
DOI: 10.4025/actascitechnol.v32i3.6552 

Acta Scientiarum. Technology Maringá, v. 32, n. 3, p. 279-285, 2010 

Fractional control of an industrial furnace 

Luis Antonio Duarte Isfer1, Ervin Kaminski Lenzi2, Giovani Marcelo Teixeira1 and 
Marcelo Kaminski Lenzi3* 

1Departamento de Engenharia Química, Universidade Federal do Paraná, Curitiba, Paraná, Brazil. 2Departamento de Física, 
Universidade Estadual de Maringá, Maringá, Paraná, Brazil. 3Universidade Federal do Paraná, Rua XV de Novembro, 1299, 
80060-000, Curitiba, Paraná, Brazil. *Author for correspondence. E-mail: lenzi@ufpr.br 

ABSTRACT. The requirements of high production allied with product quality, process 
safety and environmental regulation, lead control systems to play a key role in the operation 
of chemical and biochemical plants. In petrochemical plants, furnaces are essential 
equipments for process operation and due to energy costs, adequate operation and control 
are of extreme importance for process economics. The search for new and more efficient 
control laws led to the development of fractional PID control algorithm, which is based on 
the use of fractional differential equations. In this work, a previously identified 
mathematical model of an actual industrial furnace is used for fractional PID control 
studies. Feedback loop in servo control was analyzed, focusing on the study of the influence 
of the controller parameters over control loop performance. Particularly, P, fractional PI 
and fractional PD controller were considered in this study. Simulations were carried out 
showing that the fractional controllers were able to perform set-point transitions. The 
control loop performance was evaluated by ITAE and ISE criteria, showing that, in this 
study, fractional PI is the best algorithm. 
Key words: process control, fractional differential equation, fractional control, furnace. 

RESUMO. Controle fracionário de um forno industrial. A necessidade da elevada 
produtividade aliada à qualidade dos produtos, segurança dos processos e a legislações 
ambientais levaram sistemas de controle a possuírem papel fundamental na operação de 
plantas químicas e petroquímicas. Em plantas petroquímicas, fornos são equipamentos 
fundamentais para a operação do processo e, pelo custo da energia, a operação e o controle 
adequados são de essencial importância para a economia do processo. A procura de novas e 
mais eficientes leis de controle levou ao desenvolvimento do algoritmo de controle PID 
fracionário, o qual é baseado no uso de equações diferenciais de ordem fracionária. Neste 
trabalho, um modelo matemático previamente identificado para um forno real é utilizado 
para estudos de controle fracionário. Foi analisado o problema de controle servo em malha 
retroalimentada (feedback), focando o estudo da influência dos parâmetros do controlador 
sobre o comportamento da malha de controle. Especificamente, controladores tipo P, PI 
fracionário e PD fracionário foram considerados neste estudo. Simulações foram realizadas 
mostrando que controladores foram capazes de fazer a transição de setpoint. O desempenho 
das malhas de controle foi avaliado com os critérios ITAE e ISE, mostrando que, neste 
estudo, o controlador PI fracionário foi o melhor algoritmo. 
Palavras-chave: controle de processos, equação diferencial fracionária, controle fracionário, forno. 

Introduction 

Due to the needs of high production allied with 
product quality, process safety and environmental 
regulation, control systems play a key role in 
chemical and biochemical plants operation 
(SANTOS et al., 2005). Literature reports different 
conventional control algorithms, which have been 
successfully applied to the control of industrial 
furnaces (SEBORG et al., 2003). 

Furnaces represent an important category of 
industrial equipment not only because of their 

function of pre-heating chemical stream but also 
because of energy consumption issues. As a 
consequence, adequate performance of an industrial 
furnace is important for process economical 
performance (SMITH, 1995). Literature reports 
different applications of furnace modeling and 
control, ranging from lab to industrial scale. Neitzel 
and Lenzi (2001) report the control of a lab scale 
furnace modeled with a first-order integer model. 
Radhakrishnan and Mohamed (2000) report the use 
of neural networks for modeling purposes, however, 
the demand of experimental data for obtained a 
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trained and validated neural network is high, which 
may not be available in every scenario. Liao et al. 
(2009) present the use of fuzzy sets and logic for 
furnace identification and control. Vodros and 
Kollar (2003) report the identification of a furnace 
using frequency domain based models. Finally, 
Branan (2005) shows the importance of using 
heuristic rules for furnace modeling. 

Fractional differential order equations represent a 
fast growing research field nowadays (OLDHAM; 
SPANIER, 2006). Different applications of fractional 
calculus have been reported ranging from diffusion 
studies (LENZI et al., 2009, 2010) to stock market 
applications (BIANCO; GRIGOLINI, 2007). Further 
details regarding the formalism of fractional calculus 
(HILFER, 2000) and the physical interpretation of 
fractional derivatives (MACHADO, 2003) are beyond 
the scope of this work and can be found elsewhere. 
Fractional control has been successfully applied to 
mechanical (POMMIER et al., 2002) and 
eletromechanical systems (SABATIER et al., 2004). To 
our knowledge, this work reports the first application 
of fractional control to industrial equipment. This 
work reports an alternative innovative tool for the 
identification of an industrial furnace, which was 
validated with experimental data reported in the 
literature (PODLUBNY, 1999). 

The aim of this work is the study of fractional 
control of an industrial furnace. Fractional 
controllers of the PID family were used in feedback 
loop for servo control. Particularly, P, fractional PD 
and fractional PI controller were used to control the 
temperature of the leaving gas stream of furnace, 
which is described by a previously identified 
fractional model. 

Theoretical framework 

A fractional derivate can be obtained by several 
approaches. However, in this work, only the Caputo 
representation (CAPUTO, 1967), presented bellow, 
will be considered. 
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The first advantage of this representation is the 

fact that initial conditions of the fractional 
differential equations can be expressed in terms of 
integer order derivatives, which usually have a 
physical interpretation. Secondly, for this 
representation, the fractional derivate of a constant 
function is zero allowing the use of deviation 
variables (SEBORG et al., 2003), which considerably 
simplify the mathematical analysis when using 
Laplace transform because the initial conditions 
become zero. The feedback loop for servo control is 
illustrated by Figure 1. 

The loop transfer function is given by Equation. 
(2). 
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In this work, both actuator and sensor are 

assumed to have no dynamics, consequently, 
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The process transfer function can be obtained 

from fractional identification techniques and is 
given by Equation (4). 
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Figure 1. Feedback loop for servo control. 
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Finally, the P, fractional PD and fractional PI 
controllers are, respectively, given by the following 
transfer functions 

 
  CCONTROLLER KsG 

 (5)
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Material and methods 

The furnace model is given by Equation (8), which 
was identified from an actual industrial furnace data 
reported in the literature, using the identification 
technique reported by Isfer et al. (2010). 
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This work addressed the study of fractional 

control loops, particularly focusing on the influence 
of the parameters of the control loop transfer 
function over the behavior of the controlled 
variable. Considering the above equations, the 
following control loop transfer functions can be 
obtained for P controller, fractional PI and fractional 
PD controller, respectively. 
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One can observe that parameter  is a real 

number which can be set greater than 1.0252, so the 
transfer function needs to be rewritten as 
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As mentioned before, only the servo control 

problem will be considered. Setpoint changes 
considered in this study consist of a unity step 
change, which is mathematically given by the 
Heaviside function. 

Results and discussion 

According to previously reported results 
(PODLUBNY, 1999), fractional controllers applied 
to processes described by fractional transfer functions 
(fractional process) provide better results when 
compared to integer controllers applied either to 
integer processes or even fractional processes and 
fractional controllers applied to integer processes. 
Consequently, this study analyzes only fractional 
controllers applied to fractional processes. P 
controller simulation is a benchmark for comparison. 

P Controller 

The inverse Laplace transform of the P 
controller loop is given by Equation (13), which 
described the behavior of the controlled variable. 
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This inverse transform is obtained with the aid 

of Mittag-Leffler function given by Equation (14). 
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Table 1 presents the values of KC used for 

simulation of the control loop. Is must be stressed 
that the values were chosen in order to evaluated the 
influence of KC over the behavior. 

The behavior of the controlled variable after a 
unity step set-point change is shown in Figure 2. It 
can be observed that the offset is present; however, 
it can be reduced by increasing the value of KC. The 
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independent variable, time, represents a 
dimensionless time. The presence of offset occurs 
because the P controller does not change the order 
of the differential equation that describes the 
process, as it can be observed by comparing 
Equation (8) to Equation (9). In this case, the 
fractional order is close to 1, so offset is expected to 
occur. However, care should be taken on the choice 
of KC, because the higher the value, the higher the 
process sensitivity to small errors. 

Table 1. P controller parameter value used for simulation. 

Case Parameter 
I II III IV 

KC 0.5 1 10 15 

Fractional PI controller 

The main advantage of PI controller is the offset 
elimination. This happens due to the integral action, 
which mathematically leads to an increase in the order 
of the differential equation that describes the process. 
This can be observed by comparison of Equation (8) to 
Equation (10). On the other hand, actuator saturation 
may be an important issue to be addressed when 
dealing with PI controllers. The inverse Laplace 
transform of Eq. (10) is given by Eq. (15). 
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Figure 2. Controlled variable behavior – P Controller. 

One can observe that fractional PI controller has 
three tuning parameters, given by KC, I and . It 
should be stressed that the value of  represents the 
desired increase of the order of the control loop 
differential equation and is given by a real number. 
Table 2 lists the parameters values used for 
simulation purposes. 

Table 2. Fractional PI controller parameters values used for 
simulation. 

Case Parameter 
I II III IV 

KC 5 5 5 1 
I 2 1 1 1 
 0.1 0.1 1.1 1.1 
 

Similarly to P controller, parameters values were 
chosen in order to evaluate the influence over the 
control loop behavior. The influence of KC is 
analyzed by comparison of cases III and IV, I is 
analyzed by cases I and II, finally,  is analyzed by 
cases II and III. Figure 3 presents the simulation 
results showing the behavior of the controlled 
variable. The main consequences of increasing KC 
correspond to an offset reduction and also an 
increase in the loop velocity by reducing the time 
needed to get closer to the desired set point. I 
directly influences the offset, which can be removed 
by proper parameter selection. Finally, depending 
on the values of KC and I, parameter  may 
introduce an oscillatory behavior, as it represents the 
integral action and directly affects the order of the 
differential equation that describes the control loop. 

Fractional PD controller 

According to Equation (11) and Equation (12), 
fractional PD controller has three tuning 
parameters; KC, D, . Two different scenarios can be 
visualized and will be further considered for 
analysis. In the first, the value of  is smaller than 
the order of the transfer function that describes the 
process. In the second scenario, the value of  is 
greater than the process order. 

In the first scenario, given by Equation (11), the 
fractional PD response is expected to have the same 
behavior of the P controller as the order of the 
system is not changed. The main advantage of the 
PD controller is that the controlled variable reaches 
the set-point faster when compared to P controller. 
The control loop behavior is given by Equation (16), 
while Table 3 lists the values of the parameters used 
for simulations. 

Figure 4 presents the controlled variable 
behavior, according to the used parameter values. 
Again, tuning parameters were not optimized. Cases 
I and VI and cases III and IV address the influence of 
KC. The influence of D is evaluated by cases II and 
III, cases IV and V, cases VI and VII. Finally, 
parameter  is studied by comparing cases I and II, 
cases V and VI, cases IV and VII. One can observe 
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that by increasing the values of KC and D offset is 
reduced. By increasing  controlled variable offset 
tends to increase. However, an initial higher speed 
of the control loop is observed due to the sharp 
increase of the values of the controlled variable. 
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Table 3. Fractional PD controller parameters values used for 
simulation – Scenario 1. 

Case Parameter 
I II III IV V VI VII 

KC 1.5 1.5 1.5 0.3 0.3 0.3 0.3 
D 2 2 5 5 2 2 5 
 1.01 0.2 0.2 0.2 0.2 1.01 1.01 
 

Kc = 5 tI =2 lambda = 0,1(I) Kc = 5 tI =1 lambda = 0,1 (II) Kc = 5 tI =1 lambda = 1,1 (III)

Kc = 1 tI =1 lambda = 1,1 (IV) set-point
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Figure 3. Controlled variable behavior – Fractional PI Controller. 

In the second scenario, given by Equation (12), 
the controlled variable is described by the following 
expression obtained after inverse Laplace transform. 
Table 4 reports the used values of the control loop 
tuning parameters. 

The influence of parameter KC is observed from 
cases III and IV. The influence of D is evaluated 
from cases II and III, and cases IV and VI. Finally, 
parameter  is addressed by cases I and II, and cases 
IV and V. Figure 5 presents the simulations of the 
PD control loop behavior. 

An increase in KC and a decrease in D lead to 
an offset reduction. Parameter  plays a key role 
in the controlled variable behavior. This happens 

because in scenario 2,  influences the order of 
the closed loop transfer function, consequently, 
higher values of  may introduce an oscillatory 
behavior. A proper parameter selection can 
considerably reduce offset not introducing 
oscillations. 
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Table 4. Fractional PD controller parameters values used for 
simulation – Scenario 2. 

Case Parameter 
I II III IV V VI 

KC 5 5 5 20 20 20 
D 10 10 5 5 5 1.2 
 1.03 1.21 1.21 1.21 2 1.21 

Performance evaluation 

The control loop performance was evaluated 
using ITAE and ISE criteria, given by the 
following expressions, whose values are presented 
in Table 5. 
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Table 5. Control loop performance criteria. 

Controller ITAE ISE 
P 5.41 0.42 
Fractional PD – Scenario 1 (I) 12.06 0.93 
Fractional PD – Scenario 2 (II) 4.53 0.32 
Fractional PI 3.01 0.61 
 

Considering the chosen tuning parameter 
values, fractional PI controller is the best if one 
considers ITAE, while fractional PD is the best if 
one considers ISE. It can be observed from the 
values of Table 5 and from Figure 6 that fractional 
control can be successfully used for servo control 
tasks. 
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Figure 4. Controlled variable behavior – Fractional PD 
Controller – Scenario 1. 

Kc = 5 tD =10 u = 1,03(I) Kc = 5 tD =10 u = 1,21 (II)
Kc = 5 tD =5 u = 1,21 (III) Kc = 20 tD =5 u = 1.21 (IV)
Kc = 20 tD =5 u = 2 (V) Kc = 20 tD =1.2 u = 1,21 (VI)
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Figure 5. Controlled variable behavior – Fractional PD 
Controller – Scenario 2. 
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Figure 6. Comparison of the best controllers. 

Conclusion 

This work addressed the study of fractional 
control loop of an industrial furnace. P, fractional 
PD and fractional PI controllers were considered in 
this study. A fractional model of an industrial 
furnace previously reported in the literature was 
used for loop simulation. The influence of the 

tuning parameters was analyzed showing that offset 
and oscillatory behavior can be eliminated by proper 
parameter selection. Although the parameters used 
were not optimized, they are able to allow the 
controlled variable to reach a new steady state close 
to the desired set-point. Finally, the control loop 
performance was evaluated by ITAE and ISE 
criteria, showing that each criterion has a different 
best controller. 
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