 2021). In the energy production
sector, wind energy already attracts many attention (Jansen et al., 2020). Currently, 10.6% of all power
generated in Brazil comes from wind generation, according to data from the ONS (Operador Nacional do
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Sistema Elétrico). This number has major implications, especially for Brazil's Northeast Region (NEB), which
is already largely dependent on the wind matrix to supply its energy needs. In fact, the NEB is constantly
lessening its societal vulnerability (Freire & Fontgalland, 2022).

According to the ONS, the most favorable periods for wind generation are winter and spring, mainly between
August and September in the NEB, where records of production are routinely logged. Currently, most wind projects
are concentrated in the NEB as such a region has multiscale meteorological systems which, therefore, favor the
continuity and stability of the action of winds seasonally (Dantas, Rodrigues, Silva, Aquino, & Thomaz, 2021).

Shi, Dong, Xiao, and Huang (2021) reviewed the wind speed distribution models used for energy
assessment, applicable to different wind regimes. Different potential models of wind speed distribution
should be considered when modeling wind speed data in each location, therefore several methods of
parameter estimation and evaluation criteria were selected, the quality of the adjustment was evaluated, and
theirs advantages and disadvantages were discussed.

The characteristics of wind speed distribution vary continuously, both geographically and temporally.
Wind energy assessment must consider local geographic elements such as climate, topography, differences in
thermal properties of land and seas, and focus on long-term variations in wind characteristics

Therefore, the purpose of this study is to evaluate the effectiveness of four statistical methods used to calculate
the Weibull parameters applied to study the possibility of wind energy applications in Campo Grande.

Materials and methods

The Centro de Monitoramento do Tempo e do Clima of the Mato Grosso do Sul State (CEMTEC-MS) region
provides the wind data used in this investigation. The location of the meteorological station is given in
Table 1, where a Belford-three mug type anemometer was used to measure wind speed at 10 meter height. The
uncertainty of the mean wind speeds is 2 within 95% of confidence level (Manwell, McGowan, & Rogers, 2010).

The monthly average wind speed has been derived from the measured wind speeds. There are obvious
drawbacks from using monthly average wind speeds, such as losing exceptional high or low wind speeds
throughout the month and being unable to monitor variations in wind speed during the day. Nevertheless, it
is possible to evaluate seasonal fluctuations of the wind speed by using the available monthly average values,
which makes it easier to analyze wind data.

Weibull distribution

Weibull probability distribution is used to model wind data in this study with two parameters. It is most
easily introduced in terms of its probability density function (PDF), which has the form:

=00 " e[ 0

The corresponding cumulative probability function (CDF) is given as:

F(v)=1-—exp [— (E)k] (2)

where:

c is the scale parameter in m s}, k is the dimensionless shape parameter, and v is the random variable (wind
speed). Four techniques were used to determine those two parameters ¢ and k. The Mean Standard Deviation
Method (MSDM), the standard Energy Pattern Factor Method (EPFM), the Least Squares Regression Method
(LSRM), and the Moment Method (MOM).

Table 1. Geographical coordinates of the area under study.

City Latitude Longitude Altitude (m) Area (km) Period of measures
Campo Grande, Mato Grosso do Sul, Brazil 20t 26'34"S 54138 47" W 532 8118,4 Jan 1960 to Dec 2020

Least Squares Regression Method (LSRM)

The least squares method is commonly used in engineering and mathematical problems. From a double
logarithmic transformation of CDF given by Equation (2) into a linear form, the parameters ¢ and k as
discussed in Justus, Hargraves, Mikhail, and Graber (1978) can be found thru the equations:
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In[-In(1 - F())] = —kin(c) + kin(v) (3)
which can be represented by the straight line:

Y =a+bX )

where:

Y = ln[—ln(l - F(v))], X=InW),a=—kin(c),and b = k.

The CDF of the Weibull distribution can be determined from Benard's approximation:

i-0.3
N+0.4

F(v) =

©)

where:

i is the measured wind speed order number and N is the number of observations (Benard & Bos-Levenbach,
1953). Therefore, the computation of the line coefficients a and b is a prerequisite for determining the
parameters ¢ and k. The coefficients a and b can be obtained applying the least squares method. The following
Equation 6 and 7 can be used to estimate the Weibull shape and scale parameters:

N N N
O NY s XiVi— Y1 Xi Xi=q Vi

k 6
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c = exp (kz‘zlxlskz‘zlyl) (7
where:
Y, =In [—ln(l - If:z)'i)], and X; = In (v;).

Standard Energy Pattern Factor Method (EPFM)

This method defines the energy pattern factor (EPF) as the ratio of the mean cube wind speed by the cube
of the mean wind speed. The definition of the EPF is as follows:

1 <N 3
N Zi=1Yi

EPF ===

®)

where:

v; is the observed wind speed (m s!), N is number of the wind speed observation, and v” is the mean wind
speed. After estimating the EPF, the following Equation 9 and 10 can be used to estimate the Weibull shape
and scale parameters:

1438
k=1+—5 )
c = @ (10)

Moment Method (MOM)

The moment method is an additional technique for estimating the Weibull distribution parameters. It is
calculated from the mean wind speed v” and the standard deviation o of wind speed, which are expressed as:

7=—%, (11)
0=C<F(1+%)—1"2(1+%)>% (12)
c r(1+3) _

< r(1+%k) ! 13)

The estimates of the Weibull shape and scale parameters are calculated as follows:

i = <0.9§74>1.0893 (14)

K
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v = cI"(1+i) (15)
I'(x) is the gamma function:

I'(x) = fooo y* e Vdy (16)

where:

k
y= (g) . After transformation it becomes:
V_ x—1., — 1
et =14k an
v=c+I(1+1)=08525+0,0135k + e~ (+3-1) (18)

Mean standard deviation Method (MSDM)

The mean standard deviation method is based on the mean wind speed v” and standard deviation from the
wind speed ¢. This method may be considered as a unique case of the MOM. The Weibull shape and scale
parameters are estimated as follows:

k= (E,)—l.086 (19)

v

(20

Performance index

Four quantitative tests have been used to test the performance of the approaches mentioned above to
determine the optimal method of analysis. These tests are used to validate the accuracy of the predicted wind
speed distribution derived from the Weibull probability density function. They are described in the sequence.

Root Mean Square Error (RMSE):

1
1 272
RMSE = 232 (Yim — Xiw) | e
B) Chi-square error (Xz):

2
2 — ZEa(im= Xiw)®

22
X _— (22)
C) Kolmogorov - Smirnov test (KS):
Qos = == 23)
D) Coefficient of determination (R?):
R2 — 2?;1(371',111_ Zi,f)z_ ZIiV=1(Yi,m_ xi,w)z (24)

S (im— Zi,v)z

For all these equations, N is the number of wind speed observations, y; ,,, is the observed data, x; ,, is the estimated
(predicted) data using the Weibull distribution, and z; ,,- is the average value calculated from observed data y; ,,.

The RMSE has been used to assess the difference between the estimated and the observed values. The chi-
square error (y2) has been used to determine if there exist any difference between the estimated and observed
values. The method showing the best results is elected by the lowest values of RMSE and y? in each case, since
both RMSE and x?2 should be as close to zero as possible. The coefficient of determination (R?) determines the
correlation between the estimated and observed values. The ideal value of R? is 1. In general, the best
estimation method can be selected according to the lowest values of RMSE, y?, and the highest values of R’

Results

Figure 1 shows the monthly analysis of the wind speed at 10 m above the ground at Campo Grande from
1960-2020, namely monthly mean wind speed, standard deviation, coefficient of variation, median,
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minimum, maximum, and skewness. It demonstrates clear fluctuations over time. The difference between the
highest and lowest wind speeds can be used to depict the speed range averaging as 3.02 m s''. The mean wind
speed varied from 2.37 to 3.91 m s’!. Similarly, the standard deviations ranged from 1.45 to 0.80, and the
critical values at 95% of the reliable level in the Kolmogorov-Smirnov test (Qos) were 0.0248 and 0.0246 for
months with 31 days and 30 days, respectively. Finally, the maximum error in the CDF never exceeds the
corresponding significant values, which implies that the proposed technique is applicable for generating the
variables necessary in the selection of the viable site of potential wind power turbines.

The monthly coefficient of variation (COV) ranged from 29.5 to 44.2%, with an average value of 39.1%
(Figure 1), with its highest value in November and lowest in October, and when compared to other regions is
lower than Cardiff — Wales, where the annual average is 59.0%, Ankara — Turkey with 64.6%, Athens — Greece
with 72.8%, Davos — Switzerland with 79.4% and Canberra — Australia with 81.4% (Celik, 2003a; 2003b; 2004).

Only the month of November presented a negative asymmetry, which means that the tail has more left.
The skewness in May is greater than 1, indicating a highly right skewed distribution. In March, August, and
October the values of skewness indicate moderately right skewed distributions.

The monthly averages of the Weibull distribution parameters for all the period, estimated by four methods,
are shown in Figure 1 and 2 from data extracted of an anemometer that was placed 10 m height. The variation
of the Weibull distribution parameters is monthly dependent. The highest value of the monthly shape
parameter k was observed in April for EPFM (4.13) and the lowest in February for MOM (2.34). For the scale
parameter c, the highest value of 4.34 m s*! was observed in October for EPFM and the lowest value of 2.43 m
st in September for LSRM.

Analysis of wind speed
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Figure 1. Monthly wind speed analysis at 10 m above ground level in Campo Grande (MS) — Brazil, from 1960-2020.

Figures 1, 2 and 3 show the descriptive statistics and monthly variations in the shape (k) and scale (c)
parameters of the Weibull distribution using the four approaches (MSDM, MOM, EPFM and LSRM) considered
in the study. The difference amongst the values of the shape parameters k obtained using different methods
is more significant than for the scale parameters c, respectively. The dimensionless Weibull shape parameters
k showed lesser significant values obtained by EPFM and LSRM. Consistency was achieved in Weibull scale
parameters ¢. Both MOM and MSDM have a comparable range of Weibull parameters cand k.

Figure 4 presents the histograms of monthly wind speed variation in Campo Grande for all 61-year period.
It has been found that the highest wind speeds have been measured in October as 3.91 m s°. Conversely, the
lowest wind speeds have been recorded in December as 2.38 m s!. The variation in amplitude observed for
the wind speed (1.6 m s!) can be attributed to the winter solstice. At this time, penetration of frontal systems
(SF) occurred in the studied region (Souza et al., 2022).

Shaban, Resen, and Bassil (2020) have collected experimental data on the city of Al-Najaf, Iraq and
determined the best theoretical ensemble to be used as Weibull's parameters. Data were collected at different
heights (profiled) above the ground at 10, 30, and 50 m. Four criteria were used to evaluate different
adjustment procedures of wind data; namely the root mean square error, chi-square, correlation coefficient,
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and coefficient of determination. The valid distribution model has been determined according to the specific
conditions that provide the best results. The results indicate that the Equivalent Energy Method is the finest
when the value of the Weibull shape parameter and the Weibull scale parameter are calculated for the Weibull
distribution curves at that location, based on the adjustment quality tests.

Shape parameter k

e

e MSDMN e MOM EPFM

Figure 2. Monthly Weibull shape parameters k estimated by various methods at 10 m above ground level in Campo Grande in the
period 1960-2020.

Scale parameter c
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Figure 3. Monthly Weibull scale parameters ¢ estimated by various methods at 10 m above ground level in Campo Grande in the period
1960-2020.

Mdee (2020) used the Weibull distribution function with parameters of shape (k) and scale (c) to predict
the wind speed distribution for different locations, and applied the correlation technique to evaluate the
performance of analytical methods using various empirical methods. The analytical methods presented
include Method of Moments (MOM), Standard Energy Density (EPD), Graphical Method (GM), and Maximum
Likelihood Estimator (MLE). Five empirical methods were graphically evaluated using the GM to estimate the
two Weibull parameters. Four empirical methods indicated a correlation coefficient of two Weibull
parameters (r) greater than 0.9503. Again, five empirical methods for parameter k and four empirical methods
for parameter ¢ were used in the special case of MOM and EPD methods. The results indicated four empirical
methods to estimate the parameter k and two empirical methods to estimate the parameter ¢ with r greater
than 0.7. When empirical methods of k and c parameters correlate, six matching patterns were identified from
20 possible pairs. The comparison of GM, MLE, and selected pairs of k and ¢ values predicted by empirical
methods resulting from MOM and EPD indicated the mean coefficient of best fit as 0.8851 and mean square
error as 0.2083.
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Figure 4. Histograms and comparison of Weibull probability functions for the observed monthly average wind speed.

Mdee (2020) and Kaplan (2017) argue that using more than one empirical method in an analytical series of

MOM, EPD, and GM would improve the prediction of the Weibull distribution. In this case, the parameters k
and c are estimated using various analytical methods, but provide different results for the same wind speed
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distribution data. Kang, Khanjari, You, and Lee (2021) compared the 12 different numerical methods (MLM,
PDM, MM, EMJ], MMLM, EML, STDM, MEPFM, GM, EPFM, EEM, and AMLM) to estimate the Weibull
parameters for wind speed. They analyzed similarly collected wind data, at the same location and height, over
10 years, from 2010 to 2019, on Maldo Island, 1 km from a giant wind turbine. The EEM and EPFM form factors
were the most accurate, while the GM and AMLM factors were the least accurate. The other methods were of
intermediate precision. Scale factors were similar across all methods, with the exception of the GM, which
was imprecise. Used the RMSE, R? and y2 methods to assess the accuracy of the method. GM, EPFM, EEM, and
AMLM errors were the largest. The RMSE standard deviations of GM, AMLM, EEM, and EPFM were higher
than those of the other methods. The R? standard deviations of GM, AMLM, and EPFM were large. The GM,
MMLM, and EEM standard deviations of y2 were also large. For all three methods, the GM had the highest
standard deviations. The AMLM and EEM standard deviations were large for two statistical evaluation
methods, while those for the MMLM and EPFM were large for one evaluation method. The MM, EM], and
STDM standard deviations were small for all three statistical assessments. Based on the above, MM, EM], and
STDM are higher. MLM, EML, MMLM, MEPF, and PDM can be accurate; however, if GM, EPFM, EEM or AMLM
is used, statistical assessment of reliability is essential.

Guarienti et al. (2020) studied data from eight locations, collected by 27 automated systems for more than
6 years at heights varying from 79 to 727 m in Mato Grosso do Sul, Brazil, and estimated the monthly Weibull
parameters for each location using the GM, MLM, MMLM, MM, EM], and PDM. Subsequent statistical analysis
identified the optimal method for each location. Although accuracy varies from location and the monthly
estimation method, the MLM and MMLM were generally highly accurate, whereas the GM was inaccurate.

The Atlantic Polar Mass originated in the sub-Antarctic waters of the south of South America, due to its
continental displacement it penetrates the state by west and southwest predominantly in autumn and winter.
It is dry and does not acquire moisture along the path. The Atlantic Polar Mass with maritime displacement
also originates in the south of the South American continent, predominating during the winter and spring. It
is dry in the origin but it absorbs moisture from the ocean, mainly from the hot current of Brazil (Wons, 1994).

The comparison of the monthly histograms and the Weibull PDF of the different methods tested are
illustrated in Figure 3. After visual inspection, it becomes clear that the LSRM is not satisfying, compared to
the other methods.

It has been verified that the shape parameter k oscillated significantly along the months, between 3.83
and 2.34 m s’! with the lowest value noted in February and the highest registered in October. Justus et al.
(1978) observed that the k value is inversely related to the variance of wind speed around the average speed,
which implies low variances if parameter k is high and vice versa. In this sense, the k values obtained for
Campo Grande fully agreed with the previous statement, where the highest values of k were related to the
lowest variances shown in Figure 1. The scale parameter c also varied, in the 4.33 to 2.65 range with minimum
values, suggesting for this period a higher probability of occurrence of lower speed winds.

In this study, four methods have been used to estimate the Weibull shape and scale parameters. These
average values have been calculated and are presented in Figures 3, 4 e 5. It has been determined that there
is a conspicuous linear relationship between the monthly averages of the Weibull scale parameter (means of
the four methods) and the measured monthly average wind speed.

¢ =0.9031v — 0.0324(R? = 0.9964) (25)

The high value of R? coefficient demonstrate a counterpart to the linear model. Figure 5 shows the linear
relationship connecting the Weibull scale parameter ¢ and the monthly observed average values of wind speed
in Campo Grande. The correlation involving the monthly scale parameter ¢ and the measured monthly
average wind speed has been determined with an inclination directly proportional to the average of the
monthly scale parameters.

The degree of turbulence in relation to the coefficient of variation (COV) can be used to estimate the wind
speed. It is characterized as the standard deviation divided by the wind speed. It is a highly helpful indicator
for the operation and construction of the wind turbine since it is a turbulence indicator rather than an
absolute value. Table 2 shows the average monthly COV values. As can be observed, the COV varies from 44.2
to 29.51%, with the months of January, February, March, and August showing the larger percentage of
variance. The COV is typically lower when the wind speed is at higher or vice versa. However, further
information on periodicity and, generally, wind speed time variability for a specific time scale is needed to
fully analyze the potential for wind energy, the functioning of wind power conversion, or grid integration.

Acta Scientiarum. Technology, v. 46, €64999, 2024
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Figure 5. Relationship between the monthly Weibull scale parameters ¢ and the wind speed means.

Table 2. Efficiency the tested methods.

Method k c(ms?) RMSE x? R?
EPFM 3.64 3.35 0.34 3,71 0.99
LSRM 141 2.48 0.58 5,04 0.49
MOM 2.86 3.38 0.37 4,49 1.00
MSDM 2.86 3.38 0.37 4,49 1.00

Three different statistical tools, which are Root Mean Square Error (RMSE), Chi-square error (x2), and the
coefficient of determination (R?), are used in statistical analyzes to assess the efficiency of different methods. Since
the approaches produce virtually identical results, classification of statistical methods typically only needs one
column. These three statistical techniques were used to categorize the methods for a more accurate diagnosis.

Table 2 provides a summary of the test results for the four statistical approaches and categorizes them
based on how well they work and how effectively they evaluate the wind data. EPFM, MOM, and MSDM
produce better results than LSRM and are relatively similar to each other. The most important statistical tool,
the chi-square error, has a value of y%=4.49, and the effectiveness of the method has a value of R? = 0.99. The
rankings were performed according to the respective minimum error and highest efficiency first places.

The results obtained in this study demonstrate the need to carry on further regionalized studies to test a
larger number of probabilistic models for the adjustment of climatic variable, since peculiarities of the
physical space and the interference of climatic phenomena in the region on a monthly, daily, and even hourly
scale can change significantly the behavior of the wind climatic variable. As shown in Figure 1 and discussed
earlier, the Weibull distribution adequately adjust the average wind speed data. This particularly important
result could only be verified by investigating a probabilistic model less used in other studies and regions.

Discussion

Many studies have evaluated the accuracy of various estimation methods for determining the parameters
of the Weibull distribution. Guarienti et al. (2020) analyzed the Weibull parameters over the months on
municipalities of Mato Grosso do Sul. The higher values of the parameters were observed for Campo Grande
stations, Chapadao do Sul, Costa Rica, and Sonora, reaching maximum values in August. The stations of
Nhumirim, Aquidauana, Miranda, Sidrolandia, Porto Murtinho, Bela Vista, Jardim, Rio Brilhante, and
Corumba showed smaller variations in parameter values throughout the year.

The Maximum Likelihood Method (MLM) and the Modified Maximum Likelihood Method (MMLM) are
more accurate to estimate the Weibull distribution parameters for the stations of Campo Grande, Chapadao
do Sul, Costa Rica, Sonora, Nhumirim, Aquidauana, Sidrolandia, Porto Murtinho, Bela Vista, Jardim, Rio
Brilhante, and Corumba. The best-fit monthly estimator was generated by either one or the other of these two
methods depending on the analyzed period.

The MLM is the best adjustment estimator for the stations of Tres Lagoas, Agua Clara, Paranaiba,
Cassilandia, and Sao Gabriel do Oeste. The MMLM is a better estimator of adjustment of the Weibull
distribution parameters for the stations of Ponta Pora, Amambai, Juti, Sete Quedas, Itaquirai, Ivinhema,

Acta Scientiarum. Technology, v. 46, €64999, 2024



Page 10 of 14 Souza et al.

Dourados, and Maracaju. The Weibull distribution is not recommended for the stations of Coxim and Miranda,
which are characterized by low monthly average wind speeds.

Kang, Ko, and Huh (2018) analyzed wind resources at nine sites on Jeju Island, South Korea (Chujado,
Gapado, Udo, Gujwa, Hallim, Moseulpo, Aewol, Ohdeumg and Sunheul) using six Weibull methods, namely
Justus empirical method (EM]), MOM, GM, power density method (PDM), MLM, and MMLM. They concluded
that the MOM was the most accurate, while the GM was the least accurate.

Saxena and Rao (2015) analyzed the data for Rajasthan, India, and used four methods the GM, EM], MMLM,
and PDM. MMLM and GM were the best and less accurate performing methods, respectively. Accuracy varied by
region and measurement period, but overall, GM performed poorly compared to the MOM, MLM, and MMLM.

Kumar and Gaddada (2015) analyzed data of four sites in northern Ethiopia. The accuracy was compared
amongst the PDM, GM, MOM, and the standard deviation method (SDM). Rocha, Sousa, Andrade, and Silva
(2012) analyzed the winds of Camocim and Paracuru (Ceara, Brazil) using the GM, MLM, PDM, MOM, EM],
MMLM, and the equivalent energy method (EEM). Hove, Madiye, and Musademba (2014) analyzed data of
Harare, Gweru, Bulawayo, and Masvingo (Zimbabwe) using the GM, STDM, MOM, MLM, and energy pattern
factor (EPFM) method and compared the data with actual wind energy densities. All studies established that
GM is the best performing method. Hove et al. (2014) especially proved GM data to be 4% accurate, in contrast
to results from previous studies (Saxena & Rao, 2015; Kang et al.,, 2018; Ouahabi, Elkhachine,
Benabdelouahab, & Khamlichi, 2020; Guarienti et al., 2020).

Bertrand, Abraham, and Lucien (2020) analyzed data collected from 2012 to 2014 of Amban, Cameroon.
EM]J was the best performing method among GM, EM]J, PDM, and MOM. Werapun, Tirawanichakul, and
Waewsak (2015) used the EM], PDM, MLM, MMLM, and GM to assess wind data collected from 2012 to 2014
of Phangan Island, Thailand. MLM best represented the actual wind speed distribution, while PDM was the
best method to represent wind energy density. Gugliani, Sarkar, Ley, and Mandal (2018) compared the
modified EPFM (MEPFM) to six other methods; MEPFM was more accurate than PDM and MLM (Akgiil,
Senoglu, & Arslan, 2016). Chaurasiya, Ahmed, and Warudkar (2018a) used nine methods to estimate wind
resources in Tamil, India. MLM and MMLM performed moderately, while GM and the alternative maximum
likelihood method (AMLM) performed poorly. Although PDM generally performed the less accurate, it was
the third best method in terms of wind energy density calculation. The performance of the method differed
by height. Many similar studies have been carried out for several regions, at various times (Kidmo, Danwe,
Doka, & Djongyang, 2015; Bilir, Imir, Devrim, & Albostan, 2015; Thaddadene, IThaddadene, & Mostefaoui,
2016; Chaurasiya, Ahmed, & Warudkar, 2018b). The results varied in terms of the best performing methods
and the accuracy of wind speed distributions differed from those of wind energy density.

Mohammadi, Alavi, Mostafaeipour, Goudarzi, and Jalilvand (2016) used GM, EM]J, EML, PDM, MLM, and
MMLM to calculate wind energy densities given on a daily or monthly scale of four stations in Alberta, Canada.
The EM], EML, PDM, and MLM were developed together; EM] and EML presented similar performance, with
EM] being the best performing method. These comparisons of the Weibull distribution methods were obtained
using different statistical analyses.

The Weibull parameter estimation methods and statistical analysis methods have been used by Justus et al.
(1978), Akgtil et al. (2016), Carneiro, Melo, Carvalho, and Braga (2016), Mohammadi et al. (2016), Kang et al. (2018),
Gugliani et al. (2018), Ali, Lee, and Jang (2018), Ouahabi et al. (2020), Guarienti et al. (2020), Bertrand et al. (2020),
Kapen, Gouajio, and Yemélé (2020) and Shoaib et al. (2020). The GM, MLM, PDM, MOM, EMJ, and MMLM methods
are the most used, while EML, AMLM, STDM, EEM, EPFM, and MEPFM are less frequently used.

The best methods of statistical analysis used in studies were root mean square error (RMSE), regression
coefficient (R?), chi-square (x?), mean absolute percentage error (MAPE), Kolmogorov-Smirnov (KS) test,
relative percentage error (RPE), mean percentage error (MPE), correlation coefficient (r), relative root mean
square error (RRMSE), index of concordance (IA), mean absolute view error (MABE), relative view (RB), and
best bin size methods (B). From all these models, the RMSE, x2, and R2 were the most widely used, e.g., by
Justus et al. (1978), Bilir et al. (2015), Kidmo et al. (2015), Mohammadi et al. (2016), Saxena and Rao (2015),
Akgiil et al. (2016), Carneiro et al. (2016), Thaddadene et al. (2016), Gugliani et al. (2018), Chaurasiya et al.
(2018a), Chaurasiya et al. (2018b), Kang et al. (2018), Ouahabi et al. (2020), Guarienti et al. 2020, Bertrand
et al. (2020), Kapen et al. (2020), Shoaib et al. (2020) and Kang et al. (2021).

Kang et al. (2021) showed different results in studies of the determination of estimation methods for
Weibull parameters. They analyzed 10 years of data collected at the same location and height level at the
island of Maldo, from 2010 to 2019, and at the seawall of Saemangeum, from 2011 to 2012, in the Republic of
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South Korea. They compared the Weibull parameters using twelve methods and identified the most reliable
and efficient methods to derive the Weibull probability distribution using the new approach comparing the
variance of RMSE, y2, and R?, which provide a comprehensive view of level errors and fluctuations. These twelve
methods are AMLM, Equivalent Energy Method (EEM), EMJ, EML, EPEM, GM, MEPFM, MLM, MOM, MMLM, PDM,
and STDM. The results showed that while the EM], EML, MOM, and STDM provided better accuracies in predicting
the wind speed distribution, some methods such as the GM, AMLM, EEM, and PFM had the poorest prediction of
the wind speed distribution based on all variances of the statistical methods for both regions.

Using MOM, EML, EM]J, and STDM methods with relatively small error levels and fluctuations can yield a
highly acceptable prediction of the wind speed distribution. As the error level and error fluctuations of MLM,
MMLM, MEPF, and PDM methods vary based on different values of RMSE, 2 and R?, they cannot be highly
recommended methods. GM, EPFM, EEM, and AMLM are not the preferred methods for estimating the wind
speed distribution as they have high levels of error and fluctuations for RMSE, y2, and R? compared to the
other methods, so it is necessary to proceed with statistical analysis. All methods have been used to predict
the wind speed distribution of another region (Saemangeum Seawall), which showed the same occurrence in
Maldo. As a result, for the relationship between wind speed and Weibull probability distribution, due to the
importance of wind energy density, the reliability of the methods used to estimate the Weibull parameters
requires further evaluation.

Nomenclature

Symbols:

vs~ mean of wind speed cubes, 3 m3 s’

v~ mean wind speed, m s™!

c: scale parameter of Weibull distribution, m s

COV: coefficient of variation

EPF: energy pattern factor, dimensionless

Ew: wind energy per unit area by Weibull function, kWh m2
f(v): Weibull PDF

F(): Weibull CDF

k: shape parameter of Weibull distribution, dimensionless
N: Total number of wind speed observations

RZ: coefficient of determination

T: time, hour

v: wind speed, m s*!

X w: the frequency of Weibull or ith calculated value from the Weibull distribution
¥ m: the frequency of observation or ith calculated value from measured data
Z; v the mean of ith calculated value from measured data
x?: Chi-square error

Greek letters

o: standard deviation of wind speed, m s!

I'(): Gamma function

p: air density, kg m™

List of Abbreviations

AMLM: Alternative maximum likelihood method

EEM: Equivalent energy method

EM]J: Empirical method of Justus

EML: Empirical method of Lysen

EPFM: Energy pattern factor method

GM: Graphical method

LMOM: L-moment estimation method

MEPFM: Modified energy pattern factor method

MLM: Maximum likelihood method

MOM: Moment method

MMab: Mabchour method
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MMLM: Modified maximum likelihood method
PDM: Power density method

PE: Percentile estimator

RMSE: Root mean square error

STDM: Standard deviation method

WM: WASP method

WPD: Wind power density

Conclusion

Four statistical methods to derive Weibull parameters for wind energy application are compared in Campo
Grande - MS, Brazil. The statistical performance of the best Weibull distribution methods for wind data
analysis are discussed and presented. From the analysis of the test results, it has been shown that the LSRM
presents lesser accurate performance than other methods. The EPFM, MOM, and MSDM methods are the most
efficient methods to fit the Weibull distribution curves for the evaluation of wind speed data in the study
region. This study provides a new way to assess viable wind power locations that is applicable in any location
with high winds in any country in the world.
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