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ABSTRACT. In recent years, the automotive industry has been developing applied research to meet 

customer’s needs; considering safety, vehicle comfort and energetic efficiency. In particular, automotive 

tires have a prominent position in this research area, ensuring good vehicle handling, comfort and safety. 

In the vehicle dynamics performance, excellent gripping and reduced rolling resistance in the tires are 

crucial to maximize the energetic efficiency in a reliable way. However, to ensure such a level of reliability 

in vehicle operation, the inherent uncertainties of tires, as well as other factors subject to variability must 

be taken into account in the vehicle design. In this way, the present paper analyzes in detail the effect of 

variations in some parameters such as ambient temperature, ground conditions, vertical load, speed and 

tire inflation on the analysis of vehicle dynamics. A Metamodeling approach associated with the Monte 

Carlo Simulation was employed to develop the mathematical models to analyze the effect of uncertain 

parameters on the tire rolling resistance; traction, centripetal and lateral forces, using experimental data 

from the literature, in the longitudinal and lateral vehicle dynamics. Therefore, the present research brings 

as an innovation an integrated approach to the input parameters of the system with the rolling resistance 

through the developed metamodels. There was a substantial variability of up to 15% both up and down in 

the Maximum Traction Force of a vehicle in response to variations in the vehicle’s weight and the coefficient 

of tire rolling resistance. In contrast, the Lateral Force exhibited a greater variability, with a 25 downward 

and 10% upward variation associated with the weight and friction coefficient variability of the vehicle. 

Further investigations into the sensitivity analysis highlight the significant influence of the friction 

coefficient and temperature on the Traction Forces of the vehicle. 
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Introduction 

In the last decades, the automotive industry has been highly concerned with energy efficiency, comfort 

and vehicle safety. Particularly, the automotive tires due to the increase in vehicle power and speed bring up 

a prominent role in new research and developments, since they intensively participate in vehicle 

performance. The tires are crucial elements for the transmission of longitudinal, lateral and vertical forces 

between the vehicle and the road. Their statical and dynamical properties must be well known to provide the 

vehicle with good drivability associated with energy efficiency (Gillespie, 1992; Reimpell, Stoll, & Betzler, 

2001; Kabe, Rachi, Takahashi, & Kaga, 2005; Savitski, Hoepping, Ivanov, & Augsburg, 2015; Farroni, 

Sakhnevych, & Timpone, 2016;  Farroni, Sakhnevych, & Timpone, 2018; d’Ambrosio & Vitolo, 2019). 

The literature presents a correlation between the tire’s properties and the vehicle dynamics, and their 

variability can deeply affect vehicle performance in the most diverse aspects such as rolling resistance 

coefficient (RRC) and, consequently, energy efficiency, drivability, safety, comfort, braking and tractive force. 

It is important to emphasize that the tires are also a vehicle safety component, with a great impact on the 

vehicle handling dynamics. Therefore, tire manufacturers seek to achieve a balance among energetic 

efficiency, gripping, safety and vehicle reliability during the tire project. Any change in its properties directly 

affects the vehicle dynamics performance. This can be verified, for example, in a scenario with a flat tire or 

low inflation pressure. Consequently, the increase in the rolling resistance negatively influences the energetic 

efficiency of the vehicle, not mentioning the comfort (Gillespie, 1992; Pacejka, 2012; Savitski et al., 2015; 

Farroni et al., 2016; 2018; d’Ambrosio & Vitolo, 2019; Strigel, Peckelsen, Unrau, & Gauterin, 2019). 
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Particularly, the rolling resistance is associated with energy dissipation capable to keep the tire in motion, 

due to the viscoelastic behavior of the elastomer. In the tire’s deformation cycles, variations in the tire’s 

inflation pressure, the vertical load applied, ambient temperature, vehicle speed, material properties and the 

type of road surface can also influence this energy consumption value (Gillespie, 1992; Wong, 2001; Rao, 

Kumar, & Bohara, 2006; Yokota, Higuchi, & Kitagawa, 2012; Cho, Lee, Jeong, Jeong, & Kim, 2013; Taghavifar 

& Mardani, 2013; Ejsmont, Taryma, Ronowski, & Swieczko-Zurek, 2016; 2018; d’Ambrosio & Vitolo, 2019; 

Ejsmont & Owczarzak, 2019; Sina, Yazdi, & Esfahanian, 2019). 

Rolling resistance is a widely discussed and studied topic since it is closely linked to vehicle dynamics 

issues. In this way, several engineering methods are adopted to analyze the tire’s rolling resistance, in order 

to guarantee an improvement in the efficiency of obtaining this parameter. Thus, tests related to several 

parameters, such as temperature, inflation pressure, vertical load, speed, and road surface roughness are 

performed to analyze and investigate the tire and vehicle behavior (Stutts & Soedel, 1992; Sandberg, Ramdén, 

& Gamberg, 2004; Cho et al., 2013; Taghavifar & Mardani, 2013; Hoever & Kropp, 2015; Behnke & Kaliske, 

2015; Li et al., 2018; Ejsmont & Owczarzak, 2019; Zhai et al., 2021). 

The dynamic performances of the vehicle movement are fully determined by the interaction forces 

between the tires and the road. In addition, accurate estimates of tire/road interface information play a key 

role in vehicle control (Qi, Taheri, Wang, & Yu, 2015). The tire/road friction force has an essential role in 

maintaining the stability and controllability of the vehicle’s dynamic behavior. Thus, the estimation of the 

tire/road friction coefficient is indispensable for the dynamic behavior of the vehicle (Hong, Erdogan, Hedrick, 

& Borrelli, 2013). Therefore, if the value of the friction coefficient is low, the risk of jackknifing exists and 

involves the non-linear effects of the tire characteristic curve. On the other hand, if the friction coefficient is 

sufficiently high, the level of lateral acceleration is high and yaw instability may not occur, as rollover occurs 

first (Mendes, Fleury, Ackermann, Leonardi, & Bortolussi, 2019). 

To study in detail this subject, a metamodeling approach can be used. Metamodels for longitudinal and 

lateral vehicle dynamics were constructed, considering the experimental data from the literature, taking into 

account the tire rolling resistance; traction, centripetal and lateral forces. Basically, metamodeling 

techniques were developed from different subjects such as statistics, mathematics, computer science, and 

various engineering knowledge areas. Metamodels are initially developed as replacement tools for the 

expensive simulation process, in order to improve overall computation efficiency, moreover, they are 

considered a valuable tool to support a wide scope of activities in modern engineering design, especially in 

the optimization of projects (Wang & Shan, 2007; Dey, Mukhopadhyay, & Adhikari, 2017). 

Metamodeling is the construction of models that act as surrogates for complex problems. Therefore, 

currently, the state of the art creates metamodels based on adaptive and active learning. Adaptive 

metamodeling refers to methods that somehow use an improvement measure to increase the ability to replace 

a given function. Thus, adaptive metamodeling has gained significant importance in reliability analysis in 

recent years (Khodak, Balcan, & Talwalkar, 2019; Teixeira, Nogal, & O’Connor, 2021). Now considering 

mathematical models obtained from the metamodeling approach, the uncertainties could be quantified using 

the Monte Carlo Method in the input parameters subjected to variability. The Monte Carlo Method consists 

of a numerical method based on random sampling used in probabilistic simulations, which requires the 

generation of samples composed of random variables in stochastic fields, considering previous probability 

distributions fixed in the stochastic model. Monte Carlo approaches use random sampling as a tool to produce 

observations that can be used to perform spectral analysis. The Maximum Entropy technique could be used 

to obtain the probability density function, with the available information, in the Monte Carlo simulation 

(Orkoulas, 2009; Cursi & Sampaio, 2015). 

In this way, the present research aimed to investigate the effect of the inherent variability of input 

parameters, such as ambient temperature, inflation pressure, vertical load, vehicle speed, and road roughness 

on the performance of automotive tires. Therefore, the article promotes a qualitative analysis of the 

relationship between the influence and the relationship between the investigated parameters of the system. 

Additionally, the inherent variability of the tire manufacturing process and its use in the most diverse types 

of applications are taken into account here, from the combined approach between the Monte Carlo Method 

and Metamodeling techniques, using the data available in the literature to construct the mathematical 

models. In this way, the present study runs a unified approach to these parameters with vehicular 

performance, being an innovative contribution. 
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Material and methods 

Applied methodology 

The methodology proposed in the present study is summarized in Figure 1. For the construction of the 

tire/road interaction models, the uncertainty quantification considered the influence of several parameters 

with inherent variability that effectively influence the behavior of the longitudinal and lateral dynamics of a 

vehicle. Input parameters such as ambient temperature, inflation pressure, load, speed, and friction 

coefficient were used to develop the metamodels, using experimental data from the literature (Yokota et al., 

2012; Cho et al., 2013; Ejsmont et al., 2016; Ejsmont & Owczarzak, 2019). 

First, in the computer software MATLAB®, metamodels were developed using experimental data from the 

literature related to rolling resistance, to check the influence of the system input parameters on the rolling 

resistance of automotive tires. After, these metamodels were used in the Monte Carlo Simulation. The 

quantification of uncertainties associated with the variability aspects of each parameter was performed. 

Histograms and influence graphs associated with uncertain parameters were presented considering the 

models to study their influence on the vehicle dynamics performance. Finally, a sensitivity analysis was 

carried out on the vehicle dynamics equations to check the contribution of each uncertain input parameter. 

 

Figure 1. Flowchart of the proposed methodology used in the metamodeling approach. 

Metamodel creation 

Intensive computer-aided design problems are increasingly common in the automotive industry. The 

computational burden is usually caused by expensive analysis and simulation processes to achieve a 

comparable level of precision and reliable physical test data, with approximation or metamodeling techniques 

frequently used to address this challenge. Metamodeling techniques have been developed from various 

subjects such as statistics, mathematics, computer science, and various engineering areas. Metamodels are 

initially developed as replacement tools for expensive simulation processes to improve overall computational 

efficiency and are considered a valuable tool to support a wide range of activities in modern engineering 

design, especially in design optimization (Wang & Shan, 2007; Dey et al., 2017). 

In the past two decades, approximation methods and approximation-based optimization have attracted 

much attention, with this approach approximating intensive computational functions with simple analytical 

models. The simple model is often called a metamodel, while the process of building a metamodel is called 

metamodeling. With a metamodel, optimization methods can be applied to search for the optimum, known 

as metamodel-based design optimization (MBDO). In addition, the benefits of MBDO are associated with 

various factors, such as the easier connection of proprietary and frequently expensive simulation codes, 

simple parallel computation involving running the same simulation at many points in the design, better 

filtering of numerical noise than gradient-based methods (Wang & Shan, 2007). In this way, the metamodeling 

technique has thus been employed in various engineering fields, such as in processes for bioethanol production 

(Freitas, Olivo, & Andrade, 2017) and sucrose crystallization models (Gonzales, Peloso Jr., Olivo, & Andrade, 2020). 



Page 4 of 15  Santos et al. 

Acta Scientiarum. Technology, v. 46, e65165, 2024 

Linear and nonlinear metamodels were developed to replace the lack of analytical models or high 

computational cost simulations of the tire/road interaction of the vehicular dynamics. Subsequently, metamodel 

domain analysis was performed. The metamodel was compared with experimental data to minimize errors. 

An option to reduce the percentage error of metamodels is to refine the mathematical model in the interest 

area, thus promoting a more detailed analysis in the region of interest, or redefining the function in the new 

subdomain, which requires another function in the metamodel. Metamodels referring to the vehicle dynamics 

system input parameters were developed according to Equations 1, 2, 3, 4 and 5. 

𝑅𝑅𝐶𝑇𝐸𝑀𝑃 ≅ 𝐹𝑀𝑀(𝑥) =  𝑐0 + ∑𝑐𝑖𝑇𝑖 + ∑ ∑ 𝑎𝑗𝑇𝑗
𝑘

𝑞

𝑘=1

𝑝

𝑗=1

                                                                                  (1)

𝑛

𝑖=1

 

𝑅𝑅𝐶𝑃𝑅𝐸𝑆𝑆𝑈𝑅𝐸 ≅ 𝐹𝑀𝑀(𝑥) =  𝑐0 + ∑𝑐𝑖𝑃𝑖                                                                                                       (2)

𝑚

𝑖=1

 

𝑅𝑅𝐶𝐿𝑂𝐴𝐷 ≅ 𝐹𝑀𝑀(𝑥) = ∑
𝑐0

𝑊𝑖

𝑛

𝑖=1

+ ∑
𝑐𝑖𝐶𝑖

𝑊𝑖
                                                                                                       (3)

𝑚

𝑖=1

 

𝑅𝑅𝐶𝑆𝑃𝐸𝐸𝐷 ≅ 𝐹𝑀𝑀(𝑥) = ∑
𝑐0

𝑊𝑖

𝑚

𝑖=1

+ ∑
𝑐𝑖𝑉𝑖

𝑊𝑖
+ ∑ ∑

𝑎𝑗𝑉𝑗
𝑘

𝑊𝑗

𝑞

𝑘=1

𝑝

𝑗=1

                                                                         (4)

𝑛

𝑖=1

 

𝑅𝑅𝐶𝑇𝑂𝑇𝐴𝐿 = ∑[𝑅𝑅𝐶𝑇𝐸𝑀𝑃 + 𝑅𝑅𝐶𝑃𝑅𝐸𝑆𝑆𝑈𝑅𝐸 + [
1

𝑛
∑𝑅𝑅𝐶𝐿𝑂𝐴𝐷𝑖

𝑛

𝑖=1

] + 𝑅𝑅𝐶𝑆𝑃𝐸𝐸𝐷]                                    (5) 

The metamodels were developed by fitting experimental data available in the literature. A detailed 

inspection was carried out in their linearity and non-linearity, minimizing the percentage error between the 

developed metamodel and the experimental data. From a thorough analysis of the formulations related to the 

metamodels, the analysis of variability using the Monte Carlo Simulation Method becomes more feasible 

considering the uncertainties arising only from the input parameters. 

Metamodel adherence 

In order to analyze the numerical errors arising from the suggested methodology, an analysis of the 

metamodel’s adherence to experimental data was performed. Coefficients 𝑐0, 𝑐𝑖, 𝑎𝑗 and 𝑎0 in Equation 1 to 4 

were determined by minimizing their quadratic error, according to Equation 6, from the metamodels x(K), 

where K = 1, 2, ..., ND, known and physically possible in the interaction between tire and road. 

𝑚𝑖𝑛 𝑒 =  ∑(𝐹𝑀𝑀(𝑥𝐾)  − 𝐹(𝑥𝐾))2

𝑁𝐷

𝑡=1

                                                                                                                (6) 

In Equation 6, the term 𝑒  refers to the minimization of the error between the metamodel and the original 

function; 𝐹(𝑥𝐾) is related to the function obtained from the literature, while 𝐹𝑀𝑀(𝑥𝐾) is related to the 

function related to the metamodel of each parameter. 

Therefore, a detailed analysis of the adherence of the metamodels with experimental data was carried out, 

portraying that in the domain of the function, where the Monte Carlo Simulation will be coherently generated. 

Thus, it was possible to quantify the uncertainties using the appropriate metamodels since there was no 

change in the physical meaning of the analyzed phenomenon. In this way, the present research minimizes 

the errors between the experimental data and the values obtained by virtual simulation, without incurring 

non-parametric uncertainties. 

Therefore, to develop the rolling resistance metamodel referring to the action of temperature, the study 

by Yokota et al. (2012) was used, and the variation between the data collected from the literature and the 

developed metamodel is less than 0.05%. On the other hand, for the case of the metamodel of rolling 

resistance due to vertical load, the study by Ejsmont et al. (2016) was used as a reference, and the error 

obtained between the metamodel obtained and the literature data is less than 0.90%. 

In addition, for the development of the rolling resistance metamodel referring to the effect of speed, the 

study by Cho et al. (2013) was used as a database. For the effect of the vehicle speed variation on the rolling 

resistance, the percentage errors between the data collected from the literature and the developed metamodel 
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are minimal, less than 0.05%. Finally, to develop the rolling resistance metamodel due to the effect of inflation 

pressure, the study by Ejsmont and Owczarzak (2019) was used as a database. Thus, no error was found 

between the literature data and the proposed metamodel. Simulations about rolling resistance with the 

system input parameters were performed with tires of similar characteristics and the same application 

(Yokota et al., 2012; Cho et al., 2013; Ejsmont et al., 2016; Ejsmont & Owczarzak, 2019). In this way, the 

results, even from different studies, present compatibility with the obtained results. 

Monte Carlo simulation 

The Monte Carlo method is a powerful numerical technique for probabilistic simulations that involve 

generating samples from random variables, vectors, or processes, based on probability distributions 

defined in a stochastic model. This approach uses random sampling as a tool to produce observations, 

which are subsequently used in statistical analyses and inference to extract information about quantities 

of interest. The deterministic and stochastic models of the system play crucial roles in obtaining accurate 

results in Monte Carlo simulations and directly affect the responses obtained (Cursi & Sampaio, 2015; 

Castelo & Ritto, 2016). 

To generate studies of stochastic objects, which are subjected to certain probability densities, the Monte 

Carlo method uses random sampling as a tool to produce observations on which statistical inferences are 

made. The method has proven to be a valuable tool in obtaining numerical approximations for complex 

problems. The implementation of the Monte Carlo method is intrinsically linked to the problem to which it is 

applied. Therefore, the precision of the simulation results heavily depends on the accurate definition of the 

system and the inclusion of all critical parameters into the model, along with their statistical or probabilistic 

characteristics (Cursi & Sampaio, 2015; Castelo & Ritto, 2016). 

With the developed metamodels, the Monte Carlo Simulation was implemented considering the following 

uncertain parameters (Figure 2): ambient temperature, inflation pressure, load, vehicle speed, and friction 

coefficient. To develop the probabilistic models in the uncertain input parameters, the Principle of Maximum 

Entropy was used with the available information (Kapur, 1989; Piovan & Sampaio, 2015; Cursi & Sampaio, 

2015; Scinocca & Nabarrete, 2020). The principle consists of maximizing the system entropy, as defined by 

Shannon (1948), using the available information. Thus, the Probability Density Function (PDF) of the 

uncertain parameters is obtained consistently with the available information and the physics of the problem. 

With the obtained PDF, the analysis of the uncertainty propagation can be conducted. The principle is 

formulated as follows:  

 

Figure 2. Monte Carlo simulation (MCS). 

‘Among all probability distributions that satisfy the constraints given by the available information, select 

the one that maximizes the entropy’. 

The probabilistic distributions that maximize the entropy of the system under analysis were selected, as listed 

in Table 1. Thus, incorporating the inherent variability of input parameters into the vehicle dynamics equations, 

represented according to Equations 7, 8, 9, 10 and 11, generates the related histograms and influence graphs. 
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Also, a sensitivity analysis of the input parameters was performed. The largest contributors in the analysis 

of the vehicle’s dynamic behavior could be identified. 

Table 1. Probabilistic distribution of the system input parameters. 

Parameters Probability Distribution Minimum Value Maximum Value 

Temperature Uniform 12ºC 28ºC 

Inflation Pressure Logarithmic Decay 0.1 MPa 0.25 MPa 

Vertical Load Normal 3200 N 4200 N 

Vehicle Speed Normal 0 ≅150 km hour 

Friction Coefficient Uniform 0.5 0.9 

Results and discussion 

Uncertainty quantification in the rolling resistance 

The uncertainties that influence the system input parameters referring to rolling resistance were analyzed 

in terms of the developed metamodel equations, in particular, related to temperature, inflation pressure, load, 

speed, and final case. In addition, with a large number of parameters susceptible to the influence of 

uncertainties during tire manufacturing and the simulation, a thorough data analysis is required. Therefore, 

multiple studies are currently underway to quantify uncertainties in tires, to improve their production and 

performance (Fathollahi-Fard et al., 2021; Böttcher, Graf, & Kaliske, 2022; Liu, Wang, Cai, Wei, & Marburg, 2023). 

The first analysis performed was related to the tire rolling resistance due to the influence of ambient 

temperature, according to Equation 1, with data obtained from the literature (Yokota et al., 2012). Figure 3 

illustrates the behavior of rolling resistance influenced by temperature. 

 

Figure 3. Temperature variability in the rolling resistance: (a) histogram; (b) influence graph. 

The asymmetry of the histogram in Figure 3a is due to the input parameters becoming a distinct statistical 

distribution, once those random variables algebra results in a scatter plot with this asymmetric format 
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(Springer, 1979). Importantly, values referring to the rolling resistance coefficient vary between 0.0095 and 0.0115. 

According to Figure 3b, the variation in ambient temperature drastically affects the relationship between rolling 

resistance force per load on the tire. In addition, when the number of passengers in the vehicle increases, the 

temperature variability region proportionally grows, more strongly influencing the relationship in question. 

Therefore, for load values equal to 3,800 N, their respective rolling resistance force varies from 35 to 45 N. 

For the tire inflation pressure, as presented in Equation 2, a similar analysis was made using data from the 

literature (Ejsmont & Owczarzak, 2019). The histogram and the influence graph were obtained, as shown in Figure 4. 

The shape of the histogram in Figure 4a is directly related to its constituent parameters since hypotheses 

such as logarithmic decay are considered, showing the result that the rolling resistance coefficient varies 

between 0.0042 and 0.0052. In Figure 4b, it is possible to observe that the effect of variation in the inflation 

pressure of the vehicle tire can affect this relationship between force per load, in approximately 4% referring 

to the minimum and average values, and in about 10% comparing the maximum and average values, obtaining 

a maximum value greater than 20 N, when applying the maximum load to the tire.  

 

Figure 4. Inflation pressure variability in the rolling resistance: (a) histogram; (b) influence graph. 

Figure 5 presents the histograms and graphs of the influence of the relationship between vertical load and 

rolling resistance. Subsequently, the influence of the vertical load on three different types of road surfaces 

was analyzed, according to Equation 3. The influence of the number of passengers and the different road 

conditions on the automotive tire rolling resistance, obtaining experimental data from the literature, was 

investigated by Ejsmont et al. (2016). 

The characteristics of histograms in Figure 5a, c, and e are intrinsic to the number of occupants in the 

vehicle, with the hypothesis that the car varies in weight as the number of passengers increases or decreases. 

The histograms referring to the DAC16r20 and ISOr20 roads have similarities in the behavior regarding the 

values of the rolling resistance coefficient, with values between 7.3×10-3 and 7.45×10-3. However, for the case 

of PERSr17 road, there was a large increase in the coefficient, ranging from 9.6×10-3 to 9.85×10-3. Thus, this 

phenomenon may be related to the irregularities and textures of each type of road, represented by the friction 

coefficient parameter of the road (Ejsmont et al., 2016). 

Analyzing Figure 5b and d, it is possible to observe that the effect of the number of vehicle occupants 

affected the relationship between the rolling resistance force by ambient temperature and inflation pressure, 

presenting a variation of approximately 10% more or less in their resistance force. In particular, in Figure 5b, 

it is possible to observe a decrease in the rolling resistance with increasing temperature. 

Furthermore, in Figure 5f, the influence of the number of vehicle occupants on the tire’s rolling resistance 

totaled a variation of approximately 10% of the maximum and minimum values compared to the average value 

of the coefficient. In this case, Figure 5f presents the increase in the vehicle speed, when the rolling resistance 

is reduced, confirming the physical phenomenon addressed by the metamodels. 

Therefore, an approach was carried out regarding the influence of vehicle speed variability on tire rolling 

resistance, according to Equation 4, obtaining data from the literature (Cho et al., 2013). Therefore, Figure 6 

shows a histogram of the relationship between speed and rolling resistance. 
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Figure 5. Vertical load variability in the rolling resistance: (a, c, e) histogram; (b, d, f) influence graph. 

 

Figure 6. Histogram of speed variability in the rolling resistance. 
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Figure 6 shows the range between 0.0095 and 0.013, in which the coefficient of rolling resistance due to 

the influence of speed is included. The shape of the histogram obtained is directly related to the type of 

probability distribution referring to the input parameter of the system. 

Finally, we analyzed the behavior of the rolling resistance through the superposition of the effects of all 

input parameters, according to Equation 5, and the total rolling resistance is presented in Figure 7. In 

addition, a hybrid factor was considered for the case of vertical load, since in this scenario there were three 

different types of roads. 

In the histogram in Figure 7, the coefficient of rolling resistance assumed values between 0.0325 and 0.0365. 

This can be explained by the influence of overlapping parameters, making this analysis of great interest to 

understand how such factors are capable of interfering with the dynamic behavior of the vehicle. 

 

Figure 7. Histogram of the total rolling resistance variability. 

Uncertainty quantification in the vehicle dynamics 

The uncertainties that influenced the rolling resistance are analyzed using equations that govern the 

vehicle dynamics, more specifically, the longitudinal and lateral dynamics. 

The first analysis was based on the maximum traction force of the vehicle, through the variability factors 

of its parameters, as well as vehicle weight, friction coefficient, and the coefficient of total rolling resistance 

of the tire. Therefore, from Equation 7, we obtained the histogram and the influence graph associated with 

variation in the maximum traction force related to the intrinsic uncertainties of its constituent parameters, 

as shown in Figure 8. 

As seen in the histogram in Figure 8a, this characteristic shape and its probability density function had an 

unconventional configuration. Such behavior occurs because the histogram result is intrinsically obtained by 

Monte Carlo modeling, in which the input parameters had different probability distributions and, when 

performing the algebra with random variables, resulted in a scatter plot with this shape (Shewhart & Wllks, 1979). 

In addition, it was possible to identify the variation of this force between approximately 2,500 and 5,500 N. 

 

Figure 8. Maximum traction force: (a) histogram; (b) influence graph. 
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Figure 8b illustrates the effect of variations in vehicle weight on the total rolling resistance coefficient, 

factors with high influence on the maximum traction force ratio by friction coefficient, with a variation of 

approximately 15% up or down, drastically influencing this relationship. In addition, with the increasing 

friction coefficient of the track, combined with the texture and irregularities of the soil, there is a proportional 

increase in this variability. Therefore, the maximum traction force assumes a maximum value between 5,000 

and 6,000 N, when the friction coefficient in the analyzed domain is maximum. 

Subsequently, we sought to analyze the dynamic behavior of a vehicle with front-wheel drive in a situation 

of inclined road, considering some of the dimensional parameters of the vehicle, as represented by Equation 8. 

Therefore, Figure 9 shows the aspects of the variability of the constituent parameters of this case. 

The shape of the histogram in Figure 9a is unconventional due to factors related to the intrinsic issues of 

the histogram obtained by the Monte Carlo simulation, resulting in a scatter plot with this shape (Shewhart 

& Wllks, 1979). In addition, values referring to the force varied between 2,500 and 5,500 N. Analyzing 

Figure 9b, the variation in vehicle weight and the total rolling resistance coefficient drastically affect this 

relationship between maximum traction and friction coefficient, with a variation between 10 and 15% 

referring to the average value of this force. In addition, the maximum value of this analyzed force can reach 

values between 5,000 and 6,000 N when the friction coefficient is at its maximum value in the studied domain. 

The analysis of lateral dynamics was based on centripetal and lateral forces in order to verify how the 

variability of stochastic parameters influences the lateral performance of the vehicle. Thus, the first 

approach considered the centripetal force, using Equation 9, obtaining the scatter plot and influence 

graph, as shown in Figure 10. 

 

Figure 9. Traction force – front-wheel drive: (a) histogram; (b) influence graph. 

 

Figure 10. Centripetal force: (a) histogram; (b) influence graph. 
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In Figure 10a, the centripetal force is considered within a domain interval with a maximum value of 15 kN. 

In Figure 10b, it is possible to observe that the vehicle mass variability drastically affects the relationship 

between centripetal force per vehicle speed, with a variation of approximately 10 up and 15% down in its 

centripetal force at its highest velocity value in the studied domain. As a result, the centripetal force showed 

a small sensitivity to the vehicle mass at low speeds, however at higher speeds, there was a significant increase 

in the sensitivity to this force, as the thickness of the mass variability spectrum increased. 

Therefore, an approach was developed for the lateral force of the vehicle, in order to approach the behavior 

of the vehicle in an analysis related to the vehicular lateral dynamics, represented by Equation 10 and 11, 

obtaining the scatterplot and influence graph represented in Figure 11. 

With the histogram in Figure 11a, the value of the vehicle’s lateral force is within the domain range from 

5,000 to 8,000 N. In Figure 11b, a great influence can be observed for the variability of the friction coefficient 

and the weight of the vehicle exerted on the lateral force. Thus, there was a high variability of these 

parameters along the tire inflation pressure domain, in which the variation between the average and 

minimum values of lateral force is approximately 25%, while between the average and maximum values, it is 

around 10% when analyzed at the minimum value of the inflation pressure domain. Thus, Table 2 lists the main 

results referring to histograms obtained to enrich and provide a better understanding of the results presented. 

 

Figure 11. Lateral force: (a) histogram; (b) influence graph. 

Table 2. Main results. 

Parameters Minimum Maximum 

RRC (Temperature) 0.00970 0.01125 

RRC (Inflation Pressure) 0.00435 0.0049 

RRC (Vertical Load) 

DAC16r20 0.00732 0.00743 

ISOr20 0.00730 0.00743 

PERSr17 0.00964 0.00982 

RRC (Speed) 0.00980 0.01275 

RRC (Total) 0.03275 0.0365 

Maximum Traction Force [N] 2,750 5,250 

Traction Force – Front-Wheel Drive [N] 2,750 5,100 

Centripetal Force [N] 0 15,000 

Lateral Force [N] 5,100 8,000 

Sensitivity analysis 

Sensitivity analyses were carried out using Equation 7 to 11 that govern the vehicle dynamics, especially 

in the scenarios of longitudinal and lateral dynamics, as shown in Figure 12. 

In Figure 12a and b, it is possible to observe a high influence of temperature on the maximum traction 

forces. In vehicles with front-wheel drive, this parameter contributes approximately 40%. In addition, the 

friction coefficient had a strong influence in cases of traction and lateral forces. Its sensitivity is circa 40 to 

60%, compared with the other parameters. The other parameters such as total vertical load and speed have a 

lower influence,10%, according to Figure 12a, b, and d. Due to the very low influence of the inflation pressure, 

it is disregarded in Figure 12a and b. Finally, as to the centripetal force, the contribution relative to the 

sensitivity of the mass is approximately 40%, while the speed is responsible for circa 60%, as shown in Figure 12c. 
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Figure 12. Sensitivity analysis: (a) maximum traction force; (b) traction force in front-wheel drive; (c) centripetal force; (d) lateral force. 

List of nomenclature 

𝑎0, 𝑐0, 𝑐𝑖 and 𝑎𝑗: coefficients of the metamodels (obtained through experimental data collected from the 

literature); 

𝐹𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁𝑓𝑟𝑜𝑛𝑡
: maximum traction force in front-wheel drive vehicles;  

𝐹𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁𝑀𝑎𝑥
: maximum traction force of the vehicle;  

𝐹𝑐𝑒𝑛𝑡𝑟: centripetal force; 

𝐹𝑀𝑀(𝑥): function relative to the metamodel of the analyzed parameter in question; 

𝐹𝑦: lateral force; 

𝐾𝐿: lateral tire stiffness; 

𝐿𝑏: distance between the center of gravity and the vehicle’s rear wheel;  

𝑅𝑅𝐶𝐿𝑂𝐴𝐷: rolling resistance coefficient related to the vertical load; 

𝑅𝑅𝐶𝑃𝑅𝐸𝑆𝑆𝑈𝑅𝐸: rolling resistance coefficient related to the inflation pressure; 

𝑅𝑅𝐶𝑆𝑃𝐸𝐸𝐷: rolling resistance coefficient related to the vehicle speed;  

𝑅𝑅𝐶𝑇𝐸𝑀𝑃: rolling resistance coefficient related to the temperature; 

𝑅𝑅𝐶𝑇𝑂𝑇𝐴𝐿: total rolling resistance coefficient; 

𝑊𝑡: vehicle weight; 

µp: friction coefficient; 

𝐶: vertical load;  

ℎ: height of the vehicle’s center of gravity; 

𝐿: wheelbase;  

𝑀: vehicle mass; 

𝑃: tire inflation pressure; 

𝑇: temperature; 

𝑉: vehicle speed; 

𝑊: applied tire load; 

𝑥: portion of load on the rear axle; 

𝛼: tire slip angle; 

𝜃: slope angle of the track; 

𝜌: turn radius of the road. 
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Conclusion 

In conclusion, changes made in the properties and characteristics of tires can drastically influence the 

behavior of the vehicle in different situations, such as fuel consumption, safety, comfort, braking, and 

transmission of forces. 

Concerning the analyses carried out on the uncertainty quantification and variability of the system’s input 

parameters, we found satisfactory results since the developed metamodels effectively and reliably fit the 

experimental data collected from the analyzed literature. 

There was a variability of 15% up and down in the maximum traction force associated with the vehicle 

weight variability and the tire rolling resistance coefficient. On the other hand, a 25 downward and 10% 

upward variability in lateral force is related to the variability of vehicle weight and friction coefficient. 

The sensitivity analysis indicated the great interference of the friction coefficient and the temperature 

with the vehicle’s traction forces, the great influence of the speed on the centripetal force, and the great 

interference of the friction coefficient and total vehicle weight with the lateral force. 

Therefore, the type of road surface, combined with the friction coefficient, has a great influence on issues 

related to vehicle performance, confirming the importance of in-depth and complex studies on the surface 

pattern. These studies aim to guarantee the development of economical tires, from the point of view of fuel 

consumption, and adhering to the road, associated with vehicle safety. 
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