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ABSTRACT. This research paper delves into the prospect of curbing carbon dioxide (CO2) emissions by 

strategically deploying solar photovoltaic (PV) systems and orchestrating demand response (DR) 

mechanisms within Indian lignite power plants (LPP). The study responds to the critical imperative of 

mitigating greenhouse gas (GHG) emissions originating from coal-based electricity generation, a matter of 

substantial consequence in the context of climate change. In pursuit of optimal solar PV system allocation, 

this research employs the particle swarm optimization (PSO) technique, considering a spectrum of factors 

including solar resource availability, electricity demand patterns, and the CO2 intensity associated with 

coal power generation. The primary objective is to minimize CO2 emissions while maximizing the 

integration of solar PV and curtailing power losses, all while accounting for the intermittent nature of solar 

power and the dynamic nature of demand. The proposed approach is rigorously tested on the IEEE 33 bus 

system, supplied by the LPP. The results convincingly demonstrate a remarkable reduction in CO2 

emissions, amounting to 29.69%, following the implementation of the proposed approach. This research 

presents a concrete step towards a more sustainable and environmentally friendly energy landscape, 

offering valuable insights for policymakers and stakeholders in the energy sector. 
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Introduction 

Electricity is the lifeblood of modern society, underpinning industrial processes, construction activities, 

and our day-to-day routines. Yet, the heart of electricity generation predominantly relies on a mix of energy 

sources, including coal, natural gas, uranium, solar, wind, and hydropower. This indispensable process of 

power generation bears a heavy environmental burden, chiefly manifested through its pivotal role in global 

CO2 emissions. Thus, the pivotal choice of generation technology becomes a linchpin in our efforts to 

mitigate the environmental repercussions of energy production. Notably, renewable energy sources, in stark 

contrast to coal, stand as a beacon of sustainability, emitting a carbon footprint nearly 20 times smaller 

(Saxena, Kumar, & Nangia, 2024). According to the Central Electricity Authority's 2022 CO2 baseline database 

for the Indian power sector (Autoridade Central de Eletricidade [CEA], 2023), LPP emit a substantial 0.975 

tons of CO2 per megawatt-hour (tCO2/MWh). The strategic deployment of renewable DG within the 

Distribution Network (DN) offers a ray of hope to diminish these emissions. However, it's essential to 

acknowledge that while solar PV systems are a key player in this transformation, their construction relies on 

electricity from thermal power plants, resulting in a limited carbon footprint. For instance, PV module 

production incurs a lifetime CO2 emission of approximately 0.053 kg per kWh of electrical energy (Rajput, & 

Dheer, 2022). The dynamics of India's energy landscape are painted vividly in Figure 1, tracing capacity 

additions from fiscal year 2000-01 to 2021-22. Notably, coal-based capacity soared from 2000-01 to 2015-16, 

followed by a significant drop from 2016-17 to 2021-22. In parallel, hydro-based capacity waned from 2017-

18 onwards, with other generation capacities showing little activity. This narrative continues in Figure 2, 

displaying the trend in the weighted average emission factor from fiscal year 2017-18 to 2021-22. Despite a 

slight uptick in 2021-22 due to increased coal-based generation, gas and hydro-based generation dipped, 

while the proportion of imported coal decreased from 9% to 4% compared to the preceding fiscal year. 

https://orcid.org/0000-0002-5418-3514
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Figure 1. Breakdown of new added capacity covered by the database over the period            2000-01 to 2021-22 (CEA, 2023). 

3  

Figure 2. Development of the weighted average emission factor for the Indian Grid over the period 2017-18 to 2021-22 (CEA, 2023).  

In the realm of energy transformation, DG and DR take center stage in realizing the vision of a smarter grid. DG 

bifurcates into renewable and non-renewable sources. Renewable DG harnesses naturally replenished resources 

like solar, wind, hydro, and biomass, offering a sustainable alternative. Non-renewable DG, on the other hand, 

relies on finite fossil fuel reserves, including diesel generators, natural gas turbines, and fuel cells. This distinction 

serves as a compass, guiding us towards sustainable energy choices. The optimal placement of solar PV systems 

within the DN hinges on diverse factors, including load locations, solar resource availability, and DN capacity. The 

interplay between DR and solar PV's optimal placement has become a focal point of research. DR empowers 

consumers to adjust electricity consumption in response to price signals, thereby reducing peak demand, 

enhancing grid reliability, and curbing infrastructure costs (Saxena, Kumar, & Nangia, 2021a). Numerous 

methodologies now dissect how DR influences the optimal placement of solar PV systems. By amalgamating DR 

and solar PV into the smart grid, we unlock the potential for optimized placements, superior grid performance, 

and reduced stress on infrastructure. The symbiosis between DR and solar PV represents a critical frontier in 

forging a more sustainable and efficient energy ecosystem. This research examines several facets of this synergy: 

• Capacity Planning: DR's capacity reduction potential influences solar PV placement, as lower capacity 

requirements may reshape optimal locations. 

• Load Profile: The integration of DR can reshape load profiles, potentially altering solar PV placement in 

response to shifting peak loads. 

• Voltage Stability: Solar PV's impact on voltage stability is managed by DR through consumption 

adjustments, potentially changing optimal placement. 

• DN Configuration: DR can alter DN configurations by reducing infrastructure needs or shifting load 

locations, thus impacting solar PV placement. 

Considering these factors in tandem, alongside the integration of DR, we can harness renewable energy 

resources and infrastructure more efficiently, forging a more sustainable and resilient power system. Research by 

Zeng, Zhang, Yang, Wang, Dong, and Zhang, (2014) showcases an integrated technique combining renewable 

distributed generation (RDG) and DR to plan low-carbon, sustainable distribution systems. Their methodology 

demonstrates substantial benefits over conventional approaches, enhancing RDG efficiency and reducing the DN's 
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CO2 footprint. Pathiravasam and Venayagamoorthy, (2022) delve into temperature-controlled loads (TCL) within 

a DR framework, enhancing power system reliability and affordability, especially when coupled with solar power 

generation. Their study offers insights into optimizing DR for peak reduction and capacity firming, balancing DR 

reliability and consumer comfort. Liu, Yu, Gao, Lou, and Zhang, (2016) present a framework for a solar PV-based 

microgrid (PV-MG) and explore DR's impact on its optimization. Their model efficiently minimizes operating costs 

while adhering to constraints, generating Pareto solutions for diverse scenarios. Zhang, Xu, Dong, and Wong, 

(2018) propose a robust microgrid coordination strategy, integrating price-based demand response (PBDR) and 

dispatchable DG to tackle uncertainty. Their robust optimization model ensures economic benefits and efficient 

management of renewables and demand. Viana, Manassero, and Udaeta, (2018) advocate for regulatory changes 

to stimulate DR and photovoltaic distributed generation (PVDG). They underscore the importance of economically 

efficient electricity use, offering a framework for power companies to align with customer energy requirements. 

Erdinc, Paterakis, Pappi, Bakirtzis, and Catalão, (2015) introduce a comprehensive method that incorporates DR 

into the sizing of solar PV and energy storage systems, aiming to minimize system costs while ensuring consumer 

needs are met. Traditional transmission expansion planning (TEP) approaches, as discussed by Hejeejo and Qiu, 

(2017), based on peak demand, are being challenged by the inclusion of DR and DG. These adaptable approaches 

enhance power system controllability and cost-effectiveness, adapting to changing demand patterns. As the 

energy sector accounts for 70% of GHG emissions, especially from coal, distribution companies must pivot towards 

low-emission coefficient DG units to reduce coal reliance and GHG emissions. Hence, robust computational 

algorithms are imperative for optimal DG deployment in active distribution systems with a focus on emissions 

reduction (Lakshmi, Jayalaxmi, & Veeramsetty, 2023). 

Material and methods 

Problem statement 

In the face of escalating energy demand, reducing CO2 emissions by expanding the role of renewable 

energy sources and minimizing energy losses is imperative. A substantial reduction in CO2 emissions can be 

achieved by diminishing the reliance on electricity generated by conventional power plants (CPP) and 

integrating cleaner energy sources. This paper is motivated by the following objectives: 

• Minimizing Transmission Losses: Effective power system operation hinges on minimizing transmission 

losses in the distribution network. These losses result from the inherent resistance in transmission wires, 

causing voltage drops and energy dissipation during electricity transmission. Thus, the minimization of power 

loss serves as a primary objective. The loss minimization is mathematically expressed as (Meena, Parashar, 

Swarnkar, Gupta, & Niazi, 2018): 

£1 = ∑  24
𝑡=1 𝑃L (t)  (1) 

𝑃L (t) = ∑  𝑁
𝑖=1 ∑  𝑁

𝑗=1 𝛼𝑖𝑗 (t)(𝑃𝑖 (t)𝑃𝐽 (t) + 𝑄𝑖 (t)𝑄𝐽 (t)) + 𝛽𝑖𝑗 (𝑡)(𝑄𝑖 (t)𝑃𝑗 (t) − 𝑃𝑖 (t)𝑄𝑗 (t))         ∀𝑡  (2) 

where 𝛼𝑖𝑗 (t) = 𝑟𝑖𝑗cos (𝛿𝑖 (t) − 𝛿𝑗 (t))/𝑉𝑖 (t)𝑉𝑗 (t) and 𝛽𝑖𝑗 (t) = 𝑟𝑖𝑗sin (𝛿𝑖 (t) − 𝛿𝑗 (t))/𝑉𝑖 (t)𝑉𝐽 (t)  

• Managing Reverse Power Flow: Reverse power flow occurs when Distributed Generation (DG) units generate 

more power than local loads require, potentially leading to voltage fluctuations and equipment damage. Careful 

management and mitigation of reverse power flow are vital objectives. Reverse power flow is defined as: 

£2 = ∑  24
𝑡=1 𝑃𝑅 (𝑡)  (3) 

𝑃𝑅 (𝑡) = {
0,  if 𝐼G (𝑡) ≥ 𝐼S

Re (𝑉G (𝑡) 𝐼G (𝑡) 
∗ )  if 𝐼G (𝑡) < 𝐼S. .

  (4) 

• Voltage Deviation Management: Voltage deviations from standard levels can result in inefficiencies, 

increased losses, and equipment damage. The objective is to minimize voltage deviations, expressed as 

(Safdarian, Degefa, Lehtonen, & Fotuhi-Firuzabad, 2014): 

£3 = (1 + ∑  24
𝑡=1 𝑉𝐷 (𝑡)) (5) 

𝑉𝐷 (𝑡) = {

|𝑉Min − 𝑉𝑖 (𝑡) | if 𝑉𝑖 (𝑡) < 𝑉Min. 

0  if 𝑉Min. ≤ 𝑉𝑖 (𝑡) ≤ 𝑉Max. 

ℓ  if 𝑉𝑖(𝑡) > 𝑉Max. 

  (6) 
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where ℓ is the large value or unacceptable value. 

Fitness function 

The optimization combines these objectives into a fitness function with distinct weightage factors for each 

objective: 

𝑚𝑖𝑛(ϒ1) = φ × 𝑀 × £3   (7) 

where 𝑀 = £1 + £2  and φ   is the daily to yearly conversion product. 

The DR planning and scheduling approach of DGs is taken into consideration at level 2 of the optimization 

objectives. The following objective function will be taken into consideration for level 2 of the optimization 

problem: 

𝑚𝑖𝑛(ϒ2) = 𝑀 × £3  (8) 

In this context, the fitness function for level 2 is denoted by ϒ2. 

It is vital to have a dispatch strategy, which is determined upon by the DR aggregator. This helps to 

minimize the aforementioned fitness function. 

Demand response aggregator  

To address peak demand efficiently, a Demand Response Aggregator (DRA) plays a pivotal role. It 

collaborates with energy consumers to curtail energy usage during peak periods and subsequently sells the 

saved energy back to grid operators. DRAs use various technologies and strategies to achieve this, including 

automated demand response systems and smart thermostats. The paper considers DRAs to optimize the DR 

process, contributing to grid management, cost mitigation, and system reliability. Restrictions related to DR 

are carefully managed, ensuring that contracted load and DR penetration rate are upheld. This multi-objective 

optimization framework aims to minimize losses, manage reverse power flow, and maintain voltage stability 

while enhancing the integration of renewable energy sources. It incorporates the crucial role of DRAs in this 

process, ensuring a balanced and sustainable power system (Saxena, Kumar, & Nangia, 2021b). DRAs assume 

a pivotal role in aiding grid operators to proficiently handle peak demand, reduce energy expenses, and bolster 

system dependability. By providing incentives to energy consumers to curtail their energy consumption 

during peak periods, DRAs play a key role in equilibrium between electricity supply and demand, thus 

diminishing the necessity for supplementary generation capacity. Subsequent factors delineate the 

constraints linked with Demand Response (DR) that are thoughtfully evaluated: 

𝑃𝑖(𝑡) = (𝑃𝐺𝑖(𝑡) − 𝑃𝐷𝑖(𝑡))                              ∀𝑡, 𝑖  (9) 

𝑄𝑖(𝑡) = (𝑄𝐺𝑖(𝑡) − 𝑄𝐷𝑖(𝑡))                            ∀𝑡, 𝑖 (10) 

𝑃𝐷𝑖(𝑡) = (𝑃𝑖𝑛,𝑖(𝑡) + 𝑃𝑒𝑙,𝑖(𝑡))                          ∀𝑡, 𝑖  (11) 

∑  𝑁
𝑖=1 ∑  24

𝑡=1 (𝑃𝑖𝑛,𝑖(𝑡) + 𝑃𝑒𝑙,𝑖(𝑡)) × Δ𝑡 = 𝐸𝑖
𝑇𝑜𝑡𝑎𝑙   (12) 

 𝑃𝑒𝑙,𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑒𝑙,𝑖(𝑡) ≤ 𝑚𝑖𝑛 ((𝐶 − 𝑃𝑖𝑛,𝑖(𝑡)), 𝑃𝑒𝑙,𝑖

𝑚𝑎𝑥) ∀𝑡  (13) 

𝑃𝑒𝑙,𝑖
𝑚𝑎𝑥 = µ ∑  24

𝑡=1 𝐿𝑑,𝑖(𝑡)    (14) 

where 𝐶 and µ is the contract load and DR penetration rate respectively. 

Objective constraints 

The objective functions are subject to a range of constraints, encompassing both technical and operational 

considerations. These constraints can be expressed numerically as follows: 

Solar PV Output Constraint:  

0 ≤ 𝑃DG,𝑖 ≤ 𝑃𝐷𝐺
𝑚𝑎𝑥                 ∀𝑖  (15) 

Feeder Constraint: 

𝐼𝑖𝑗(𝑡) ≤ 𝐼𝑖𝑗
𝑚𝑎𝑥                 ∀𝑡, 𝑖, 𝑗 (16) 

Power Balance Constraints The constraints for real power and reactive power:  
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𝑃𝑖(𝑡) = 𝑉𝑖(𝑡) ∑  𝑁
𝑗=1 𝑉𝑗(𝑡)𝑌𝑖𝑗 cos(𝜃𝑖𝑗 + 𝛿𝑗(𝑡) − 𝛿𝑖(𝑡))                 ∀𝑡, 𝑖

  (17) 

𝑄𝑖(𝑡) = −𝑉𝑖(𝑡) ∑  𝑁
𝑗=1 𝑉𝑗(𝑡)𝑌𝑖𝑗 sin(𝜃𝑖𝑗 + 𝛿𝑗(𝑡) − 𝛿𝑖(𝑡))               ∀𝑡, 𝑖  (18) 

Modeling of demand 

The demand modeling of the system is given in the following equations: 

𝑃𝐷,𝑖(𝑡) = 𝛺𝑖(𝑡)𝑃𝐷,𝑖
0                                                 ∀𝑡, 𝑖

  (19) 

𝑄𝐷,𝑖(𝑡) = 𝛺𝑖(𝑡)𝑄𝐷,𝑖
0                                                 ∀𝑡, 𝑖   

 (20) 

where 𝛺𝑖(𝑡) is the assigned load factor for the time period t. 

Modeling of solar PV output 

Solar power generation relies on various additional factors. These factors encompass the characteristics of 

the solar panel, such as its type and surface area, the tilt angle at which it is positioned, and the level of solar 

radiation it receives. For the purpose of analysis, it is assumed that all other variables remain constant during 

the specified period. The calculation for the conversion of current relative to the rated voltage is as follows: 

𝐼𝑠𝑚(𝑡) = {
𝐼𝑠𝑚 if 𝑆𝑟(𝑡) ≥ 𝑆𝑟

𝑟

𝐼𝑠𝑚 × 𝑆𝑟(𝑡)/𝑆𝑟
𝑟 if 𝑆𝑟(𝑡) < 𝑆𝑟

𝑟  (21) 

Optimization Technique 

Particle Swarm Optimization (PSO) is a computational algorithm inspired by the behavior of animals, 

enabling computers to discover optimal solutions. In this approach, each "particle" symbolizes a potential 

solution, and these particles adjust their positions and velocities based on collective knowledge. The 

movement of these particles is directed by the objective function, which steers their search for optimal 

answers. PSO continually updates a particle's position using its current position, its best-known position, and 

the swarm's best-known position. This iterative process persists until a predefined stopping condition is met. 

PSO is widely employed for multilevel optimization tasks, including DG planning. Details of the simulation 

parameters for this optimization technique are outlined in Table 1, as per the findings in the reviewed 

literature (Saxena, Kumar, & Nangia, 2022; Saxena, Kumar, & Nangia, 2023). 

Table 1. Simulation parameters of multilevel optimization technique. 

Parameters Level-1 Level-2 

Swarm size 20 50 

Inertia weight 1 1 

Inertia Weight Damping Ratio  0.99 0.99 

Personal Learning Coefficient 1.5 1.5 

Global Learning Coefficient 2 2 

Maximum Number of Iterations 50 50 

 

Test system and parameters 

In this study, we employ a multilevel optimization approach to assess the IEEE 33 bus system, as depicted 

in Figure 3 (Baran and Wu, 1989). Specifically, we consider the Indian LPP as the energy source for the power 

grid. Our research is centered on a comprehensive exploration and evaluation of the effects of DR 

technologies, aiming to ascertain the most suitable power transmission strategies under varying conditions 

and constraints. The primary objective is the enhancement of power distribution efficiency. To carry out this 

investigation, we leverage MATLAB software, running on a computer equipped with an i3 core processor and 

12 gigabytes of random-access memory. These computational tools enable us to implement the proposed 

optimization methodologies and attain our optimization goals effectively. Furthermore, key parameters 

including base voltage, nominal active demand, nominal reactive demand, power loss, Vmin, Vmax, and  𝑃𝐷𝐺
𝑚𝑎𝑥, 

are specified as follows: 12.66 kV, 3715 kW, 2300 kVAr, 202.7 kW, 0.95 per unit, 1.05 per unit, and 2 MW, 

respectively. These parameters play a pivotal role in our analysis and optimization efforts. 
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Figure 3. IEEE 33 bus system. 

Results and discussion 

Base case 

In this initial analysis, we consider the baseline scenario to demonstrate the effectiveness of integrating 

solar PV technology into a 33-bus radial distribution system. Our objective functions are designed based on 

typical daily consumption patterns, and the annual energy loss is calculated as the average of daily energy 

losses (Mazidi, Zakariazadeh, Jadid, & Siano, 2014). The lowest demand is observed at approximately 5:00 

a.m., with peak demand occurring around 8:00 p.m. As shown in Tables 2, 3, and 4, this base case scenario 

exhibits disparities for the highest and lowest demand, minimum mean voltage, annual energy losses, and 

daily CO2 emissions, amounting to 5397.73 kW, 0.978178 per unit, 1426 MWh, and 99047.49 kg, respectively. 

Table 2. Effect of the coordination of DR with optimally integrated solar PV on demand. 

Case No.  Category 
Maximum 

Demand (kW) 

Maximum 

Demand 

Mitigation % 

Difference between 

Maximum to Minimum 

Demand (kW) 

% of Maximum 

Loss Mitigation at 

8:00 PM 

1 Base Case 6519 0 5397.73 0 

2 DG 6519 0 6016.39 0 

3 DR@10% 5548 16.1 4166.14 36.09 
 DR@20% 5321 18.42 3730.6 42.77 

4 DG+DR@10% 5370 17.33 4322.87 33.69 

  DG+DR@20% 4790 26.78 3540.31 45.69 

 

Table 3. Outcomes of the coordination of DR with optimally integrated solar PV. 

Case 

No.  
Category 

Optimal Allocation of DG (Bus 

No., kW) 

Annual Losses 

(MWh) 

Reduced losses / 

Year (%) 

DG Penetration 

(%) 

1 Base Case    1426     

2 DG 17(1344)-32(1690)-25(1092) 1098 23 68.76 

3 DR@10%  1302 8.69  

 DR@20%  1290 9.53  

4 DG+DR@10% 7(1086)-15(1902)-32(914)  996 30.15 65.03 

  DG+DR@20% 18(408)-29(1816)-11(1602)  934 34.5 63.76 

 

Table 4. Impact of proposed framework on CO2 emission of LPP. 

Case 

Energy 

Demand 

from 

LPP/Day 

(kWH) 

Energy 

Supplied 

from 

DG/Day 

(kWh) 

CO2 

emission 

from 

Solar PV 

(Kg) 

Energy 

Losses / 

Day 

(kWh) 

Energy 

Supplied 

from 

LPP/Day 

(kWH) 

CO2 

emission/Day 

(Kg) by LPP 

Total CO2 

emission/Day 

(Kg)  

% 

Reduction 

in CO2 

emission 

/Day 

Base Case 73474     3906.85 77380.85 99047.49 99047.49   

DG 52681 20793 1102.029 3008.22 55689.22 71282.20 72384.23 26.85% 

DR@10% 73472   3567.12 77039.12 98610.08 98610.08 0.30% 

DR@20% 73411   3534.25 76945.25 98489.92 98489.92 0.49% 

DG+DR@10% 50684 22790 1207.87 2728.77 53412.77 68368.34 69576.21 29.69% 

DG+DR@20% 54498 18976 1005.728 2558.90 57056.90 73032.84 74038.57 25.18% 
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Integration of DG 

Here, we delve into an optimization study involving the integration of DGs through solar PV installations 

in a DN. The results reveal significant enhancements in power quality parameters. Notably, we observe a 

substantial 21.8% reduction in annual energy loss and an increase in the minimum mean voltage from 

0.978178 to 0.99634 per unit. Table 3 provides valuable insights into the optimal sizing and locations of solar 

PV installations. Additionally, Figures 4, 5, and 6 visually depict the impact of DGs on demand patterns, 

voltage levels, and active power losses, respectively. This integration of solar PV into the DN leads to a 

remarkable 26.85% reduction in CO2 emissions. 

 

Figure 4. Impact of DG on demand curve. 

 

Figure 5. Impact of DG on voltage curve. 

 

Figure 6. Impact of DG on power losses. 

DR approach 

In this scenario, we evaluate the significance of the DR approach in the absence of DG coordination. We 

assume and compare two levels of demand elasticity. DR rates representing market demand elasticity are 

considered at 10% and 20% without DG placement. The results demonstrate that DR effectively reduces peak 

demand by 14.72 for a 10% DR rate and 18.32 for a 20% DR rate, along with yearly energy loss reductions 

ranging from 5.96 to 8.2%. DR also contributes to reductions in active power losses and an increase in peak-

to-valley disparity. Remarkably, even without DG, DR proves to be effective.  
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Figures 7, 8, 9, and 10 provide insights into the effects of 10 and 20% DR rates on demand, voltage, and 

active power losses. Furthermore, the impact of the DR rate on the voltage profile and CO2 emissions of the 

test system is found to be negligible. 

 

Figure 7. Impact of DR@10% on demand curve. 

 

Figure 8. Impact of DR@10% on power losses. 

 

Figure 9. Impact of DR@20% on demand curve. 

 

Figure 10. Impact of DR@2. 
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DG and DR coordination 

In this final analysis, we investigate the integration of DGs into DR coordination and planning while 

considering system constraints. This scenario explores DG integration with DR scheduling under varying DR 

rates and DG sizes. The results indicate improved system performance, with a  substantial reduction in annual 

energy loss, ranging from 29.03 to 33.31% compared to cases 1 and 2, depending on the DR rates. Additionally, 

the lowest mean voltage increases significantly with the presence of DGs. The load profile becomes flatter as 

DGs minimize the gap between maximum and minimum demand. Figures 11, 12, and 13 illustrate the impact 

of DGs with a 10% DR rate on demand, voltage, and active power losses, while Figures 14, 15, and 16 depict 

the effect of DGs with a 20% DR rate. Notably, in the presence of DGs, CO2 emissions are reduced by 29.69 

and 25.18% for DR rates of 10 and 20%, respectively. 

 

Figure 11. Impact of DG+DR@10% on demand curve 0% on power losses. 

 

Figure 12. Impact of DG+DR@10% on voltage curve. 

 

Figure 13. Impact of DG+DR@10% on power losses. 

 

Figure 14. Impact of DG+DR@20% on demand curve. 
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Figure 15. Impact of DG+DR@20% on voltage curve. 

 

Figure 16. Impact of DG+DR@20% on power losses. 

Figure 17 illustrates the total CO2 emissions per day across various scenarios, comparing the emission 

levels between the base case and the proposed approach. This comparison highlights how the proposed 

method significantly reduces CO2 emissions, demonstrating its environmental advantages over the base case. 

 

Figure 17. Total CO2 emission per day in different cases.  

Abbreviations 

𝑃L (t) Power transmission losses 

𝑃𝑖 (t) Real power at ith node at any time t 

𝑃𝐽 (t) Real power at jth node at any time t 

𝑄𝑖 (t) Reactive power at ith node at any time t 

𝑄𝐽 (t) Reactive power at jth node at any time t 

𝑉𝑖 (t) Voltage at ith node at any time t 

𝑉𝐽 (t) Voltage at jth node at any time t 

𝑟𝑖𝑗  Resistance of branch between ith and jth node 

𝛿𝑖 (t) Angle of voltage at ith node 

𝛿𝑗 (t) Angle of voltage at jth node 

𝑃𝑅 (𝑡) Reverse power at time t 
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𝐼G (𝑡)  Current from grid at time t 

𝑉G (𝑡)  Voltage of grid at time t 

𝐼S.  Designated limit of reverse current 

𝑉𝐷 (𝑡) Penalty for deviation of voltage 

𝑉Max.  Maximum value of permissible voltage at node 

𝑉Min  Minimum value of permissible voltage at node 

𝑃𝐺𝑖(𝑡) Real power generation at ith node for the time period t 

𝑃𝐷𝑖(𝑡) Real power demand for the time period t 

𝑄𝐺𝑖(𝑡) Reactive power generation at ith node for the time period t 

𝑄𝐷𝑖(𝑡) Reactive power demand for the time period t 

𝑃𝑖𝑛,𝑖(𝑡) Nonreceptive load at time t 

𝑃𝑒𝑙,𝑖(𝑡) Receptive load at time t 

𝐸𝑖
𝑇𝑜𝑡𝑎𝑙  Energy demand per day 

𝐿𝑑,𝑖(𝑡)   Load per hour for the time period t 

𝑃DG,𝑖 Real power injection by DG 

𝑃𝐷𝐺
𝑚𝑎𝑥 Maximum value of real power generation by DG 

𝐼𝑖𝑗(𝑡) Current flowing between ith and jth Node at t 

𝐼𝑖𝑗
𝑚𝑎𝑥 Maximum permissible value of current 

𝑌𝑖𝑗  Admittance matrix between ith and jth Node 

𝜃𝑖𝑗 Angle of impedance between ith and jth Node 

𝐼𝑠𝑚 Current of solar PV 

𝑆𝑟(𝑡) Solar radiation at t 

𝑆𝑟
𝑟 Rated value of solar radiation for PV 

Conclusion 

In summary, this research paper addresses a critical issue: the reduction of CO2 emissions in the Indian 

LPP through the optimization of solar PV system allocation and the coordination of DR. By integrating 

renewable energy DGs like solar PV, this study offers a promising solution to mitigate greenhouse gas 

emissions from the coal-based electricity generation sector. This research employs PSO to determine the 

optimal allocation of solar PV systems, taking into account various factors such as solar resource availability, 

electricity demand patterns, and the CO2 intensity of coal power generation. The primary objectives are to 

minimize CO2 emissions, maximize solar PV penetration, and minimize power losses, all while considering 

the intermittent nature of solar power and dynamic demand. The effectiveness of this approach is 

demonstrated on the IEEE 33 bus system, which is supplied by an LPP. 

The results are striking, revealing a substantial 29.69% reduction in CO2 emissions after implementing the 

proposed approach. These findings underscore the immense potential and effectiveness of integrating solar 

PV systems and coordinating demand response to significantly reduce CO2 emissions in the coal-based 

electricity generation sector, thereby contributing significantly to global efforts to mitigate climate change. 

While DGs have proven effective in reducing annual energy losses, it's essential to acknowledge their 

potential impact on load profile flattening. As DG penetration increases, voltage levels can rise, leading to 

reverse power flow back into the grid. These challenges underline the limitations of high DG penetration within 

the DN. However, the incorporation of DR helps balance the load profile, minimize the gap between peak and off-

peak load demands, and alleviate strain on the system. In essence, a higher DR rate can enhance demand 

normalization efficiency, particularly in scenarios where the penetration level of solar PV systems is lower. 

According to the implemented framework, the mitigation of maximum demand, reduced annual energy 

losses, and DG penetration reach impressive levels, reaching 26.78, 34.5, and 67.76%, respectively. These 

represent the maximum achievements from case 1 to case 4. 

In conclusion, it can be deduced that the optimal placement of solar PV systems, coupled with an optimal 

DR rate, stands as a highly effective strategy for reducing CO2 emissions in the LPP. This approach not only 

demonstrates a substantial reduction in emissions but also underscores the potential for cleaner and more 

sustainable energy solutions in the Indian electricity landscape. 



Page 12 of 13  Saxena and Rajput 

Acta Scientiarum. Technology, v. 46, e69511, 2024 

References 

Baran, M. E., & Wu, F. F. (1989). Network reconfiguration in distribution systems for loss reduction and load 

balancing. IEEE Transactions on Power Delivery, 4(2), 1401-1407. DOI: https://doi.org/10.1109/61.25627 

Autoridade Central de Eletricidade [CEA]. (2023). Emission: 2021-22. [Online]. Retrieved from  

https://cea.nic.in/wpcontent/uploads/baseline/2023/01/Approved_report_emission__2021_22.pdf 

Erdinc, O., Paterakis, N. G., Pappi, I. N., Bakirtzis, A. G., & Catalão, J. P. S. (2015). A new perspective for 

sizing of distributed generation and energy storage for smart households under demand response. 

Applied Energy, 143, 26-37. DOI: https://doi.org/10.1016/j.apenergy.2015.01.025 

Hejeejo, R., & Qiu, J. (2017). Probabilistic transmission expansion planning considering distributed 

generation and demand response programs. IET Renewable Power Generation, 11(5), 650-658. 

DOI: https://doi.org/10.1049/iet-rpg.2016.0725 

Lakshmi, G. V. N., Jayalaxmi, A., & Veeramsetty, V. (2023). Optimal placement of distributed generation 

based on DISCO's financial benefit with loss and emission reduction using hybrid Jaya–Red Deer 

optimizer. Electrical Engineering, 105, 965-977. DOI: https://doi.org/10.1007/s00202-022-01709-y 

Liu, S., Yu, W., Gao, W., Lou, K., & Zhang, Y. (2016). Multi-objective optimization dispatch of PV-MG 

considering demand response actions. In 2016 35th Chinese Control Conference. 2728-2733. Chengdu, 

China. DOI: https://doi.org/10.1109/ChiCC.2016.7553777 

Mazidi, M., Zakariazadeh, A., Jadid, S., & Siano, P. (2014). Integrated scheduling of renewable generation 

and demand response programs in a microgrid. Energy Conversion and Management, 86, 1118‐1127. 

DOI: https://doi.org/10.1016/j.enconman.2014.06.078 (have been cited in the text) 

Meena, N. K., Parashar, S., Swarnkar, A., Gupta, N., & Niazi, K. R. (2018). Improved elephant herding 

optimization for multiobjective DER accommodation in distribution systems. in IEEE Transactions on 

Industrial Informatics, 14(3), 1029‐1039. DOI: https://doi.org/10.1109/TII.2017.2748220 

Pathiravasam, C., & Venayagamoorthy, G. K. (2022). Distributed demand response management for a 

virtually connected community with solar power. IEEE Access, 10, 8350-8362. 

DOI: https://doi.org/10.1109/ACCESS.2022.3141772 

Rajput, S. K., & Dheer, D. K. (2022). Integration of 100-kWp PV with low-voltage distribution power system 

in composite climate: performance and energy metrics analysis. International Journal of Ambient Energy, 

43(1), 8176-92. DOI: https://doi.org/10.1080/01430750.2022.2092775 

Safdarian, A., Degefa, M. Z., Lehtonen, M., & Fotuhi-Firuzabad, M. (2014). Distribution network reliability 

improvements in presence of demand response. IET Generation, Transmission & Distribution, 8(12), 2027-

2203. DOI: https://doi.org/10.1049/iet-gtd.2013.0815 

Saxena, V., Kumar, N., & Nangia, U. (2021a). Smart grid: A sustainable smart approach. Journal of Physics: 

Conference Series, 1, 012042. DOI: https://doi.org/ 10.1088/1742-6596/2007/1/012042 

Saxena, V., Kumar, N., & Nangia, U. (2022). an impact assessment of distributed generation in distribution 

network. Artificial Intelligence and Sustainable Computing. 33-46. DOI: https://doi.org/10.1007/978-981-

19-1653-3_26 

Saxena, V., Kumar, N., & Nangia, U. (2021b). Analysis of smart electricity grid framework unified with 

renewably distributed generation. Advances in Smart Communication and Imaging Systems. Lecture Notes 

in Electrical Engineering, 721, 735-751. DOI: http://dx.doi.org/10.1007/978-981-15-9938-5_68 

Saxena, V., Kumar, N., & Nangia, U. (2023). An extensive data-based assessment of optimization techniques 

for distributed generation allocation: conventional to modern. Archives of Computational Methods in 

Engineering, 30, 675-701. DOI: https://doi.org/10.1007/s11831-022-09812-w 

Saxena, V., Kumar, N., & Nangia, U. (2024). Computation and optimization of BESS in the Modeling of 

Renewable Energy Based Framework. Archives of Computational Methods in Engineering, 31, 2385-2416. 

DOI: https://doi.org/10.1007/s11831-023-10046-7  

Viana, M. S., Manassero, G., & Udaeta, M. E. M. (2018). Analysis of demand response and photovoltaic 

distributed generation as resources for power utility planning. Applied Energy, 217, 456-466. 

DOI: https://doi.org/10.1016/j.apenergy.2018.02.153 



CO2 reduction by solar power and demand response Page 13 of 13 

Acta Scientiarum. Technology, v. 46, e69511, 2024 

Zhang, C., Xu, Y., Dong, Z. Y., & Wong, K. P. (2018). Robust coordination of distributed generation and 

price-based demand response in microgrids. IEEE Transactions on Smart Grid, 9(5), 4236-4247. 

DOI: https://doi.org/110.1109/TSG.2017.2653198 

Zeng, B., Zhang, J., Yang, X., Wang, J., Dong, J., & Zhang, Y. (2014). Integrated planning for transition to 

low-carbon distribution system with renewable energy generation and demand response. IEEE 

Transactions on Power Systems, 29(3), 1153-1165. DOI: https://doi.org/10.1109/TPWRS.2013.2291553 

 


