
Acta Scientiarum

http://periodicos.uem.br/ojs
ISSN on-line: 1807-8664
Doi: 10.4025/actascitechnol.v46i1.65769

COMPUTER SCIENCE

Acta Scientiarum. Technology, v. 46, e65769, 2024

Extending the Capacity of IoT Devices with Serverless Services

for a Face Detection Application: A practical evaluation

João Pedro Bach Dotta, Guilherme Galante* and Marcio Seiji Oyamada

Departamento de Ciência da Computação, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, 85819-110, Cascavel, Paraná, Brazil. *Author

for correspondence. E-mail: guilherme.galante@unioeste.br

ABSTRACT. IoT systems have limitations and challenges in many ways, such as performance, energy

consumption, memory footprint and data storage. One possible solution to minimize these limitations

is to integrate IoT devices with the serverless cloud computing model. In this context, this work aims

to analyze the integration of these two technologies to determine if it can help overcome the

limitations of IoT devices, most notably energy consumption and performance. A face detection

application was adapted to run on an IoT device and the AWS Serverless Lambda service. Through

experimentation, some metrics like latency, execution time and energy consumption were collected to

evaluate the impact of serverless technology on the scope of IoT systems development. Results show

that serverless technology is superior to the IoT device used in terms of performance, but it is directly

related to the quality of the network connection to which the device is connected. Serverless

technology can also be very useful when power supply to an IoT device is an issue, as these devices are

usually battery-connected and have limited power source.

Keywords: IoT; serverless; energy consumption; network performance.

Received on November 16, 2022.

Accepted on August 22, 2023.

Introduction

The Internet of Things (IoT) and its associated applications have gained massive popularity recently. An

IoT network consists of smart and connected devices called "things". The composition of an IoT system can be

very heterogeneous, considering the variety of devices that can be used in it. It usually consists of things that

monitor an environment using sensors and can interact with the environment using actuators.

The vast majority of these things that integrate IoT systems operate under severely constrained resources,

such as limited battery life, computing power, and small memory capacity. Because of these constraints, in

most cases, the resources provided by IoT devices are not sufficient to directly host complex applications (Pu-

liafito, Mingozzi, Longo, Puliafito, & Rana, 2019).

In light of these limitations, the development of IoT systems with all their requirements such as security,

privacy, availability, scalability, performance, etc. can be very challenging. One possibility to mitigate these

limitations is to extend the capacity of devices by using fog and cloud computing, more specifically using the

service model called serverless. The integration of serverless and IoT enables resource-constrained IoT de-

vices to move data or complex computations to the cloud and leverage its computing and storage capacity.

The use of serverless model is interesting as it abstracts implementation complexities, thereby simplifying

the seamless integration between IoT devices and cloud services.

This work addresses the above issues and aims to develop a face detection application that uses serverless

computing in the context of IoT, and analyze how these two technologies can be advantageously integrated

and in scenarios when such integration is worthwhile. The experiments conducted in this work show that the

integration of these two technologies is possible and can overcome the limitations of IoT devices. Results

show that serverless technology is superior to the IoT device in terms of performance, but it is directly related

to the quality of the network connection to which the device is connected. Serverless technology can also be

very useful when power supply to an IoT device is an issue, as these devices are usually battery-connected and

use this limited power source.

https://orcid.org/0009-0008-4430-9313

Page 2 of 11 Dotta et al.

Acta Scientiarum. Technology, v. 46, e65769, 2024

Related work

This section describes the related work, focusing on initiatives that explore the combination of IoT and

serverless technologies.

Kjorveziroski, Filiposka, and Trajkovik (2021) present a systematic review that examines and describes the

current state of serverless research as it relates to IoT, and outlines the open issues. They analyze papers

published between January 2015 and September 2021. As conclusion, the authors argue that IoT has the

potential to become an important use case for serverless computing, however, there are a number of issues

that remain unsolved, including scheduling, migration, performance improvement, cold start elimination, and

security and isolation.

Cassel et al. (2022) present a comprehensive systematic literature review that includes 60 papers on

serverless computing for IoT. The authors provide insights into how functions are offloaded to different

devices and how they interact with each other. They also present a taxonomy that summarizes all the features,

as well as a discussion of the overall architecture of serverless applications for IoT.

Benedetti, Femminella, Reali, and Steenhaut (2021) explore the suitability of serverless computing for

deploying IoT-based services. They analyze some serverless computing technologies (e. g., Kubeless,

OpenFaaS and OpenWhisk) that can be used for IoT services, and then present the implementation of a

serverless platform which includes typical IoT service elements. Performance is evaluated in terms of resource

consumption and latency considering cold and warm start scenarios.

Benomar, Longo, Merlino, and Puliafito (2021) present the Deviceless approach to explore the serverless

concept in an IoT scenario. In this approach, an IoT infrastructure consisting of devices deployed at the

network edge can be seamlessly integrated as an application execution infrastructure to enable interactions

with hosted sensors/actuators. The authors present a preliminary prototype based on the Stack4Things

framework and OpenStack that are validated using two experiments. A first use case is related to the

instantiation of data pipelines using a distributed IoT infrastructure. In the second use case, an IoT deviceless

system is used to mount a virtual file system over serverless.

More recently, Esposito, Belli, Palma, and Pierleoni (2023) propose and evaluate a framework that

represents a synergistic union of different cloud-computing and IoT-related technologies that can enable

accessible and automated home environments. The framework makes use of a messages-exchange protocol

based on MQTT and cloud-deployed serverless functions. A smart object, namely a smart kitchen fan extractor

system, was used to illustrate the viability of the solution.

A paper with a similar objective is presented by Großmann, Ioannidis, and Le (2019). The authors

investigate the merits of integrating serverless computing into IoT device deployments in terms of easier

manageability, multi-architecture support and performance. Experiments were conducted using the

OpenFaaS platform and a data flow application.

The goal of our work is to analyze how both technologies can be integrated to minimize the limitations of

IoT devices and in which cases this integration is worthwhile, leveraging metrics like latency, execution time

and energy consumption. Other important contribution is the execution of experiments using a serverless

service in the public cloud (AWS Lambda) instead of using on-premise platforms.

Background

In this section, we introduce the key concepts related to development of the research.

IoT

Sensors, controllers, actuators, and any other device that can connect to the Internet are called things.

Recent advances in wireless communication, ultra-low power processors, sensors, actuators, and

cloud/edge/fog computing have enabled the development of several IoT solutions in areas such as smart ag-

riculture, smart cities, smart factory, logistics and transportation, health, and others (Firouzi, Farahani, Wein-

berger, DePace, & Aliee, 2020).

Whitmore, Agarwal, and Xu (2015) define the IoT as a paradigm in which things can be equipped with

identifying, sensing, networking, and processing capabilities that enable them to communicate with each

other and with other devices and services over the Internet to achieve a specific goal. In this way, things can

be used to monitor their environment, interact with people and other things, and perform all sorts of tasks

with little or no human intervention (Agudelo-Sanabria & Jindal, 2021).

Enhancing IoT Face Detection using Serverless Page 3 of 11

Acta Scientiarum. Technology, v. 46, e65769, 2024

An IoT solution is composed of different layers. The sensing layer is the lowest level and includes the

sensors and actuators. Due to restrictive requirements, this layer usually consists of ultra-low power

processing elements with low processing capacity. Above the sensing layer, communication is performed by

the gateways, which collect and send data to the Internet. The collected data is sent to the fog and cloud layers.

Data processing can be done by all these different layers and depends on factors such as latency and available

resources. The closer we are to the sensing layer, the less computational resources and data from the environment

are available, but the latency can be lower. In another extreme case, in the cloud, we have a lot of data and also

computing resources available, but on the other hand we have to consider the communication latency.

Serverless

According to Eismann et al. (2021) serverless computing refers to platforms that hide server usage from users

and run code on demand. The cloud provider takes care of scaling and configuration the resources, and users only

have to pay for the use of their applications. Serverless computing is spreading rapidly among many cloud provid-

ers and is powering an increasing number of mobile and IoT applications (McGrath & Brenner, 2017).

To implement this computational model, Serverless includes Function as a Service (FaaS) and Backend as

a Service (BaaS) technologies (Jonas et al., 2019). FaaS allows developers to deploy small source code snippets

that run in an isolated environment when triggered. These functions are not constantly active and have a

short execution time (few minutes). Instead, FaaS platforms listen for events (such as incoming HTTP requests

or data added to a storage service) that instantiate the functions. Thus, the functions execute on demand and au-

tomatically scale the underlying virtualized resources to serve elastic workloads with varying concurrency

(Scheuner & Leitner, 2020). Functions can be integrated with other services, such as databases, authentication and

authorization services, and messaging services. These services are referred to as Backend-as-a-Service (BaaS).

The major advantages of this model are higher scalability and independence of applications as well as

lower costs. Since costs are based only on the functionality used, there are no expenses for inactive resources.

A major disadvantage is lower control in FaaS, since it is managed by an external service provider.

AWS Lambda

There are many cloud services and infrastructure providers that offer serverless computing services, such

as Amazon, IBM, Microsoft, and Google, and also several open-source alternatives such as OpenLambda and

OpenWhisk. In this work, we use Amazon Lambda1 as test platform.

AWS Lambda is a service that allows code to be executed as a function in a serverless environment. AWS

takes care of the underlying infrastructure that the function requires to be able to run the code. The customer

configures the function, uploads the code to be executed, and determines the triggers that invoke the function.

The function executes when it is called, and after execution is complete, it shuts down. AWS Lambda natively

supports Java, Go, PowerShell, Node.js, C#, Python, and Ruby code, and provides a Runtime API that allows

you to use any additional programming languages.

Lambda functions can be integrated with various services to be triggered by events created by the services.

The triggering event can be an external request, a scheduled internal event, a direct request from an AWS

service, or a life cycle event on some of the AWS services. For example, in this paper, we use Amazon Simple

Storage Service (Amazon S3) to trigger AWS Lambda data processing.

Lambda functions scale up and down in a very flexible manner. When a request arrives and all the currently

existing environment instances are still processing the previous requests, Lambda creates a new instance for

the new request. After processing a request, the execution environment waits for incoming requests for a while

and if none arrives, it shuts down.

Material and methods

As mentioned earlier, the integration of IoT and serverless devices is promising, but it can also bring

challenges. In this context, the objective of this study is to analyze how these technologies can be integrated

into a face detection application. With this in mind, we have developed a use case to test this integration and

analyze the results in terms of performance, energy and cost.

1 https://aws.amazon.com/lambda/

Page 4 of 11 Dotta et al.

Acta Scientiarum. Technology, v. 46, e65769, 2024

Face detection application

The face detection application was developed in Python programming language and uses the OpenCV

library for the processing of images with the Haar-Cascade method2. This implementation already has a

training base for face recognition, so this step is unnecessary and was not executed. The application receives

an image and uses the already trained database to detect how many faces and how many eyes are present in

that image. Processing can be done on the IoT device using its own hardware or using the serverless service

AWS Lambda. The source code of both versions is available in GitHub3.

Serverless technology uses containers for function execution, but controlling installed packages, as in a

local environment, it is not possible. This is challenging when there is a need of the OpenCV library for the

application in this study. To solve this, Lambda functions employ the Layers concept, enabling the addition of

extra code via ZIP files. This lets us bundle the OpenCV library to match the AWS container structure,

effectively solving the issue.

Concerning the application execution, when running on local hardware, the application loads a user-

specified number of images (Figure 1 (a), step 1), processes them (Figure 1 (a), step 2), stores the results in

output files, and then sends the results to a database in AWS S3 service (Figure 1 (a), step 3). The device used

to run the application and simulate an IoT device was a Raspberry PI 4 Model B with a quad-core Cortex-A72

(ARM v8) 64-bit SoC @ 1.5 GHz, 2 GB LPDDR4-3200 SDRAM, and Raspberry Pi OS 64bit operating system.

Although the application is sequential, the OpenCV library uses all 4 threads of Raspberry PI, so all of the

computing power of the device can be used.

Figure 1. Local (a) and serverless (b) execution steps.

The serverless implementation shows a different behavior, as illustrated in Figure 1(b). Here, the

Raspberry is used to load (Figure 1(b), step 1) and send the images to the S3 database over the network (Figure

1(b), step 2). Thus, instead of loading images locally for processing, the Lambda function uses images stored

in an AWS S3 database. When an image is sent to a specific folder in the database, the function is triggered in

AWS Lambda service (Figure 1(b), step 3). After processing (Figure 1(b), step 4), the function stores the results

in AWS S3 (Figure 1(b), step 5).

Experimental evaluation

For testing with the face detection application, we used 1024×1024 resolution images from the faces

database available in the Flickr-Faces-HQ Dataset (FFHQ)4. The application was run with 1, 100, 500 and 999

images, both locally on the device and on the serverless server. The application was run 10 times in each

experiment. The objective of the experiments is to assess situations in which the utilization of serverless

2 https://docs.opencv.org/4.x/db/d28/tutorial_cascade_classifier.html
3 https://github.com/pistydotta/face_recognition_python
4 https://github.com/Nvlabs/ffhq-dataset

Enhancing IoT Face Detection using Serverless Page 5 of 11

Acta Scientiarum. Technology, v. 46, e65769, 2024

technology proves advantageous within the context of IoT. We evaluate three aspects: performance, energy

consumption and financial cost.

The performance of the different solutions is evaluated based on the image processing time and the total

execution, which comprises the image processing itself, and the time spent with communication and writing

of the results. In device, images are processed locally and one result file is generated to each image. Thus, the

processing time is calculated by obtaining a timestamp before and after image processing, using the Python

time() method5, and calculating the difference between timestamps. Next, results can be uploaded to S3

database in two manners: one file at each time (after the processing) or in batch. We evaluated the results

transference time using wireless and wired networks. The computation of transfer time is analogous to that

of processing time.

In serverless execution, the processing time is not directly available because it depends on the trigger time

function. Hence, an individual output file is generated for each image, containing timestamps indicating the

beginning and the end of the processing phase. This resultant file is then analyzed to extract the earliest and

latest timestamps, enabling the computation of the processing duration. The transfer of results was not

considered, as the communication occurs internally in AWS servers and is not measurable. We evaluated the

cloud execution using wireless and wired networks.

To measure the energy consumed by the Raspberry PI 4, we used an INA219 module connected to an

Arduino Nano, as illustrated in Figure 2. The INA219 module is a current and voltage sensor used to monitor

current, voltage and power. The Arduino Nano was connected to a computer via a USB cable and the data was

collected by the Arduino IDE software using the Serial Monitor. Note that the Raspberry Pi 4 used in this study

was in its default configuration, without any power-saving optimizations.

Figure 2. Energy consumption measurement module.

The function executed in Arduino collects the current consumed by the device in mA using the continuous

mode of INA219 module library. Assuming a constant voltage of 5V to power the Raspberry PI 4 and dividing

the current by 1,000 to get the measurement in Amperes, we multiply the current by the voltage to get the

average consumption of the device in Watts. The Raspberry PI 4 used in this study was in its default configu-

ration with no power consumption optimizations. Energy consumption is acquired through data output in the

Arduino console, taking into account the measurements captured during image processing and data transfer

periods, indicated by the timestamps produced by the application.

At last, we evaluate the financial cost of using serverless services. The financial cost in AWS Lambda is

calculated based on the amount of computing resources and execution time consumed by the functions. To

accurately calculate the costs for using AWS Lambda, it is recommended to use the AWS Pricing Calculator6 or

refer to the official documentation for detailed information about current pricing.

Results and discussion

In this section, we present the results of experimental evaluation. The results are presented in terms of

execution and communication times, energy consumption and financial costs.

5 https://docs.python.org/3/library/time.html
6 https://calculator.aws/#/addService/Lambda

Page 6 of 11 Dotta et al.

Acta Scientiarum. Technology, v. 46, e65769, 2024

Execution and communication times

This section presents the results of executing the application directly on device and using serverless.

Figures 3, 4, 5 and 6 present the total execution time and processing time for experiments with 1, 100,

500, and 999 images. The processing time for one image is shown in Figure 3. We can observe that local

processing for the execution of a unique image performed better on the local device, since it is not

possible to use the scalability of the serverless platform. Likewise, the startup time of a platform

container is relevant in this case.

Figure 3. Execution time: 1 image.

The results for processing 100 images are shown in Figure 4. We can observe that the performance of local

processing is comparable to the performance of serverless processing when using the wireless network. It can

also be observed that sending results in single files significantly affects the overall execution time of local

processing compared to sending results in batch. Serverless processing over a wired network present a smaller

execution time. This is due to stability and transmission speed, as images are sent to AWS S3 faster.

Figure 4. Execution time: 100 images.

In Figures 5 and 6 we present the results for 500 and 999 images, respectively. We can observe similar

behavior in these 2 experiments, with serverless processing in the wired network giving the best results in

both cases. It is more than 3 times faster than serverless processing on the wireless network and almost 6

times faster than local processing with batch communication.

In both experiments, cloud processing outperforms local processing due to the scalability of the serverless

platform. In this study, we found that the biggest limitation of serverless processing is the speed at which the

images are sent to the AWS S3. The faster the images are sent to the cloud; the more container instances are

used and the more parallelism is achieved.

Enhancing IoT Face Detection using Serverless Page 7 of 11

Acta Scientiarum. Technology, v. 46, e65769, 2024

Figure 5. Execution time: 500 images.

Figure 6. Execution time: 999 images.

In the serverless platform, the time to send the images has a significant impact on the execution time of

the application because, as mentioned earlier, the major limitation of this approach in this application is the

time it takes for the device to send the images to the AWS S3 database. Figure 7 shows the time spent to send

images to AWS S3 over wireless and a wired network. Here, we can observe that the time for sending the images

summed to the time of serverless processing is smaller than the total execution time (Figures 3-6). This is

because not all images need to be sent to start processing. The AWS Lambda trigger works in such a way that

every time an image is received in AWS S3, the function is triggered for processing it. Thus, processing is

started with the first received image, which significantly reduces the total execution time, since there is an

overlap of communication and processing.

Figure 7. Time spent to send images to AWS S3.

Page 8 of 11 Dotta et al.

Acta Scientiarum. Technology, v. 46, e65769, 2024

We also evaluate the cost of transmitting the results in cases where the images are processed directly on

the device. The results are presented in Figure 8. Batch transmission of results is similar regardless of the

number of images processed (about 2.8 seconds), so the size of the individual file results does not significantly

affect the transmission time. For results in separate files, the time increases according to the number of images

processed, i. e., even if the files are small, the quantity has a significant effect on the transmission time.

Therefore, when processing in local device, the transmission of data must be in batch.

Figure 8. Time spent to send results to AWS S3.

From the experiments, it was also possible to determine the aggregate total execution time that the

serverless platform achieved to perform the processing, as shown in Figure 9. The aggregate total execution

time of the platform is a sum of the image processing times, which represents the time required to process

the images using a single container, i. e., sequentially. This metric highlights the importance of scalability of

FaaS platforms. While the processing aggregated time of 500 images is 546 seconds, the elapsed processing

time for 500 images on the platform was less than 250 seconds for the wireless network, and less than 100

seconds for the wired network. In the latter case, it can be stated that at least 5 containers were active at the

same time while executing the functions.

Figure 9. Serverless aggregated execution time.

Energy

The consumption data was collected during image processing and also when sending images to the S3

database over the wired and wireless networks. On average, the device costs 5,234 W while processing images

costs 3,835 W in wireless network communication, and costs 3,565 W using a wired network. These average

values were multiplied by time spent for processing 500 images, and by the time spent to send 500 images via

Enhancing IoT Face Detection using Serverless Page 9 of 11

Acta Scientiarum. Technology, v. 46, e65769, 2024

wireless and wired networks, resulting in the energy value that the device consumes, in joules, in each case.

These values are shown in Figure 10.

Figure 10. Energy cost: 500 images.

We can observe the high energy cost when the device performs local processing (3,103 joules), as this is

the strategy that consumes the maximum device resources and also takes longer for its accomplishment. In

serverless processing, the device only sends the images to be processed. Thus, while the device takes about

600 seconds to process locally, it takes only 50 seconds to send the images over the wired network. Therefore,

the energy cost for sending the images is smaller than the processing cost (1,007 joules using wireless versus

180 joules in wired network).

Therefore, if the IoT device is connected to a battery and energy consumption is a major concern, serverless

technology is a viable alternative, either over a wireless network or a wired network. However, when only a single

image needs to be processed, transmission over wireless network costs almost 3 times as much as local processing,

as illustrated in Figure 11. In this particular case, local processing is more advantageous in terms of energy con-

sumption (about 6 joules) than using serverless (13 joules in wired network and about 19 in wireless).

Figure 11. Energy cost: 1 image.

Financial cost

Despite the potential benefits of cloud processing, one counterargument could be budget constraints. It is

possible to calculate the cost of running the application by considering the number of images and the time

needed for each image. For example, to process 999 images, the total time on the serverless platform is 1,099

seconds. Since the AWS Lambda service was configured to use 3,008 MB of memory, the total cost is US$ 0.05.

Page 10 of 11 Dotta et al.

Acta Scientiarum. Technology, v. 46, e65769, 2024

When processing one single image, the average processing time on the platform was 0.993 seconds, resulting

in a cost of US$ 0.00005 per image. Note, however, that the cost may depend on the platform used and the

configuration adopted7.

Discussion

The experiments conducted in this work have shown that the integration of these two technologies is

possible and can overcome the limitations of IoT devices. Not surprisingly, the serverless technology was

superior to the IoT device used in terms of performance. However, in this work, the performance of the

technology was directly related to the quality of the network connection to which the device was connected.

This can be a problem if the network connection available at the location of the IoT device is limited, or it can

be an advantage if the network connection is stable and present low latency when handling file uploads.

Serverless technology can also be very useful when power supply to an IoT device is an issue, as these

devices are usually battery-connected and have this limited power source. The experiments have shown how

expensive it can be for the device to process an application locally, making the serverless paradigm an effective

alternative for reducing a device's energy consumption.

This integration can also be situational, as serverless technology does not require local resources and can

be activated at any time, thus, the device can choose to use the technology in specific cases where processing

speed is a concern. Other situation is when the energy available on the device is low, meaning IoT devices can

only use the serverless only as an alternative for when local processing is not the ideal choice.

Conclusion

The goal of this work was to analyze how to integrate IoT and serverless technologies and in which scenar-

ios such integration is worthwhile. The results show that serverless technology outperforms the IoT device in

terms of performance, considering its intrinsic scalability. However, this performance is closely tied to the

quality of the network connection to which the device is connected. In addition, serverless technology proves

beneficial in scenarios where power supply to an IoT device is an issue.

References

Agudelo-Sanabria, S. D., & Jindal, A. (2021). The Ifs and Buts of the Development Approaches for IoT

Applications. arXiv. DOI: https://doi.org/10.48550/ARXIV.2101.09796

Benedetti, P., Femminella, M., Reali, G., & Steenhaut, K. (2021). Experimental analysis of the application of

serverless computing to iot platforms. Sensors, 21(3), 1-20. DOI: https://doi.org/10.3390/s21030928

Benomar, Z., Longo, F., Merlino, G., & Puliafito, A. (2021). Deviceless: A serverless approach for the internet

of things. In Proceedings of 2021 ITU kaleidoscope: Connecting physical and virtual worlds (p. 1-8).

DOI: https://doi.org/10.23919/ITUK53220.2021.9662096

Cassel, G. A. S., Rodrigues, V. F., Rosa Righi, R., Bez, M. R., Nepomuceno, A. C., & Costa, C. A. (2022).

Serverless computing for internet of things: A systematic literature review. Future Generation Computer

Systems, 128, 299-316. DOI: https://doi.org/10.1016/j.future.2021.10.020

Eismann, S., Scheuner, J., van Eyk, E., Schwinger, M., Grohmann, J., Herbst, N., ... Iosup, A. (2021). Serverless

applications: Why, when, and how? IEEE Software, 38, 32-39. DOI: https://doi.org/10.1109/MS.2020.3023302

Esposito, M., Belli, A., Palma, L., & Pierleoni, P. (2023). Design and Implementation of a Framework for

Smart Home Automation Based on Cellular IoT, MQTT, and Serverless Functions. Sensors, 23(9), 1-16.

DOI: http://dx.doi.org/10.3390/s23094459

Firouzi, F., Farahani, B., Weinberger, M., DePace, G., Aliee, F. S. (2020). IoT Fundamentals: Definitions,

Architectures, Challenges, and Promises. In F. Firouzi, K. Chakrabarty, S. Nassif (Eds.), Intelligent Internet

of Things (p. 3-50). Cham, SW: Springer. DOI: https://doi.org/10.1007/978-3-030-30367-9_1

Großmann, M., Ioannidis, C., & Le, D. T. (2019). Applicability of serverless computing in fog computing

environments for iot scenarios. In Proceedings of the 12th IEEE/ACM international conference on utility and

cloud computing companion (p. 29-34). DOI: https://doi.org/10.1145/3368235.3368834

7 https://aws.amazon.com/lambda/pricing/

Enhancing IoT Face Detection using Serverless Page 11 of 11

Acta Scientiarum. Technology, v. 46, e65769, 2024

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C., Khandelwal, A., Pu, Q., ... Patterson, D. A. (2019). Cloud

Programming Simplified: A Berkeley View on Serverless Computing. arXiv.

DOI: https://doi.org/10.48550/ARXIV.1902.03383

Kjorveziroski, V., Filiposka, S., & Trajkovik, V. (2021). IoT serverless computing at the edge: A systematic

mapping review. Computers, 10(10), 1-21. DOI: https://doi.org/10.3390/computers10100130

McGrath, G., & Brenner, P. R. (2017). Serverless computing: Design, implementation, and performance. In

Proceedings of 2017 IEEE 37th international conference on distributed computing systems workshops

(ICDCSW) (p. 405-410). DOI: https://doi.org/10.1109/ICDCSW.2017.36

Puliafito, C., Mingozzi, E., Longo, F., Puliafito, A., & Rana, O. (2019). Fog computing for the internet of things: A

survey. ACM Transactions on Internet Technology, 19(2), 1-41. DOI: https://doi.org/10.1145/3301443

Samie, F., Bauer, L., & Henkel, J. (2016). IoT technologies for embedded computing: A survey. In Proceedings

of the eleventh IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis

(p. 1-10). DOI: https://doi.org/10.1145/2968456.2974004

Scheuner, J., & Leitner, P. (2020). Function-as-a-service performance evaluation: A multivocal literature

review. Journal of Systems and Software, 170, 1-23. DOI: https://doi.org/10.1016/j.jss.2020.110708

Whitmore, A., Agarwal, A., & Xu, L. (2015). The internet of things–a survey of topics and trends. Information

Systems Frontiers, 17(2), 261-274. DOI: https://doi.org/10.1007/s10796-014-9489-2

