Síntese de sistemas de reatores para a reação de Trambouze

Admilson Lopes Vieira, Wagner André dos Santos Conceição e Cid Marcos Gonçalves Andrade

Programa de Pós-graduação em Engenharia Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brasil. *Autor para correspondência. E-mail: cid@deq.uem.br

RESUMO. Atualmente, a síntese de sistemas de reatores é normalmente abordada por procedimentos heurísticos nos cursos de graduação em Engenharia Química e como um problema de otimização matemática nos cursos de pós-graduação. A técnica da região acessível se propõe a abordar o problema do ponto de vista geométrico, procurando identificar todas as possíveis saídas, para dada alimentação e determinada cinética, mas não a ótima da rede de reatores que possibilite a maior conversão. O objetivo deste trabalho é apresentar essa técnica, aplicada à síntese de um sistema de reatores para uma reação de Trambouze para vários valores das constantes cinéticas. Para a implementação da técnica, utilizou-se o *software* Matlab[®]. A técnica mostrou-se poderosa e de fácil execução, principalmente pelo uso do Matlab[®], que já possui embutida uma função que encontra regiões côncavas.

Palavras-chave: região acessível, sistema de reatores, reação de Trambouze, Matlab®.

ABSTRACT. Synthesis of reactor networks for Trambouze's reaction. Currently, the synthesis of reactor networks is usually approached by heuristic procedures in undergraduate chemical engineering courses and as a problem of mathematical optimization in graduate level courses. The attainable region approach addresses reactor network feasibility, for a given composition and a given system of reactions based on geometric properties, and allows one to identify feasibility, but not optimal reactor sequences for the production of a desired product. The objective of this work is to present the attainable region technique, applied to the synthesis of reactor networks for a chemistry reaction that follows the kinetics proposed by Trambouze's reaction, for different kinetic constants. For the implementation of this technique, the software Matlab® was used. The techniques proved to be powerful and of easy implementation, especially by using Matlab®, which already features a built-in function to find concave regions.

Key words: attainable region, network reactor, Trambouze's reaction, Matlab[®].

Introdução

Os livros textos mais antigos sobre síntese de processos, como Rudd et al. (1973), e até mesmo os posteriores, como Smith (1995), Douglas (1988) e Peters e Timmerhaus (1980), apresentam o problema da síntese de redes de reatores apenas sob a abordagem heurística, dando mais atenção à escolha da melhor rota de reação que à melhor síntese do sistema de reatores. Temos também, como em Conceição et al. (2008), a preocupação com processos de reação mais eficientes e integrados em massa e energia.

Outros mais modernos abordam a síntese segundo o enfoque heurístico e como um problema de otimização matemática, a saber: Turton et al. (1998), Biegler et al. (1997) e Seider et al. (2003). Nos cursos de projeto de processos químicos, normalmente, para os estudantes de graduação em Engenharia Química é reservado o estudo de

técnicas heurísticas; para os estudantes de pósgraduação, as técnicas de síntese que empregam otimização matemática.

O conceito da região acessível foi originariamente introduzido por Horn (1964) e é definido como todas as possíveis saídas para todos os reatores possíveis fisicamente. Hildebrandt et al. (1990) utilizaram a ideia do ponto de vista geométrico. Eles consideraram um reator como um sistema em que apenas podem ocorrer os processos de mistura e reação.

Livros mais modernos como Biegler et al. (1997) e Seider et al. (2003) já apresentam capítulos exclusivos sobre a técnica, assim como a técnica acoplada à otimização matemática.

O objetivo deste trabalho é a apresentação da técnica da região acessível para a síntese de sistema de reatores, em uma reação química que segue a cinética de Trambouze, para vários valores nas constantes 66 Vieira et al.

cinéticas, implementada por meio do *software* Matlab[®]. Procurou-se mostrar que esta técnica é de execução simples, podendo ser utilizada de forma sistemática.

Material e métodos

O método da região acessível (RA) é um método que permite resolver problemas de síntese de processos e problemas de otimização. A região acessível é definida, por Hildebrandt et al. (1990), como o conjunto de todos os resultados possíveis para o sistema considerado, que pode ser alcançado usando a operação dos processos fundamentais dentro do sistema e que satisfaça todas as restrições a ele impostas. Isto significa que a região acessível, no caso de síntese de sistemas de reatores, é o conjunto de todas as concentrações possíveis de saída de A e B que podem ser obtidas em um sistema de reator em regime permanente com uma alimentação dada. Aplicam-se os seguintes passos para construção da região acessível e a síntese de sistema de reatores:

- escolha do processo fundamental;
- escolha e definição das variáveis de estado este trabalho considerou concentração de A e B;
- determinação da geometria das unidades de processo, escolha dos reatores ou sistemas. Aqui se trabalhou com o CSTR (continuous stirred tank reactor), PFR (plug flow reactor), CSTR com bypass e PFR-CSTR em série;
- determinação das condições entrada de c_a ($c_a=1$ kmol m⁻³);
- construção da região acessível. Resolução dos sistemas de equações resultantes pelo programa MATLAB[®]. Função *convexhull* fornece a região côncava;
- por meio da região obtida, analisa-se o sistema ótimo de conversão de A em B.

Resultados

Reação de Trambouze - caso 1

O problema

A reação de Trambouze envolve quatro componentes. O objetivo é maximizar a produção do componente intermediário C, por meio da alimentação do componente A puro. O mecanismo de reação é dado por:

$$A \to B$$

$$A \to C$$

$$A \to D$$
(1)

A concentração de alimentação é 1 mol L⁻¹ e as constantes das taxas de reação são as seguintes:

Tabela 1. Constantes cinéticas.

k_1	k_2	k_3	k ₄	k ₅
10 s ⁻¹	1 s ⁻¹	10 L (mol s) ⁻¹	0 L mol ⁻¹	$0 L^2 \text{ mol}^{-2}$

Para determinar a quantidade máxima do produto desejado, constroem-se as trajetórias dos reatores, segundo Smith (1995): PFR, CSTR, CSTR com bypass e do sistema CSTR-PFR em série.

Construção da região acessível para um PFR

O balanço molar das espécies A e B para o PFR é dado a seguir:

$$\frac{dc_A}{d\tau} = \frac{k_1 \cdot c_A}{\left(1 + k_4 \cdot c_A\right)} + k_2 \cdot c_A + \frac{k_3 \cdot c_A^2}{\left(1 + k_5 \cdot c_A^2\right)} \tag{2}$$

$$\frac{dc_C}{d\tau} = k_2 . c_A \tag{3}$$

A partir do programa desenvolvido neste trabalho, consegue-se resolver o conjunto de equações diferenciais ordinárias (ODEs) com duas variáveis. O resultado está apresentado na Figura 1.

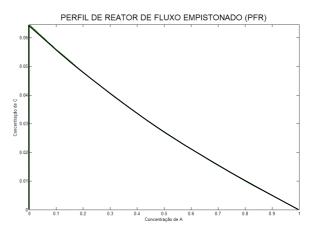


Figura 1. Perfil inicial de um PFR.

Construção da região acessível para um CSTR

O balanço molar das espécies A e B para o CSTR é dado a seguir:

$$c_A - c_{A0} = \tau \cdot \left(\frac{k_1 \cdot c_A}{\left(1 + k_4 \cdot c_A \right)} + k_2 \cdot c_A + \frac{k_3 \cdot c_A^2}{\left(1 + k_5 \cdot c_A^2 \right)} \right) \tag{4}$$

$$c_C - c_{C0} = \tau . k_2 . c_A \tag{5}$$

A partir do programa desenvolvido neste trabalho, consegue-se resolver o conjunto de equações algébricas. O resultado está apresentado na Figura 2.

Pode-se observar, pela Figura 2, uma região de concavidade. Assim se faz necessário o procedimento a seguir, em que os extremos da região côncava são obtidos pela função *convexhull*.

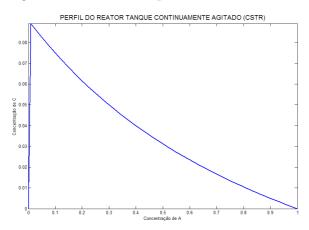


Figura 2. Perfil CSTR.

Construção da região acessível para um CSTR com bypass

Quando se pretende utilizar este tipo de reator, percebe-se que dois parâmetros podem ser variados:

- o tempo de residência do CSTR,
- e a fração desviada de alimentação (bypass).

Quando se varia o tempo de residência, o resultado da variação mostra como a concentração de A varia com a concentração de B, e isto é percebido pela curva: um simples CSTR.

Agora, quando se varia a fração de alimentação desviada (bypass), a concentração da corrente de alimentação depois do bypass e a corrente de bypass são representadas pelos mesmos pontos:

$$c_A = 1$$
; $c_B = 0$

O produto representado pela corrente de bypass, que é a mistura da corrente do CSTR mais a de alimentação, pode ser representado por uma linha reta. Isto é apresentado por meio da Figura 3.

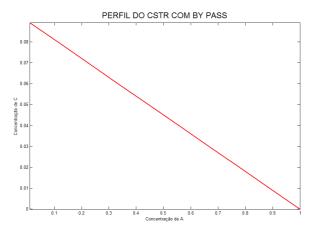


Figura 3. Perfil do CSTR com bypass.

Construção da região acessível para um CSTR e PFR em série

67

A partir do sistema CSTR com bypass, constróise um PFR. Verifica-se que este novo sistema de CSTR bypass com PFR seria o mesmo que o PFR sozinho, caso a concentração de alimentação fosse alterada.

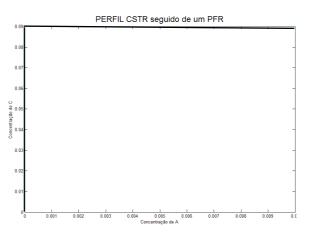


Figura 4. Perfil CSTR seguido de PFR.

Construção da região acessível

Dessa forma, por meio da Figura 5, consegue-se cobrir todas as possibilidades do sistema e encontrar a máxima região dos possíveis produtos.

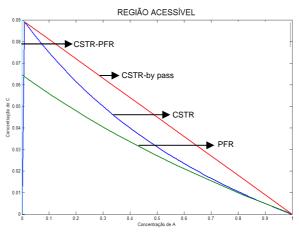


Figura 5. Região acessível.

Reação de Trambouze – caso 2

O Problema

Neste problema, coloca-se somente o gráfico da região acessível, pois a metodologia aplicada para o caso anterior é a mesma que será utilizada em todos os casos neste trabalho.

Nos casos das reações de Trambouze, serão modificados somente os valores das constantes cinéticas e das condições iniciais de alimentação.

68 Vieira et al.

Para este caso, a concentração de alimentação é de 1 mol L⁻¹ e as constantes cinéticas são:

Tabela 2. Constantes cinéticas.

$\overline{\mathbf{k}_{1}}$	k ₂	k,	k,	k ₅
100 s ⁻¹	1 s ⁻¹	10 L (mol s) ⁻¹	100 L mol ⁻¹	0,4 L ² mol ⁻²

O balanço molar das espécies A e B para o PFR é dado a seguir:

$$\frac{dc_A}{d\tau} = -k_1 \cdot c_A - k_3 \cdot c_A^2 \tag{6}$$

$$\frac{dc_B}{d\tau} = -k_2 \cdot c_B + k_1 \cdot c_A \tag{7}$$

O balanço molar das espécies A e B para o CSTR é dado a seguir:

$$c_A - c_{A0} = \tau \cdot (-k_1 \cdot c_A - k_3 \cdot c_A^2) \tag{8}$$

$$c_B - c_{B0} = \tau . (k_2 . c_B - k_3 . c_B) \tag{9}$$

A partir dos balanços e da construção das trajetórias, constrói-se a Figura 6.

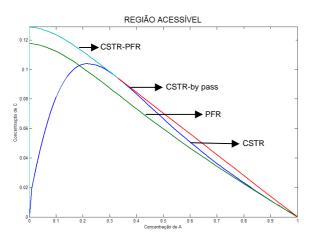


Figura 6. Região acessível.

Reação de Trambouze – caso 3

O Problema

Para este caso, a cinética da reação é a mesma apresentada para os dois casos anteriores. A concentração inicial é de 5 mol L-1 e as constantes cinéticas são:

Tabela 3. Constantes cinéticas.

$\overline{\mathbf{k}_{1}}$	k_2	k ₃	k ₄	k ₅
10 s ⁻¹	1 s ⁻¹	10 L (mol s) ⁻¹	10 L mol ⁻¹	0,5 L ² mol ⁻²

O balanço molar das espécies A e B para o PFR é dado a seguir:

$$\frac{dc_A}{d\tau} = -k_1 \cdot c_A - k_3 \cdot c_A^2 \tag{10}$$

$$\frac{dc_B}{d\tau} = -k_2 \cdot c_B + k_1 \cdot c_A \tag{11}$$

O balanço molar das espécies A e B para o CSTR é dado a seguir:

$$c_{A} - c_{A0} = \tau \cdot (-k_{1} \cdot c_{A} - k_{3} \cdot c_{A}^{2}) \tag{12}$$

$$c_B - c_{B0} = \tau \cdot (k_2 \cdot c_B - k_3 \cdot c_B) \tag{13}$$

A partir dos balanços e da construção das trajetórias, constrói-se a Figura 7.

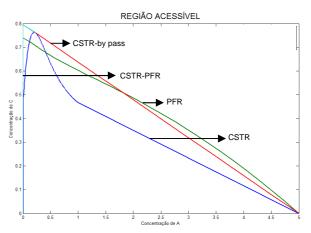


Figura 7. Região Acessível.

Discussão

No primeiro caso, o reator CSTR com bypass é ideal para quase a totalidade da faixa de concentração de A; para concentrações de A menores que 0,01 mol L⁻¹, porém, o sistema CSTR e PFR em série se mostra ideal.

No segundo caso, de acordo com a Figura 6, quando a concentração de A for de 0 a 0,33 mol L⁻¹, o melhor sistema é o PFR e CSTR em série; no ponto de concentração de A igual a 0,33 mol L⁻¹, o CSTR é o melhor reator; para valores maiores que 0,33 mol L⁻¹, o CSTR com bypass é o melhor sistema.

No terceiro caso, de acordo com a Figura 7, para concentração de A de 0,00 a 0,60 mol L⁻¹, o sistema CSTR e PFR em série apresenta-se como ideal; para concentração entre 0,60 e 1,82 mol L⁻¹, um CSTR com bypass se mostra melhor; para valores acima de

1,82 mol L⁻¹, um reator PFR apresenta melhores resultados.

Os exemplos apresentados neste trabalho são os mesmos apresentados em WITS (2008). Uma nova abordagem se fez necessária para apresentar a potencialidade e acuidade do programa desenvolvido.

Segundo a Tabela 4, as variáveis (concentração inicial e constantes de equilíbrio) foram modificadas em cada exemplo; com isso, foi verificada a diferença nas trajetórias dos respectivos reatores e, consequentemente, a região acessível também será modificada para cada um dos exemplos.

Tabela 4. Comparação entre os exemplos.

	Exemplo 1	Exemplo 2	Exemplo 3
c _A (mol L ⁻¹)	1	1	5
$k_1(s^{-1})$	10	100	10
$k_2(s^{-1})$	1	1	1
k ₃ (L mol ⁻¹ s ⁻¹)	10	10	10
$k_4(L \text{ mol}^{-1})$	0	100	10
$k_5 (L^2 \text{ mol}^{-2})$	0	0,4	0,5

Conclusão

A técnica da região acessível é uma técnica muito útil para o projeto de sistemas de reatores.

A utilização do Matlab[®] na implementação desta técnica mostrou-se simples, principalmente pelo fato de o programa já ter implementado a função *convexhull* para a obtenção da região côncava.

A técnica pode ser sistematicamente utilizada, variando apenas as constantes cinéticas das reações consideradas.

Comparando os resultados aqui apresentados com os realizados por WITS (2008), pode-se chegar à mesma conclusão em relação aos sistemas de reatores.

Referências

BIEGLER, L. T.; GROSMANN, I. E.; WESTERBERG, A. W. **Systematic methods of chemical process design**. New Jersey: Prentice-Hall, 1997.

CONCEIÇÃO, W. A. S.; ANDRADE, C. M. G.; JORGE, L. M. Análise do desempenho de sistema de controle de processos com Reciclo. **Acta Scientiarum. Technology**, v. 30, n. 1, p. 19-25, 2008.

DOUGLAS, J. M. Conceptual design of chemical processes. New York: McGraw-Hill Science, 1988.

HILDEBRANDT, D.; GLASSER, D.; CROWE, C. M. Geometry of the attainable region generated by reaction and mixing: with and without constraints. **Industrial and Engineering Chemistry Research**, v. 29, p. 49-58, 1990.

HORN, F. Attainable regions in chemical reaction technique. In: THE THIRD EUROPEAN SYMPOSIUM ON CHEMICAL REACTION ENGINEERING, 1964, London. **Proceedings...** Oxford: Pergamon, 1964. p. 293.

PETERS, M.; TIMMERHAUS, K. **Plant design and economics for chemical engineers**. New York: McGraw-Hill, 1980.

RUDD, D. F.; POWERS, G. F.; SIIROLA, J. J. **Process synthesis**. New Jersey: Prentice-Hal, 1973.

SEIDER, W. D.; SEADER, J. D.; LEWIN, D. R. **Process design principles**: synthesis, analysis, and evaluation. 2. ed. New York: John Wiley and Sons, 2003.

SMITH, R. Chemical process design. New York: McGraw-Hill, 1995.

TURTON, R.; BAILIE, R. C.; WHITING, W. B.; SHAEIWITZ, J. A. Analysis, synthesis, and design of chemical process. New Jersey: Prentice-Hal, 1998.

WITS-University of the Witwatersrand, Johannesburg. Exercise 1: Trambouze Example. Disponível em: http://web.wits.ac.za/Academic/Centres/COMPS/Research/AR/Exercise/. Acesso em: 30 set. 2008.

Received on November 8, 2007. Accepted on September 30, 2008.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.