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ABSTRACT. In this work, plane stress free vibration is performed using four-node elements formulated 

using strain gradient notation. Accurate results are sought, and the effects of parasitic shear are 

investigated. By applying strain gradient notation, which is a physically interpretable notation, parasitic 

shear terms are identified a priori in the shear strain expressions of the four-node plane element. Parasitic 

shear is the source of shear locking in that element, and the a priori removal of the parasitic shear terms 

corrects the element for locking. Several studies in the literature show that this modeling error causes 

improper behavior of the element in bending, which affects the computed results of stress and 

displacements of the structure. Based on this, this work applies strain gradient notation to examine the 

effects of parasitic shear on the natural frequencies and corresponding mode shapes of plane stress 

structures. The results are compared with literature results, and with the isoparametric FEM formulation 

modeled by ANSYS software. It is observed that parasitic shear has a higher preponderance in coarse meshes 

of flexural vibration modes. Furthermore, the deleterious effects are emphasized as bending deformation 

becomes more important in the model. Strain gradient notation shows advantages in the numerical aspect 

and successfully eliminates the parasitic shear terms from the four-node element. The problems studied 

here display accurate results. 
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Introduction 

Free vibration of plane strain and plane stress problems has typically been handled by FEM over the last 

four to five decades, and many research works serve as references to the work developed here. Gupta (1978) 

developed a dynamic finite element for the free vibration analysis of two-dimensional structures. Zhao and 

Steven (1996) presented asymptotic solutions for predicting natural frequencies of two-dimensional elastic 

solid vibration problems. Leung, Zhu, Zheng, and Yang (2004) presented a trapezoidal Fourier p-element for 

in-plane vibration analysis of two-dimensional elastic solids. Shang, Machado, Abdalla Filho, and Arndt 

(2017) presented a C0 quadrilateral enriched element by the Generalized Finite Element Method, using 

trigonometric and exponential functions as enrichment functions, applied in free vibration analysis of 

distorted mesh models. Another case refers to the free vibration of a shear wall, analyzed by Cheung, Zhang, 

and Chen (2000) using a refined nonconforming plane quadrilateral, and Fortas, Belounar, and Merzouki 

(2019) who applied a triangular membrane finite element with in-plane drilling degrees-of-freedom. 

Moreover, Nagashima (1999) and Gu and Liu (2001) applied a meshless method to analyze the vibration of a 

two-dimensional cantilever beam. The same problem was later studied by Liu, Nguyen-Thoi, and Lam (2009) 

using an edge-based smoothed finite element method, and also by Nguyen-Thanh, Rabczuk, Nguyen-Xuan, 

and Bordas (2010) using an alternative alpha finite element method. These authors applied their approaches 

to analyze in-plane free vibration problems, which are also studied in this paper. 

Other recent studies involving FEM in two-dimensional problems analyze in-plane vibration of plates in 

curvilinear domains, which includes curved triangular p-element, a differential quadrature hierarchical finite 

element method, and the isogeometric approach (Houmat, 2008; Liu et al., 2017; Chen, Jin, Ye, & Zhang, 

2017; Ren & Zhao, 2017; Qin, Jin, Chen, & Yin, 2018). Further, other procedures are also employed for 

vibration analysis of plane structures such as the h-hierarchical adaptive scaled boundary finite element 
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method (Yang, Zhang, Liu, & Ooi, 2011), finite element method based on the consecutive-interpolation 

procedure (CIP) (Bui, Nguyen, Zhang, Hirose, & Batra, 2016), generalized finite element method with 

trigonometric enrichment (Shang, Machado, & Abdalla Filho, 2019), time-discontinuous finite element 

method (TD-FEM) based on complex Fourier shape functions (Izadpanah, Shojaee, & Hamzehei-Javaran, 2018) 

and generalized / eXtended finite element method (Cittadin, Corrêa, Arndt, & Machado, 2022). Regarding the 

applications of in-plane vibrations, we find relevant studies on the seismic behavior of shear walls (El-Kashif, Adly, 

& Abdalla Filho, 2019; Sepehrnia, Rahami, Mirhosseini, & Zeighami, 2020) and the use of plane elements with 

drilling rotation in vibration analysis (Rebiai & Belounar, 2013; Rebiai, 2018; Fortas et al., 2019). 

Parasitic shear terms are spurious terms that appear in the shear strain expressions of certain elements. It 

has been demonstrated both theoretically and numerically that the presence of parasitic shear in the shear 

strain expressions causes stiffening of the model by increasing the element's shear strain energy when 

bending occurs (Abdalla Filho, Belo, & Pereira, 2008). This erroneous behavior of the model is known as shear 

locking (Dow & Byrd, 1988). Among the most common finite elements used to model plane structures, the 

three-node triangle and the six-node triangle are elements that do not incorporate parasitic shear because 

they are based on complete displacement approximation functions. On the other hand, quadrilaterals in 

general, such as the four-, eight-, and nine-node elements, incorporate parasitic shear terms because their 

approximation functions are incomplete polynomials. Typically, addressing this modeling issue requires 

extensive mesh refinement for convergence unless an effective parasitic shear elimination procedure is 

available. The clear identification of parasitic shear is possible due to a physically interpretable notation 

called strain gradient notation (Dow, 1999). In this notation, the displacement field of an element is expressed 

explicitly in terms of kinematic quantities of the continuum, i.e., rigid body motions, strains, and strain 

derivatives, which are generally referred to as strain gradients. This allows the finite element developer to 

evaluate the modeling characteristics of the element, to identify spurious terms that cause modeling 

deficiencies during the formulation procedure, and to eliminate those spurious terms. By precisely identifying 

the parasitic shear terms, the developer can remove them a priori of the formation of the stiffness matrix to 

generate a free of modeling deficiencies finite element. 

The first reference to the fundamentals that govern strain gradient notation was presented by Dow, Su, 

Feng, and Bodley (1985), where an equivalent continuum representation of structures composed of repeated 

elements was proposed. Furthermore, Dow and Huyer (1989) published more information concerning the 

identification of linearly independent strain states of a given structure. Dow and Byrd (1988; 1990) proposed 

a procedure for eliminating the spurious terms associated with locking and formulating beam and plate finite 

elements free of modeling deficiencies. Later, modeling and discretization error analysis using physically 

interpretable notation were applied to laminated composite structures (Abdalla Filho & Dow, 1994). 

Furthermore, strain gradient notation was also used to reformulate the finite difference method and develop 

pointwise error measures. A comprehensive synthesis of these developing works on strain gradient notation 

has been presented (Dow, 1999). Since then, research involving strain gradient notation has continued to be 

developed by Mohamed, Byrd, and Dow (2005), Abdalla Filho, Fagundes, and Machado, (2006), Abdalla Filho, 

Belo, and Dow (2016), Abdalla Filho, Belo, and Dow (2017), and Abdalla Filho, Dow, and Belo (2020). 

All the previous research related to strain gradient notation shows different applications and advantages 

that are mainly possible due to the physical interpretation feature of the notation. However, none of those 

works has been developed for the dynamic analysis of structural problems. Besides stiffness properties, which 

are affected by parasitic shear in quadrilaterals, other properties such as mass and damping are present in the 

equations of motion. In free vibration, usually only stiffness and mass matrices are computed. Hence, shear 

locking effects can be relevant in free vibration analysis. The objective of this study is to investigate the 

influence of parasitic shear on the vibration characteristics of plane structures by using four-node elements 

and to show that accurate results can be generated as parasitic shear is eliminated. 

Material and methods 

Several plane free-vibration problems employing four-node strain gradient element models are analyzed. 

Problems are solved with models corrected for parasitic shear to achieve better results, but they are also solved 

with models containing parasitic shear to assess its deleterious effects in free vibration analysis. A comparison 

is made with results provided by isoparametric models for validation purposes. The results of the 

isoparametric models are obtained using the software ANSYS. Since, in general, finite element analysis does 
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not provide exact solutions for structural problems, it is necessary to examine the accuracy of the numerical 

solution. As analytical solutions for natural frequencies of two-dimensional elastic solids are not available in 

the literature (Zhao & Steven, 1996), these authors rely on other researchers’ findings. In general, different 

numerical procedures have been applied to solve the given problems, resulting in good sets of results. When 

solving a slender cantilever beam problem, it is possible to use analytical results provided by Euler-Bernoulli 

beam theory. Therefore, this procedure, among others, is used in the first problem analyzed here, which is a 

long cantilever beam. The second problem is a shear wall, where mesh convergence is performed for the finite 

element analysis. The third problem is a square cantilever plate (short beam), which serves the purpose of 

showing that parasitic shear affects the vibration behavior of the plate, even though bending deformation is 

not the most important deformation mode. Finally, cantilever plates with different aspect ratios are analyzed, 

considering different Poisson’s ratios. This emphasizes that the deleterious effects of parasitic shear increase 

as the solid’s aspect ratio increases, and it further demonstrates the effects of parasitic shear with the increase in 

Poisson’s ratio. The problems are modeled as plane stress, considering linear elastic material with homogeneous 

and isotropic properties. The results obtained from the use of strain gradient notation are compared with literature 

results, and with ANSYS software results. The relative error is determined by (
𝜔𝑐𝑎𝑙𝑐

𝜔𝑟𝑒𝑓
− 1), where 𝜔𝑐𝑎𝑙𝑐 is the 

calculated natural frequency and 𝜔𝑟𝑒𝑓 is the natural frequency used as a reference. 

Four-node plane element in strain gradient notation 

The formulation of the four-node plane element in strain gradient notation has been formally presented 

(Dow, 1999). That development is outlined here for the sake of the reader who is not familiar with strain 

gradient notation. 

Conventional finite element displacement polynomials for a four-node quadrilateral (Q4) element with 

eight degrees-of-freedom are described in terms of unknown coefficients by: 

𝑢(𝑥, 𝑦) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦        (1) 

𝑣(𝑥, 𝑦) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑥𝑦        (2) 

Due to the arbitrary nature of the coefficients present in the polynomials, the physical meaning of these 

coefficients is not apparent, making it difficult to directly relate these representations to the physical system 

being modeled. To express the displacement polynomials in terms of physically interpretable coefficients, 

rigid body motions are expressed as translational displacements (𝑢𝑟𝑏 and 𝑣𝑟𝑏) and rotation (𝑟𝑟𝑏), while strains 

are expressed as derivative of displacements. This approach allows us to evaluate the zeroth-order and first-

order coefficients at the origin of the element as 𝑎0 = (𝑢𝑟𝑏)0, 𝑏0 = (𝑣𝑟𝑏)0, 𝑎1 = (𝜀𝑥)0, 𝑏1 = (
𝛾𝑥𝑦

2
+ 𝑟𝑟𝑏)

0
, 𝑎2 =

(
𝛾𝑥𝑦

2
− 𝑟𝑟𝑏)

0
 and 𝑏2 = (𝜀𝑦)0. The second-order coefficients are determined from the first derivatives of strain 

components with respect to 𝑥 and 𝑦, resulting in 𝑎3 = (𝜀𝑥,𝑦)0 and 𝑏3 = (𝜀𝑦,𝑥)0, which are linear variations of 

strains. Therefore, the displacement polynomials for the Q4 element can now be rewritten in terms of strain 

gradient notation as follows: 

𝑢(𝑥, 𝑦) = (𝑢𝑟𝑏)0 + (𝜀𝑥)0𝑥 + (
𝛾𝑥𝑦

2
− 𝑟𝑟𝑏)

0
𝑦 + (𝜀𝑥,𝑦)

0
𝑥𝑦     (3) 

𝑣(𝑥, 𝑦) = (𝑣𝑟𝑏)0 + (
𝛾𝑥𝑦

2
+ 𝑟𝑟𝑏)

0
𝑥 + (𝜀𝑦)0𝑦 + (𝜀𝑦,𝑥)0𝑥𝑦     (4) 

The contents of the coefficients in Equation 3 and 4 are the eight strain states that the element is capable 

of representing. That is, rigid body motions, constant strains, and flexural strain terms, which are clearly 

identified. These strain states are referred here as strain gradients. From the definitions of elasticity, strain 

components are represented as derivatives of displacements, resulting in: 

𝜀𝑥 = (𝜀𝑥)0 + (𝜀𝑥,𝑦)0𝑦         (5) 

𝜀𝑦 = (𝜀𝑦)0 + (𝜀𝑦,𝑥)0𝑥         (6) 

𝛾𝑥𝑦 = (𝛾𝑥𝑦)0 + (𝜀𝑥,𝑦)0𝑥 + (𝜀𝑦,𝑥)0𝑦        (7) 

Strain components are expressed in terms of strain quantities, and it is noted in Equation 5 and 6 that the 

coefficients correctly represent normal strains according to the corresponding Taylor series expansions. 
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However, in Equation 7, two terms can be identified that are not related to shear strain. Such terms are (𝜀𝑥,𝑦)0 

and (𝜀𝑦,𝑥)0, which are flexural quantities, and are therefore interpreted as spurious in Equation 7 (Dow, 1999; 

Abdalla Filho et al., 2020). Four-node elements behave poorly in bending due to the presence of these terms, 

which are known as parasitic shear terms. They cause the shear stiffness of the element to grow unduly. This 

phenomenon is referred to in the literature as shear locking. 

In the formulation procedure, displacements and strains are written symbolically in terms of the strain 

gradients. That is, {𝑑} = [∅]{𝜀𝑠𝑔} and {𝜀} = [𝑇]{𝜀𝑠𝑔}, where [∅] is the transformation matrix that relates nodal 

displacements to the strain gradients {𝜀𝑠𝑔}, while [𝑇] is the transformation matrix that relates strains to these 

strain gradients. Hence, formulation of the strain energy U for plane stress is described in terms of strain 

gradient quantities as follows: 

𝑈 =
1

2
 {𝜀𝑠𝑔}

𝑇
[𝑈] {𝜀𝑠𝑔}         (8) 

[𝑈] = ∫ [𝑇]𝑇[𝐷][𝑇]𝑑𝛺
 

𝛺
         (9) 

where: 

[𝑈] = strain energy matrix;  

[𝐷] = plane stress constitutive matrix; and  

𝛺 = finite element volume. 

The strain energy matrix for the Q4 element is an order eight matrix whose first three columns and rows 

are null. Thus, the non-zero partition of the matrix evaluated considering the origin of coordinate axes at the 

centroid of the element is: 

𝑈22 =
𝑡𝐸

(1−𝜈²)
[𝐼1 𝜈𝐼1 𝜈𝐼1 0 𝐼1 0 0  0 0  0 0 0  0 𝛼𝐼1  0 0  0 0  𝐼6 𝜈𝐼5 0 0  0 𝜈𝐼5 𝐼4 ]   (10) 

where: 

𝐸 is the Young’s modulus;  

𝜈 is the Poisson’s ratio;  

𝑡 is the thickness of the element;  

𝐼1 = ∫ 𝑑𝐴
 

𝐴
 is the area of the element;  

𝐼4 = ∫ 𝑥2𝑑𝐴
 

𝐴
, 𝐼5 = ∫ 𝑥𝑦𝑑𝐴

 

𝐴
;  

𝐼6 = ∫ 𝑦²
 

𝐴
𝑑𝐴 are second-order moments; and  

𝛼 = (1 − 𝑣)/2. The first moments of area 𝐼2 and 𝐼3 are zero when the origin of the element is evaluated at its 

centroid and do not appear in Equation 10. 

In order to obtain the stiffness matrix for the element, strain energy is expressed in terms of nodal 

displacements: 

𝑈 =
1

2
{𝑑}𝑇[∅]−𝑇𝑈[∅]−1{𝑑}        (11) 

Applying the principle of minimum potential energy in Equation 11, yields the finite element stiffness 

matrix in strain gradient notation: 

[𝐾𝑒] = [∅]−𝑇𝑈[∅]−1         (12) 

It is observed that a small amount of integrals must be evaluated to formulate the strain gradient notation 

element’s stiffness matrix in comparison to the number of integrals in the isoparametric FEM. Additionally, 

those integrals can be evaluated prior to computational implementation. 

The a-priori elimination of parasitic shear is explained in proper detail. Equation 5 to 7 can be written in 

explicit matrix form as: 

{𝜀𝑥 𝜀𝑦 𝛾𝑥𝑦 }  =

[0 0 0 1  0 0 𝑦 0  0 0 0 0  1 0 0 𝑥  0 0 0 0  0 1 𝑥 𝑦  ]{(𝑢𝑟𝑏)0 (𝑣𝑟𝑏)0 (𝑟𝑟𝑏)0 (𝜀𝑥)0 (𝜀𝑦)0 (𝛾𝑥𝑦)0 (𝜀𝑥,𝑦)0 (𝜀𝑦,𝑥)0  } =

[𝑇]{𝜀𝑠𝑔}           (13) 

As already mentioned, the source of parasitic shear in this element is the use of incomplete polynomials 

to represent its displacement field, and the result is the linear terms in x and y which appear in Equation 7. 

Such terms appear in the third row of matrix [𝑇] in Equation 13. The element can be corrected a priori simply 

by the removal of these terms from matrix [𝑇] before the evaluation of shear strain part of the stiffness matrix. 
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This allows for the formulation of a correct stiffness matrix. The advantage of the procedure is that parasitic 

shear does not have to be tackled during numerical analysis. 

In-plane free vibration analysis 

Free vibration refers to the motion of a structure without any external dynamic excitation, which is initiated by 

disturbing the structure from its equilibrium position by some initial displacement (Chopra, 2014). Free vibration 

analysis is commonly achieved by extracting the natural frequencies and corresponding modes of vibration of an 

undamped structural system. An undamped free vibration system can be described as follows: 

[𝑀]{𝑑̈} + [𝐾]{𝑑} = {0}         (14) 

where: 

{𝑑} = nodal displacements vector; 

 {𝑑̈} = nodal accelerations vector;  

[𝐾] = structural stiffness matrix and  

[𝑀] = structural mass matrix. Equation 14 is a second-order differential equation that constitutes the 

physical equilibrium of a dynamic structural system (Boutagouga & Djeghaba, 2013). The solution of this 

equation leads to the following eigenproblem: 

[𝐾]𝐴 = 𝜔²[𝑀]𝐴          (15) 

where: 

𝜔² is an eigenvalue (square of natural vibration frequency) and 𝐴 is an eigenvector (vibration mode shape) 

that represents the shape of the system. Equation 15 on trivial solution leads to: 

|([𝐾] − 𝜔2[𝑀])| = 0         (16) 

Equation 16 is known as frequency equation or characteristic equation, and its expansion results in an 

algebraic equation of degree 𝑛 in 𝜔². The 𝑛 roots of this equation represent the natural frequencies of the 𝑛 

modes of vibration in the system (Cook et al., 2002). The lowest frequency is called fundamental frequency.  

It can be noted in Equation 16 that the principal parameters needed to determine the natural frequencies 

are the structural stiffness matrix and the structural mass matrix. The procedure for deriving the stiffness 

matrix of the four-node plane finite element in strain gradient notation has been outlined in the preceding 

section. The consistent mass matrix of the element is derived from the expression of kinetic energy using 

Hamilton’s principle (Aksu, 1997; Boutagouga & Djeghaba, 2013): 

[𝑀𝑒] = ∫ 𝜌 [𝑁]𝑇[𝑁]𝑑𝛺
 

𝛺
         (17) 

where: 

𝜌 is the material density and [𝑁] is the shape function matrix. The result of Equation 17 is not shown here for 

conciseness. 

Results and discussion 

Cantilever beam 

A cantilever beam and the meshes employed are shown in Figure 1. The problem was analyzed by other 

researchers using different approaches (Nagashima, 1999, Gu & Liu, 2001; Liu et al., 2009) where the 

fundamental frequency is compared to the analytical Euler-Bernoulli beam solution for validation. The 

natural frequencies are determined for the first eight vibration modes. As a reference solution, an 

isoparametric model with a mesh consisting of 10×100 elements and 2200 degrees of freedom is employed 

using the ANSYS software. 

Table 1 presents the fundamental frequency of the cantilever beam obtained through different methods 

and meshes, along with the percentage errors in comparison to the reference solution using the finite element 

method with ANSYS. The analysis conducted using the isoparametric FEM formulation in ANSYS and the 

strain gradient notation containing parasitic shear (ANSYS = SG) provide identical values for the fundamental 

frequency. This demonstrates the equivalence between the strain gradient notation model containing 

parasitic shear and the isoparametric model with full integration of the stiffness matrix. To align with the 

models used by the other authors listed in Table 1, the finest mesh employed is 20×2. 
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Figure 1. Cantilever beam and the meshes utilized in the analysis. 

Table 1. Comparison of the fundamental frequency for a cantilever beam. 

Method Mesh (DOF) ω1 (rad s-1) Error 

FEM (ANSYS) 100 × 10 (2200) 5179 Ref. 

Euler-Bernoulli N/A 5200 0.41% 

Liu et al. (2009) 20 × 2 (120) 5360 3.49% 

Nguyen-Thanh et al. (2010) 20 × 2 (120) 5453 5.28% 

ANSYS = SG 5 × 1 (20) 8358 61.39% 

 10 × 1 (40) 6283 21.31% 

 20 × 2 (120) 5477 5.76% 

SGC 5 × 1 (20) 5436 4.97% 

 10 × 1 (40) 5418 4.61% 

 20 × 2 (120) 5239 1.16% 

N/A = not applicable. 

The analysis using strain gradient notation corrected for locking (SGC) yields frequencies closer to Euler-

Bernoulli solution and to the reference solution provided using ANSYS (isoparametric model with a finer 

mesh). The percentage error for SGC is only 1.16%. Notably, this result demonstrates higher accuracy 

compared to the results reported by Liu et al. (2009) and Nguyen-Thanh et al. (2010). Further, it is important 

to highlight that even with a coarser mesh (with only 20 DOFs), SGC provides a more accurate result compared 

to the refined mesh of 20 × 2 (120 DOFs) employed in ANSYS and by Nguyen-Thanh et al. (2010). 

Table 2 shows a comparison of the relative errors of the first eight natural frequencies of the cantilever 

beam computed by the strain gradient model containing parasitic shear (SG) and corrected for parasitic shear 

(SGC) with respect to the reference solution (ANSYS). In all first eight modes, the relative errors are lower in 

the analysis using corrected models (SGC). It is worth noting that significant errors are present in the bending 

vibration modes as parasitic shear terms are activated during bending. This is expected as parasitic shear in 

the four-node quadrilateral are derivatives of normal strains present in the shear strain expression. Table 2 

displays results provided by the three meshes employed (see Figure 1), and percent difference results are used 

for quick results interpretation. It can be seen that parasitic shear effects can be very significant, mostly for 

low frequencies, and that elimination of parasitic shear is very effective, and thus, essential. For instance, the 

percent difference between results provided by SG and SGC models for the fundamental frequency of the coarse 

mesh is 53.8%. High differences are also associated to modes 2 (47%) and 4 (36.7%). Further, it is curious to observe 

that the error of mode 6 (17%), which is a predominantly axial vibration mode, is also high. Figure 2 illustrates 

graphically the natural frequencies solution behaviors of Table 2. Relative errors of both SG and SGC model 

solutions provided by the three meshes are plotted for the eight modes of vibration. Even though these solutions 
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show that relative errors drop with refinement, greater computational efforts can be saved if parasitic shear is 

eliminated a priori. The eight vibration mode shapes of the cantilever beam are shown in Figure 3, where modes 3 

and 6 are longitudinal vibration modes, while the other six are most relevant bending modes. 

Table 2. Natural frequencies (rad s-1) and percent differences between SG and SGC models. 

Mode 
Mesh 5 x 1 (20) Mesh 10 x 1 (40) Mesh 20 x 2 (120) 

SG SGC Dif. SG SGC Dif. SG SGC Dif. 

1 8358 5436 53.8% 6283 5418 16.0% 5477 5239 4.55% 

2 52380 35637 47.0% 38183 33274 14.8% 33071 31715 4.28% 

3 81300 81279 0.03% 80821 80783 0.05% 80658 80643 0.02% 

4 149637 109440 36.7% 103186 91203 13.1% 88030 84706 3.92% 

5 252676 241790 4.50% 194537 174854 11.3% 162209 156673 3.53% 

6 297672 252568 17.9% 244548 244373 0.07% 242364 242302 0.03% 

7 450279 431101 4.45% 310004 283466 9.36% 251341 243645 3.16% 

8 466304 449984 3.63% 414578 414068 0.12% 352126 342479 2.82% 

Dif. = 
𝑆𝐺−𝑆𝐺𝐶

𝑆𝐺𝐶
. 

  

Figure 2. Relative Error x Mode of Vibration. 

 

Figure 3. Mode shapes of a cantilever beam vibrating in its own plane. 

Shear wall 

This example illustrates the free vibration of a plane stress model of a shear wall which is shown in  

Figure 4. The mechanical properties are 𝐸 = 34.474 GPa, 𝜈 = 0.11 and 𝜌 = 568.7 kg m-3. Petyt (1990) applied 

various types of elements and meshes to study the natural frequencies of this shear wall for the first five 

vibration modes. Cheung et al. (2000) computed its first three natural frequencies associated to flexural modes 

using a refined non-conforming quadrilateral element RQ6. Additionally, Leung et al. (2004) utilized a 

trapezoidal Fourier p-element to determine the first five natural frequencies. Analytical solutions typically 

consider the shear flexibility and rotatory inertia effects by treating the wall as a uniform beam (bar element). 
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Table 3 shows the natural frequencies results obtained from strain gradient notation models containing parasitic 

shear (SG) and those corrected for parasitic shear (SGC). Additionally, it includes results obtained by Leung et al. 

(2004) and Cheung et al. (2000), as well as results from the refined isoparametric model run using ANSYS. 

As in the uniform cantilever beam, computed values of natural frequencies of the shear wall are the same 

for the models using isoparametric formulation (ANSYS) and strain gradient notation containing parasitic 

shear (SG). It can be observed that results provided by strain gradient notation model corrected for parasitic 

shear (SGC) are smaller and in good agreement with the reference solutions. 

 

Figure 4. Shear wall and its meshes. 

Table 3. Values of the first five natural frequencies (rad s-1) for a shear wall. 

Method Mesh (DOF) ω1 ω2 ω3* ω4 ω5* 

Leung et al. (2004) p=q=5 (84) 31.18 161.81 200.72 375.39 601.99 

Cheung et al. (2000) 2 × 16 (80) 31.28 164.51 — 386.99 — 

ANSYS = SG 1 × 4 (16) 37.60 202.13 209.04 536.77 637.80 

 2 × 8 (48) 32.97 175.79 201.08 424.04 610.77 

 3 × 12 (96) 31.96 167.80 200.87 397.03 605.75 

 4 × 16 (160) 31.59 164.79 200.80 386.83 603.99 

SGC 1 × 4 (16) 31.63 184.54 202.09 493.87 637.56 

 2 × 8 (48) 31.35 169.02 201.06 410.97 610.67 

 3 × 12 (96) 31.22 164.60 200.86 390.41 605.70 

 4 × 16 (160) 31.17 162.94 200.79 382.90 603.96 

*Modes of longitudinal vibration. N/A = not applicable. 

Table 4 shows the relative errors of the computed values of natural frequencies presented in Table 3 using 

Leung et al. (2004) results as references. Additionally, it includes results obtained from Cheung et al (2000), 

as well as results from the refined isoparametric model run using ANSYS. 

Table 4. Relative error of the natural frequencies for a shear wall. 

Method Mesh (DOF) ω1 ω2 ω3* ω4 ω5* 

Leung et al. (2004) p=q=5 (84) Ref. Ref. Ref. Ref. Ref. 

Cheung et al. (2000) 2 × 16 (80) 0.31% 1.67% — 3.09% — 

ANSYS = SG 1 × 4 (16) 20.58% 24.92% 4.15% 42.99% 5.95% 

 2 × 8 (48) 5.74% 8.64% 0.18% 12.96% 1.46% 

 3 × 12 (96) 2.50% 3.70% 0.08% 5.76% 0.62% 

 4 × 16 (160) 1.32% 1.84% 0.04% 3.05% 0.33% 

SGC 1 × 4 (16) 1.42% 14.05% 0.69% 31.56% 5.91% 

 2 × 8 (48) 0.54% 4.46% 0.17% 9.48% 1.44% 

 3 × 12 (96) 0.14% 1.72% 0.07% 4.00% 0.62% 

 4 × 16 (160) |0.03%| 0.70% 0.04% 2.00% 0.33% 

*Modes of longitudinal vibration. N/A = not applicable. 

Results in Table 4 show, as expected, that effects of parasitic shear are important in the bending vibration 

modes, and that they are very pronounced for coarser meshes. This is particularly true for the first vibration 

mode. The coarse mesh (only 16 DOFs) solved using the corrected strain gradient model (SGC) contains 
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relative error which is comparable to the error of the most refined mesh (160 DOFs) solved using the isoparametric 

model (ANSYS) and the strain gradient model containing parasitic shear (SG). Further, the most refined mesh (160 

DOFs) of SGC contains lower relative error when compared to the Cheung et al. (2000) model error value. 

The mode shapes of the shear wall can be seen in Figure 5, where modes 3 and 5 are modes of longitudinal 

vibration, while modes 1, 2 and 4 are modes of flexural vibration. 

The convergence of the first mode frequency is depicted in Figure 6. The plots show that SGC model as 

well as ANSYS and SG model solutions approximate the reference value solution. However, solutions provided 

by SGC models are always more accurate. The effect of parasitic shear is very evident in the coarser model. It 

is seen that the error in the models containing parasitic shear is over 20% whereas the error in the corrected 

model is only 1.42%. That is, the solution provided by the latter model is already acceptable when only 16 

DOFs are available. This result shows how deleterious parasitic shear is when computing natural frequencies, 

and, therefore, how relevant it is to remove it from the model. 

 

Figure 5. Mode shapes of a shear wall vibrating in its own plane. 

 

Figure 6. Convergence of fundamental frequency by ANSYS, SG and SGC models. 

Short beam with different aspect ratios and Poisson’s ratios 

Next, an experiment on the influence of parasitic shear in the free vibration of a short beam is carried out. 

Vibration characteristics of the problem shown in Figure 7 was studied by Gupta (1978) by using a dynamic 

finite element for plane stress free vibration. Later, Shang et al. (2017) applied GFEM to determine the natural 

frequencies of the structure. Here, the aspect ratio and Poisson’s ratio vary. Four aspect ratios are considered, 

namely; Lx/Ly = 1; Lx/Ly = 2; Lx/Ly = 5; and Lx/Ly = 10. For each aspect ratio, four values of Poisson’s ratio are adopted, 

namely; 𝜈 = 0, 𝜈 = 0.15, 𝜈 = 0.3 and 𝜈 = 0.4999 ≈ 0.5. Young’s modulus and material density are kept equal to 

unit. The authors understand that a beam with aspect ratio of 10 is not short, but the terminology is kept. 

The aspect ratio of the elements in each mesh varies in the same proportion as the plate aspect ratio. That 

is, elements become longer as the plate becomes longer. Only the fundamental frequency is computed in 

these analyses. Values are depicted in Table 5, 6, 7 and 8. 

Results provided by a refined mesh of isoparametric elements using ANSYS are taken as reference values. 

Convergence of the isoparametric model containing parasitic shear (ANSYS) and of the strain gradient model 
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corrected for parasitic shear (SGC) are compared. The value of the fundamental frequency in Shang et al. 

(2017) is 0.0658 rad s-1 for ν = 0.3 using a 1,300 DOF mesh, which is very close to ANSYS refined result. The 

corresponding values provided by the SG and SGC models containing only 144 DOF are 0.06648 (1.00% error) 

and 0.0663 rad s-1 (0.73% error). 

 

Figure 7. Short beam. 

Table 5. Fundamental frequency (10-3 rad s-1) and relative error for a plate ratio Lx/Ly = 1. 

Method Mesh (DOF) 
𝜈 = 0 𝜈 = 0.15 𝜈 = 0.3 𝜈 ≈ 0.5 

ω1 Error ω1 Error ω1 Error ω1 Error 

ANSYS 100 × 100 (20,200) 69.12 Ref. 67.34 Ref. 65.82 Ref. 64.10 Ref. 

SG 1 × 1 (4) 82.94 |20.0%| 79.82 |18.5%| 77.92 |18.4%| 77.13 |20.3%| 

 2 × 2 (12) 75.32 |8.98%| 73.22 |8.73%| 71.86 |9.17%| 71.12 |10.9%| 

 4 × 4 (40) 71.07 |2.83%| 69.27 |2.85%| 67.92 |3.18%| 66.78 |4.18%| 

 6 × 6 (84) 70.05 |1.35%| 68.28 |1.40%| 66.89 |1.63%| 65.56 |2.27%| 

 8 × 8 (144) 69.66 |0.78%| 67.90 |0.83%| 66.48 |1.00%| 65.04 |1.46%| 

SGC 1 × 1 (4) 72.90 |5.47%| 71.77 |6.58%| 71.71 |8.94%| 73.21 |14.2%| 

 2 × 2 (12) 72.53 |4.95%| 71.00 |5.43%| 70.10 |6.49%| 69.87 |9.00%| 

 4 × 4 (40) 70.24 |1.63%| 68.58 |1.84%| 67.34 |2.30%| 66.30 |3.43%| 

 6 × 6 (84) 69.65 |0.78%| 67.95 |0.91%| 66.60 |1.18%| 65.30 |1.87%| 

 8 × 8 (144) 69.43 |0.45%| 67.71 |0.54%| 66.30 |0.73%| 64.87 |1.21%| 

Table 6. Fundamental frequency (10-3 rad s-1) and relative error for a plate ratio Lx/Ly = 2. 

Method Mesh (DOF) 
𝜈 = 0 𝜈 = 0.15 𝜈 = 0.3 𝜈 ≈ 0.5 

ω1 Error ω1 Error ω1 Error ω1 Error 

ANSYS 100 × 50 (10,200) 44.31 Ref. 43.84 Ref. 43.47 Ref. 43.09 Ref. 

SG 1 × 1 (4) 69.41 |56.7%| 66.01 |50.6%| 63.69 |46.5%| 62.30 |44.6%| 

 2 × 2 (12) 54.16 |22.2%| 52.63 |20.0%| 51.80 |19.2%| 51.88 |20.4%| 

 4 × 4 (40) 47.15 |6.41%| 46.41 |5.86%| 46.02 |5.89%| 46.12 |7.02%| 

 6 × 6 (84) 45.61 |2.94%| 45.03 |2.72%| 44.69 |2.83%| 44.64 |3.60%| 

 8 × 8 (144) 45.05 |1.67%| 44.52 |1.57%| 44.19 |1.67%| 44.05 |2.23%| 

SGC 1 × 1 (4) 45.79 |3.34%| 45.56 |3.92%| 45.90 |5.60%| 48.85 |13.4%| 

 2 × 2 (12) 44.92 |1.39%| 44.94 |2.51%| 45.75 |5.27%| 47.31 |9.79%| 

 4 × 4 (40) 44.77 |1.05%| 44.40 |1.27%| 44.30 |1.92%| 44.72 |3.77%| 

 6 × 6 (84) 44.52 |0.48%| 44.10 |0.61%| 43.89 |0.98%| 43.98 |2.05%| 

 8 × 8 (144) 44.43 |0.27%| 43.99 |0.35%| 43.73 |0.60%| 43.66 |1.32%| 

Table 7. Fundamental frequency (10-3 rad s-1) and relative error for a plate ratio Lx/Ly = 5. 

Method Mesh (DOF) 
𝜈 = 0 𝜈 = 0.15 𝜈 = 0.3 𝜈 ≈ 0.5 

ω1 Error ω1 Error ω1 Error ω1 Error 

ANSYS 100 × 20 (4,200) 19.80 Ref. 19.77 Ref. 19.75 Ref. 19.76 Ref. 

SG 1 × 1 (4) 62.79 |217 %| 58.83 |198 %| 55.70 |182 %| 52.62 |166 %| 

 2 × 2 (12) 39.39 |98.9%| 37.38 |89.1%| 35.90 |81.8%| 34.74 |75.8%| 

 4 × 4 (40) 26.35 |33.0%| 25.57 |29.4%| 25.08 |27.0%| 24.86 |25.8%| 

 6 × 6 (84) 22.96 |15.9%| 22.55 |14.1%| 22.32 |13.0%| 22.29 |12.8%| 

 8 × 8 (144) 21.63 |9.23%| 21.38 |8.17%| 21.25 |7.59%| 21.27 |7.64%| 

SGC 1 × 1 (4) 20.27 |2.34%| 20.35 |2.97%| 20.73 |4.94%| 22.37 |13.2%| 

 2 × 2 (12) 19.95 |0.71%| 19.96 |1.00%| 20.45 |3.54%| 21.86 |10.6%| 

 4 × 4 (40) 19.86 |0.29%| 19.86 |0.47%| 20.13 |1.90%| 20.66 |4.52%| 

 6 × 6 (84) 19.83 |0.14%| 19.82 |0.26%| 19.95 |1.01%| 20.27 |2.58%| 

 8 × 8 (144) 19.61 |0.96%| 19.80 |0.15%| 19.87 |0.62%| 20.10 |1.70%| 
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Table 8. Fundamental frequency (10-3 rad s-1) and relative error for a plate ratio Lx/Ly = 10. 

Method Mesh (DOF) 
𝜈 = 0 𝜈 = 0.15 𝜈 = 0.3 𝜈 ≈ 0.5 

ω1 Error ω1 Error ω1 Error ω1 Error 

ANSYS 100 × 10 (2,200) 10.11 Ref. 10.10 Ref. 10.11 Ref. 10.13 Ref. 

SG 1 × 1 (4) 61.64 |509 %| 57.55 |470 %| 54.23 |436 %| 50.69 |400 %| 

 2 × 2 (12) 36.18 |258 %| 33.92 |236 %| 32.12 |218 %| 30.31 |199 %| 

 4 × 4 (40) 20.39 |102 %| 19.37 |91.7%| 18.58 |83.8%| 17.87 |76.4%| 

 6 × 6 (84) 15.56 |53.9%| 14.97 |48.1%| 14.53 |43.7%| 14.17 |39.8%| 

 8 × 8 (144) 13.45 |33.0%| 13.06 |29.3%| 12.79 |26.5%| 12.59 |24.2%| 

SGC 1 × 1 (4) 10.31 |1.96%| 10.37 |2.63%| 10.58 |4.70%| 11.45 |13.0%| 

 2 × 2 (12) 10.16 |0.47%| 10.19 |0.80%| 10.42 |3.04%| 11.21 |10.6%| 

 4 × 4 (40) 10.12 |0.08%| 10.13 |0.29%| 10.29 |1.80%| 10.60 |4.62%| 

 6 × 6 (84) 10.10 |0.06%| 10.11 |0.09%| 10.20 |0.91%| 10.40 |2.63%| 

 8 × 8 (144) 9.95 |1.57%| 10.06 |0.46%| 10.16 |0.52%| 10.30 |1.71%| 

In general, the results in Table 5 through. 

Tables 5, 6, 7 and 8 shows the following. Deleterious influence of parasitic shear increases with higher 

aspect ratio. Let’s consider, for instance, the frequency values computed by the model containing parasitic 

shear (SG) for the coarser mesh (one single element) and Poisson’s ratio 𝜈 = 0. The percent error values are 

20, 56.7, 217 and 509%. As bending deformation becomes more important in the model, parasitic shear terms 

play a dominant role. After removal of parasitic shear terms, errors for those models drop to 5.47, 3.34, 2.34 

and 1.96%, respectively. It can be seen that refinement alone is also capable of alleviating the effects of 

parasitic shear. For the shorter models, that is, plates with aspect ratio 1 and 2, refinement suffices as the 8x8 

meshes provide fundamental frequency values with only 0.78 and 1.67% error, respectively. However, for the 

higher aspect ratios (5 and 10), refinement alone is not sufficient as error values are 9.23 and 33.0%, 

respectively, which indicates that removing parasitic shear is mandatory for an accurate and also efficient 

analysis. This same behavior can be observed for every column of the table. That is, regardless of the Poisson’s 

ratio value. Investigation of the parasitic shear effect associated with Poisson’s ratio value requires that one 

turns its attention to the table lines. Focusing on the values computed by SGC models, it is observed that the 

error in the fundamental frequency increases consistently as Poisson’s ratio value increases. This behavior is 

masked by the presence of parasitic shear. Results provided by the coarse models containing parasitic shear 

show quite the opposite trend, indicating a decrease in error as Poisson’s ratio increases. 

Conclusion 

In conclusion, this paper shows that the presence of parasitic shear in four-node quadrilateral models 

leads to a significant overestimation of natural frequency values in plane stress problems. It also highlights 

the fact that achieving accurate natural frequency results may require a substantial level of mesh refinement, 

which can make the analysis computationally expensive. Therefore, the elimination of parasitic shear is essential 

for both accurate and efficient free vibration analysis. The utilization of strain gradient notation is particularly 

advantageous as it enables the precise identification and elimination of parasitic shear terms a priori. 
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