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ABSTRACT.This paper presents a numerical strategy to model box sections from bridge girders using 

horizontal layered shell finite elements. The basic idea is to avoid the construction of more computational 

expensive meshes based on the use of folded shell and brick finite elements. The numerical strategy imposes 

the deactivation of those layers related to empty spaces within the bridge cross-section. The performance 

of this technique is explored by means of two demanding practical applications related to bridge structures 

with constant and variable deck thicknesses. The first application deals with the static truck load test of the 

Caynarachi Bridge, located in Peru, and for which measured field data exists, while the second application 

is related to the construction stage analysis of a box bridge structure including time effects due to concrete 

creep, shrinkage and steel relaxation. The results demonstrate that the studied technique acceptably 

correlates with the measured field data,expressed in terms of vertical displacements,with correlation 

coefficients exceeding 0.94.Additionally, the outcomes align well with the results of other numerical 

techniques, allowing applicants to use this simplified modeling approach in daily design office. 
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Introduction 

The numerical modeling of bridges using the Finite Element Method (FEM) is a customary task in design 

offices and research institutes at universities, in which efficient modeling techniques are searched. The 

simulation of constructional loads is an important phase of the structural analysis as time effects might have 

a significant outcome during the construction process of the structure. Hence, a reliable numerical model 

should be able to trace the desired bridge profile as required in the project. On the one hand, the elaboration 

of numerical models using brick and folded shell finite elements are advantageous, since the actual 

deformational behavior can be well captured at both the local and global level. However, millions of degrees 

of freedoms may be needed for elaborating such models, being more helpful for a preliminary stage of analysis 

the use a simplified modeling technique. On the other hand, the use of spatial one-dimensional beams 

elements substantially reduces the number of unknowns, but the actual biaxial stress state, shear lag effect 

and cracking patterns in a Reinforced Concrete (RC) deck cannot be realistically well captured. Therefore, an 

efficient modeling technique searches for a compromise between numerical accuracy and a reasonable 

representation of the structural behavior. Then, this work applies a simplified modeling technique, based on 

the use of horizontal layered shell finite elements, for modeling complex hollow box sections or concrete 

decks with variable thicknesses. It seems that this approach has not receivedso much attention from practitioners 

according to the revision made in Miranda, Tamayo, and Morsch (2022), maybe due to the lack of application of 

this technique in the numerical modeling of challenger examples, so this paper aims to fulfill this gap. 

Papers related to the numerical modeling of bridge structures using brick elements, folded shell elements, 

planar and spatial beam elements are commonly found in the technical literature. To cite a few, Shushkewich 

(1986) used a two-node planar one-dimensional beam element to model the time-dependent analysis of segmental 

bridges. Ates (2011) established a 3D Finite Element (FE) model using the software SAP 2000 (2008) for the long-

term analysis of the Budan Bridge located in Turkey. Shell and beam-column elements were used to model the 

deck and pier, respectively. In Nimse, Nims, Hunt, and Helmicki(2015), a 3D FE model using spatial beam elements 

from LARSA (2021) software was employed to model a cable-stayed bridge located in Toledo, Ohio. 
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In Vookunnaya, Ravindranatha, and Thite(2017), a pre-stressed three-span continuous concrete box 

girder bridge with varying cross sections was studied using the MIDAS (2017) software. In Su, Nassif, and 

Xia(2018), a typical three-span continuous bridge was analyzed with a nonlinear 3D FE model built in 

ABAQUS (2012) software. The model was comprised of shell elements for modeling the concrete slab, and 

two-node beam elements to model the steel girder and box beams. In Butler et al. (2018), the sequential 

process of a composite bridge was analyzed using a three-dimensional model in DIANA (2015) software,using brick 

elements to model both the concrete deck and steel beam. In Wang, Zhu, Zhou, Han, and Ji(2020), composite 

continuous girder bridges were assessed during constructional loads using a FE model in ANSYS (2007). Their model 

used shell finite elements for modeling the concrete slab and steel beam. In Han, Zhang, Zhou, and Lan(2020), an 

analytical approach was presented to compute secondary internal forces generated due to concrete creep in steel-

concrete composite beams, using theANSYS (2007) softwareand brick elements with linear elastic behavior. 

In He et al. (2020),a steel-concrete composite box girder was studiedusing a FE model in MIDAS (2017) 

software. The model was comprised of spatial beam elements to describe variable cross sections, including 

long-term effects. In Wang, Wang, Sun, Mao, and Tang (2020), a direct and fast method to avoid cumulate 

calculations from past loading history applied to self-anchored suspension bridges was proposed. Any bridge 

structure is spatially modeled by means of 3D beam elements and catenary-cable elements.In Li, Huang and 

Guo (2021), the vulnerabilities of bridges under construction loads due to the action of strong earthquakes 

were evaluated. A case study bridge was analyzed using a finite element model built in MIDAS (2017) software 

together with the cast-in-place cantilever construction method. The cushion caps and girders were all 

modeled with beam elements. Motlagh and Rahai (2021) studied the long-term performance of a prestressed 

concrete bridge with corrugated steel webs built in Iran. The bridge was modeled in ABAQUS (2012) software 

by using ten-node tetrahedral solid elements for representing the concrete members and external tendons, 

while two-node truss and shell four-node elements were used for representing the internal cables and 

corrugated steel webs, respectively. 

In Zhu, Wang, Zhou, and Han (2022), the structural health monitoring of an I-shaped steel-concrete 

composite girder bridge during construction was assessed. The FE model was built in ANSYS (2007) software, 

using shell elements to simulate the steel beams, concrete slabs, and permanent steel formwork, while beam 

elements were employed to simulate the studs and the lateral bracing system. Wang, Thrall, Zoli, and Sun 

(2022) introduced a technique to measure the behavior of long-span bridges during intermediate stages. To 

validate this technique, a local 3D finite element model of an end floor beam built in ABAQUS (2012) was used 

to verify the measured strains between two intermediate stages.  In Huang, Ke, and Hu (2023), a 

comprehensive study of the Xiangsizhou Bridge built in China was performed. This is a double-tower double-

cable-steel-concrete composite girder cable-stayed bridge. The proposed finite element model was built in 

MIDAS (2017) commercial software.The steel-concrete composite beam was simulated using a double main 

beam, with the steel main beam and the bridge deck modeled separately as beam elements.  

From the aforementioned works, the regular modeling technique implies the use of brick elements, folded 

shell elements, beam elements or a combination of them for the stage constructional analysis of bridges. 

Conversely, this paper aims to evaluate the performance of a simplified modeling technique based on the use 

of horizontal layered shell finite elements to represent box girder bridges under flexural loads. Basically, the 

procedure involves the partial or total deactivation of those particular layers related to empty zones within 

the girder cross-section. By showing the robustness of this modeling strategy, stakeholders may count on with 

another alternative to elaborate their numerical models. For such scope, an institutional computer program 

developed by the authorsand which has been subject of various research works (see e.g.,Miranda et al., 2022 

andDias, Tamayo, Morsch, &Awruch, 2015) is modified accordingly. 

Material and methods 

The long-term concrete constitutive model and finite element available in the developed finite element 

tool, alongside the studied cases are briefly described in the following sections. 

Long-term constitutive model for reinforced concrete 

The integral of Volterra, as written in Eq.1, defines the stress-strain relationship of linear viscoelasticity 

using the Boltzmann’s superposition principle. This equation is a general uniaxial representation of an aging 

viscoelastic material.  
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𝜀(𝑡) = ∫ 𝐽(𝑡, 𝑡′)
𝑡

0
𝑑𝜎(𝑡′) + 𝜀0(𝑡) = 𝜀𝑐(𝑡) + 𝜀𝑠ℎ(𝑡) (1)  

where 𝐽(𝑡, 𝑡′) is the creep compliance function representing the total deformation at time 𝑡 for a unit stress 

applied at time 𝑡′,  𝑑𝜎(𝑡′) represents a small increment of stress applied at 𝑡′, 𝜀𝑠ℎ(𝑡) is the nonmechanical 

strain due to shrinkage and 𝜀𝑐(𝑡) is the mechanical strain involving the instantaneous elastic 𝜀𝑐𝑖(𝑡) and 

concrete creep 𝜀𝑐𝑐(𝑡) strains. Upon temporal integration of this expression at two consecutive time instants 

𝑡𝑖 and 𝑡𝑖−1 with a linear approximation for stresses, the creep incremental strain within a general time interval 

∆𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 can be expressed in a recursive manner as follows: 

∆𝜀𝑐𝑐(𝑡𝑖) = ∑ 𝜀𝜇
∗(𝑡𝑖−1)[1 − 𝑒−∆𝑡𝑖 𝜏𝜇⁄ ] +𝑁

𝜇=1 ∑
1

𝐸𝜇(𝑡𝑖−𝜁)
[1 −

𝜏𝜇

∆𝑡𝑖
(1−𝑒−∆𝑡𝑖 𝜏𝜇⁄ )] ∆𝜎(𝑡𝑖)

𝑁
𝜇=1  (2) 

with, 

𝜀𝜇
∗(𝑡𝑖−1) = 𝜀𝜇

∗(𝑡𝑖−2)𝑒
−∆𝑡𝑖−1 𝜏𝜇⁄ +

𝜏𝜇

∆𝑡𝑖−1
(1−𝑒−∆𝑡𝑖−1 𝜏𝜇⁄ )

∆𝜎(𝑡𝑖−1)

𝐸𝜇(𝑡𝑖−1−𝜁)
 (3) 

in which 𝐸𝜇(𝑡
′) and 𝜏𝜇 are the age-dependent modulus and retardation time of the μ-th term of a Dirichlet 

series with 𝑁 terms used to approximate the creep function 𝐶(𝑡, 𝑡′) = 𝐽(𝑡, 𝑡′) − 1 𝐸𝑐(𝑡
′)⁄ , respectively, while 

ζ = 1/2 refers to the middle of the current time interval. Thus, the incremental quasi-elastic stress-strain 

relationship, after some manipulation and suitable for numerical implementation, can be expressed in the 

following manner (Dias et al., 2015). 

∆𝜎(𝑡𝑖) = 𝜎(𝑡𝑖) − 𝜎(𝑡𝑖−1) = 𝐸∗(∆𝜀 − ∆𝜀0) (4) 

where parameters 𝐸∗ and ∆𝜀0 are uniaxial quantities referring to an equivalent material modulus and 

incremental initial strain due to creep and shrinkage strains, respectively, and whose three-dimensional 

generalization can be easily obtained (Dias et al.,2015). In this manner, the rheological problem can be treated 

as a quasi-elastic analysis with nonzero initial strains ∆𝜀0. In the particular case of the stress-strain 

relationship of pre-stressed tendons, a stress term ∆𝜎p,T, referring to the initial stress installed in the tendon 

at the beginning of the analysis, should be added to the right-hand side of Eq. (4). 

In the case of staged constructional analysis, the current algorithm follows the Ghost Approach 

(SAP2000,2008,Miranda et al.,2022), in which the FE mesh of the whole structure is modeled since the 

beginning of the analysis. Initially, all elements are attributed a very small stiffness value according to the 

numerical precision of the computer. Then, activated elements assume their actual stiffness values from the 

stage in which they firstly appear.   

Layered finite element 

The RC finite element is originally represented by a curved thick layered shell element with eight nodes at 

its middle-plane and five degrees of freedom at each node, three translations and two in-plane rotations as 

shown Figure 1(a). Several layers through the shell thickness referred to the middle-plane surface are then 

defined in order to capture material nonlinear behavior within the element as shown in Figure 1(b) (Haido, 

Abu Bakar, & Abdul-Razzak, 2010). Commonly, eight to twelve layers are employed to yield accurate results. 

The element is able to simulate the variability of the thickness within the element across its middle surface as the 

top and bottom coordinates may be defined at each node (Tamayo, Morsch, &Awruch, 2013). This special feature 

distinguishes this element from the common flat ones, allowing therefore the modeling of curved surfaces as may 

be encountered in RC decks. However, the modeling of explicitly folded plate structures is not allowed in the 

original formulation of the element. This is because the nodal coordinate system at each node is used for all 

elements that share this node, not allowing therefore the nodal decoupling among these elements.  

In this paper, a particularization of the current curved element to the situation of a flat one depicted in 

Figure 1(c) is accomplished by using a constant thickness through the element. Indeed, the nodal coordinate 

system defined at each node may coincide with the Cartesian global coordinate system in the case of 

horizontal shell elements, as shown for node 5. In this context, the only data that must be provided are nodal 

coordinates of the middle plane and element thickness. 

In relation to internal pre-stressed tendons or discrete reinforcing bars, they can be represented within 

the element by employing embedded one-dimensional curved elements with three nodes as displayed in 

Figure 1(a), whereas steel reinforcing meshes can be defined at their corresponding locations by equivalent 

membrane layers. 
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a) Curved shell element 

 
b) Layers through thickness 

 
c) Flat shell element 

Figure 1. Layered finite elements. 

Numerical strategy for modeling box sections 

The schematic representation of the regular modeling of box or hollow cross-sections using brick and shell 

finite elements are depicted in Figure 2(a) and Figure 2(b), respectively, where it can be observed that the 

walls are explicitly modeled with vertical elements in these meshes. Nevertheless, the box cross-section can 

be also modeled by deactivating the corresponding concrete layers through the cross-section depth, as 

displayed in Figure 2(c), using layered shell elements. 

The deactivation process is accomplished within the FE code by the creation of an input parameter 𝛽, 

which ranges from zero to one, and which directly multiplies the volume associated to any specific layer. 

Thus, as the layer volume affects the computation of the element stiffness matrix and internal force vector, 

the 𝛽 parameter has a direct impact on the evaluation of these quantities. In this manner, a significant 

modification of the programming style within an existing FE code is avoided. This modeling strategy can be 

also used with some commercial software, as they usually provide a “modification stiffness factor” option in 

the element definition. 

A value of 𝛽 = 0 implies that the volume associated to that specific layer (inactive layer) is null, 

eliminating therefore any contribution of the layer to the stiffness and strength of the element it belongs 

to.Conversely, a value of 𝛽 = 1 will indicate a full contribution of the current layer (active layer) as 

occurred in the usual case, whilst an intermediate value will implicate a partial contribution. In this 
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manner, if adjacent layers across the depth of the section are defined with different 𝛽 values, the desired 

profile of the cross-section can be traced. In addition to this, the cross-sectional division must 

accompany the adopted discretization of the FE mesh in plant. For instance, the thickness  of the wall 

elements depicted in Figure 2(c) will dictate the discretization of the FE mesh in plant as shown in 

Figure 2(d). This is because these vertical elements are associated to fully activate layers, unlike the 

central part and overhangs of the cross-section, where inactive layers are necessary.  

 

 

a) Brick elements 
 

b) Folded shell elements 

 

c) Layered shell elements for constant deck thickness 

 

 

d) Plant view of top layer 

 

e) Layered shell elements for variable deck thickness 
 

f) Plant view of top layer 

Figure 2. Schematic representation of modeling techniques for representing box sections with finite elements. 

A more complicated situation arises when the concrete deck has a variable thickness across its width, as 

occurred in some real girder cross-sections. In such situation, the original degenerated shell element with 

variable thickness may be invoked, but its availability may be restricted in some commercial software. Another 

alternative is to use a series of flat layered shell elements of different constant thicknesses across the section 

width alongside deactivated layers, so that the thickness variation of the deck can be traced as shown in 

Figure 2(e). In fact, this latter approach will be preferred in this paper for studying the practical examples 

from the next section. 

Clamped beam loaded at its free end 

The proposed numerical strategy is applied here to the numerical modeling of the clamped beam 

illustrated in Figure 3(a) subjected to a load 𝑃 at its free end, regarding a linear elastic behavior of the material 

with an elasticity modulus of 𝐸=30 GPa and Poisson’s ratio of zero. A null Poisson’s ratio means that there is 

no coupling between the stress and strain in mutually orthogonal directions.Two cross-sections are deemed 

in the analyses: the first case (Case 1) depicted in Figure 3(b) considers a simple rectangular box section with 

deck and wall constant thicknesses, while the second case (Case 2) deals with a complex trapezoidal cross-

section with variable thickness for the overhangs, where, due to symmetry considerations, only half of the 

cross-section is sketched in Figures 3(c)-(e). For the second case, the use of the original curved shell element 

from Figure 1(a) is employed to model the variable thickness of the cross-section. Here, three subcases named 

case 2a, case 2b and case 2c related to the cross sections displayed in Figure 3(c), Figure 3(d) and Figure 3(e), 

respectively, are considered. The basic idea for cases 2a and 2b is to show the numerical modeling of the same 
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filled trapezoidal cross-section in two different manners, while case 2c depicted in Figure 3(e) is similar to 

previous ones, but with a rectangular hole at its center. The layout of the FE mesh in plant at all cases 

accompanies the adopted discretization of the cross-section width with 12 divisions along this direction 

(direction Y) and 15 divisions along the longitudinal direction of the beam (direction X), employing therefore 

a total of 180 eight-node layered shell elements. The empty spaces illustrated in Figure 3(d) and Figure 3(e) are 

modeled assigning zero values for the β coefficient in the corresponding layers. 

 

 

 

a) Clamped beam 

 
b) Rectangular cross-section (Case 1) 

 

c) Trapezoidal cross section (case 2a) 

 

d) Trapezoidal cross section (case 2b) 

 

e) Trapezoidal cross section with hole (case 2c) 

Figure 3. Bridge cross-sections (Units in meters). 

Static truck load test of the Caynarachi bridge 

The Caynarachi Bridge is a semi-integral three-span continuous bridge constructed in Peru in 2004, 

and highlighted in the work of Manso, Martinez, Diaz, Fresno, and Rabanal (2015) for its construction 

method. It has two outer spans of 40 m and a central span of 50 m, its cross section is comprised of a RC 

deck with variable thickness supported by two steel profiles as shown in Figures 4(a)-(b). The static truck 
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load test of the bridge was carried out after three months of its construction and consisted in positioning 

three trucks in series at each span one at a time. When the trucks are positioned at a given span, the 

corresponding field measurements of vertical displacements along the longitudinal axes 1 and 2 from 

Figure 4(b) are noted.  

 

 

a) View of Caynarachi bridge 

 

b) Cross section 

 

c) Beam profile 

 

d) Typical loaded span 

Figure 4. CaynarachiBridge: truck load test (Units in meters). 

The typical position of the trucks for the first or second span is defined in Figure 4(d), whereas the 

position of the trucks for span 3 is symmetric in relation to the first span. A linear elastic analysis is 

performed for the complete bridge superstructure with the following properties: elasticity modulus of 

Ec= 38GPa and Poisson’s ratio of 0.2 for concrete, and elasticity modulus of Es= 200GPa and Poisson’s 

ratio of 0.3 for the steel profile. Special beam-column elements for representing the channel shear 

connectors are located at discrete locations to model partial interaction (Dias et al., 2015). At the external 

and interior support zones, connectors are spaced at 30 cm, while they are spaced at 45 cm between 

supports. The three-dimensional FE mesh used to capture the as built behavior of the bridge is depicted 

in Figure 5, while the actual and adopted cross-sections are depicted in Figure 6(a) and Figure 6(b), 

respectively. It is noticed that the actual thickness variation of the concrete deck has been approximated 

by various flat shell elements in series with different number of active layers across the deck width. 

Special attention has been given to ensuring that the second moments of area of the actual and 

equivalent concrete deck are practically the same. The bottom slab and diaphragm beams are also 

considered in the FE model, as they are defined in the zones near the interior supports and along the 

steel beam, respectively. Furthermore, the reinforcing bars in the slabs have been considered as 

additional steel layers of equivalent thickness according to Figure 1(c). 
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a) 3d view 

 

 

b) Bridge cross-section 

 

 

c) Detail of diaphram beams 

Figure 5. Details of finite element mesh. 

 

a) Actual cross section 

 

b) Equivalent cross section 

Figure 6. Caynarachi bridge cross section (Units in meters). 

Construction stage analysis of a pre-stressed box bridge 

The construction stage analysis of a pre-stressed concrete box girder bridge made up of precast segments 

is performed in this section. The bridge geometry and tendon profiles are similar to that presented in the 

works of Tadros, Ghali, and Dilger (1979) and Shushkewich (1986). Unlike these works, a constant cross-

section depth and straight tendon profiles are used here as shown in Figure 7. The bridge has three-spans of 

53.5m, 65 m and 53.5 m with a total length of 172 m. Its construction schedule is graphically depicted in 

Figure 8, where each number in the circle refers to the constructive phase in which a member is introduced. 

Table 1 lists the duration in days of each stage. 
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a) Longitudinal view 

  

b) Cross-section 

Figure 7. Bridge geometry (Units in meters). 

 
Figure 8. Construction sequence. 

The precast segments were cured for 3 days and stored until the beginning of the execution. The applied 

loads are the self-weight of the structure and the pre-stressed force applied to the low-relaxation steel 

tendons. The target pre-stressing stress at the end of the installing operation is 1260MPa. The ACI-209 model 

code (1992) for concrete creep and shrinkage was used for the long-term analysis with cement type III, 

moisture content of 40%, ultimate creep coefficient of 2.0 and ultimate shrinkage strain value of 300x10-6. 

Material properties are listed in Table 2. 

Table 1. Details of the construction phases. 

Duration 

(days)* 
Stage Activities 

30 1 
Stages 1 to 4, cantilever erection. 

Assembly of the pre-cast segments and activation of pre-stressing for top tendons. Interior support is fixed 

against rotation and translation. 

33 2 

36 3 

39 4 

43 5 
Completion of span 1. Assembly of pre-cast segments near the left external support, activation of pre-

stressing for bottom tendons, and change of support to hinge support in the interior support. 

47 6 

Similar to stages 1 to 4, cantilever erection. Assembly of the pre-cast segments at the other interior support 

and activation of pre-stressing for top tendons. Interior support is fixed against rotation and translation. 

50 7 

53 8 

56 9 

60 10 
Completion of span 3. Assembly of pre-cast segments near the right external support, activation of pre-

stressing for bottom tendons, and change of support to hinge support in the interior support. 

63 11 
Introduction of continuity in the central span. Assembly of the central segment and activation of the pre-

stressing for bottom tendons. 

*Considering the age of the concrete. 
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Table 2. Materials properties. 

Material Properties 

Concrete 

Elastic modulus(28 days) (GPa) 35 

Poisson’s ratio 0.0 

Compression strength(28 days) (MPa) 54 

Reinforcement 

Elastic modulus (GPa) 200 

Yield stress (MPa) 585 

Total area (cm2) 222 

Tendon 

Elastic modulus (GPa) 190 

Yield stress (MPa) 1500 

Area (sup¹.) (cm2) 126 

Eccentricity* (sup.¹) (cm) 120 

Area (inf.²) (cm2) 81.5 

Eccentricity* (inf.²) (cm) 125 

*Considering the centroid    ¹upper tendon ²bottom tendon. 

The FE mesh alongside the adopted cross-section to simulate the box section is depicted in Figure 9. The 

hollow box section is formed with the use of zero β coefficients for the layers in the overhangs and for those 

intermediate layers in the central region, with exception of the upper layers, which are associated to the 

concrete deck. 

 

 

 
 

a) Isometric view of the middle plane b) Cross-section 

Figure 9. Finite element mesh. 

Results and discussion 

The outcomes and corresponding discussions of the examples of the preceding section are presented here. 

Clamped beam loaded at its free end 

The numerical deflection 𝛿𝑁𝑈𝑀 and rotation 𝜃𝑁𝑈𝑀 at the free end for each case are compared with the 

analytical solutions 𝛿𝐴𝑁𝐴 and 𝜃𝐴𝑁𝐴 in Table 3, with 𝛿𝐴𝑁𝐴 = 𝑃𝐿3/3𝐸𝐼 and 𝜃𝐴𝑁𝐴 = 𝑃𝐿2/2𝐸𝐼, in which 𝐿 is the beam 

length and 𝐼 is the second moment of area of the section. 

Table 3. Deflection and rotation at free end. 

Case L/H I (m4) δNUM/δANA θNUM/θANA 

1 5.0 1.15E-03 1.046 1.009 

2a 40.71 2.2047 1.009 1.009 

2b 40.71 2.2047 1.009 1.009 

2c 40.71 1.9900 1.008 1.007 

 

From Table 3,it is noticed that the numerical quantities overestimate the analytical ones at all cases. Indeed, 

the associated error of the numerical deflection is +4.6% for case 1, +0.9% for cases 2a and 2b and +0.8% for case 

2c, while the error in the computation of the numerical rotation is +0.9% for cases 1, 2a, 2b and 0.7% for case 2c. 

It is important to mention that,for the sake of computational simplicity,the analytical formulas used in this 

study do not account for the small contribution of the shearing deformation. In general, the agreement is quite 

acceptable from a practical viewpoint. In case 2a (the reference case), none advantage is taken of the proposed 

technique, and the thickness variation of the cross-section is considered by defining the top and bottom nodal 

coordinates of the curved shell elements. For case 2b, a fictitious cross-section with a greater depth, e.g., twice the 
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original depth, is then used. Here, fictitious layers with null 𝛽 coefficients are assigned to the bottom layers of the 

section to establish a middle plane that passes at the bottom of the actual cross-section. The idea is to omit those 

layers below this plane, so that the actual cross-section from case 2a can be recovered. Special care has been taken 

to ensure that the same number of active layers is employed for cases 2a and 2b, in order to make a proper 

comparison between them. As the middle-plane in each case is different, the nodal restraints at the clamped ends 

are also applied to different planes. Although this situation has not brought significant differences in the results 

listed in Table 3, the reader should be aware of this situation. 

Static truck load test of the Caynarachi bridge 

Figure 10 illustrates a comparison between the vertical displacements obtained from the FE model along the 

longitudinal direction of the bridge, corresponding to axes 1 and 2 from Figure 4(b), and the measured field data. 

The comparison is conducted for various cases in which the trucks are positioned at different spans. It is noted that 

the numerical prediction is quite acceptableat various longitudinal stations, taken into consideration that the 

adopted elastic modulus of concrete directly corresponds to that predicted by the ACI-209 model code (1992) for 

the time at which the truck load test was accomplished. The computed correlation coefficients between the 

measured and computed vertical displacements are greater than 0.94. The encountered differences may be 

attributed to the support conditions adopted in the present FE model as perfect hinges. The use of flexible support 

conditions based on springs may improve the numerical prediction. 

  

  

  
Figure 10. Vertical displacement along beam axis. 
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Construction stage analysis of a pre-stressed box bridge 

The deflection profile along the longitudinal axis of the beam, obtained from the current FE model, is 

depicted in Figure 11 and compared with the results obtained from the particular computer code made available 

by Shushkewich (1986) to deal with the construction stage analysis of bridges (named “Beam” in the graphs) 

using two-node beam elements. As it may be observed, the displacement profiles are very similar between both 

approaches, indicating therefore that the current technique is able to capture properly the bridge response at the 

global level. Also, the histories of longitudinal stresses at the top and bottom fiber of the cross-sections, located 

close to the left interior support and at the middle section of the interior span, are compared in Figure 12 for the 

complete period of analysis. The stress profiles are quite similar for both approaches, highlighting therefore the 

adequacy of the present model, also at the local level. Although it is not expected the same identical response, the 

observed differences are related to the computation of the creep coefficient, temporal discretization, intrinsic 

nature of each modeling technique and the treatment of material ageing.  

  

  

  

 
Figure 11. Vertical displacement at different stages. 
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Figure 12. Longitudinal stress variation. 

Furthermore, the evolution of the longitudinal stress for the top concrete layer of the deck is depicted in 

Figure 13 at various stages. It is interesting to note that the longitudinal stress field is not constant across the 

deck width, as occur in Shushkewich’s model based upon beam elements. Thus, the modeling technique 

presented herein demonstrates its potential for accurately representing the true behavior of the concrete deck 

in a more consistent manner. 
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b)Stage 3 

 

c)Stage 5 
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g)t = 2000 days 

 

Figure 13. Longitudinal stress (x10 MPa) field evolution with stages for the top layer of the deck. 

Conclusion 

This paper deals with the modeling strategy of box cross-sections from bridge girders using horizontal 

layered shell elements, where decks with variable thickness and hollow cross-section can be modeled by 

deactivating the required specific layers. From this, the following conclusions can be drawn: 
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The present modeling technique proved to be accurate in computing the deflection at the free end of a 

clamped beam, when compared with the corresponding analytical solutions. Also, the vertical displacements 

of the static load truck test from a real bridge were well reproduced, taking into account the concrete deck 

variation. The nodal restrictions when applied to the layered shell element are currently imposed on its 

middle plane, and then care should be taken on this situation. The response under torsional loads needs 

further investigation.  

In relation to the application of the construction stage analysis of a bridge structure with a box section, 

the model was able to yield appropriate results for the various scenarios of loading and construction phases, 

even involving complex sequences of pre-stressing. The obtained displacement and stress histories are similar 

to those obtained using one-dimensional beam elements. An important fact is that the present modeling 

technique may allow capturing a realistic biaxial stress field for the concrete deck with loading. This is 

advantageous as such realistic stresses may indicate potential zones of damage, like cracking.  
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