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ABSTRACT. Brain Computer Interfaces (BCI) face challenges in achieving sufficient control dimensions 

from decoding movements of left and right limb. To address this limitation, the motor imagery (MI) of fine 

movements from the same arm or leg can provide natural control of external equipment and increase the 

available control dimensions in a BCI system. However, conventional feature extraction and machine 

learning techniques have shown limited potential in detecting variations in EEG signals during the 

imagination of movements involving unilateral limb joints. In this study, we analyse the classification of 

movements specific to a single limb by utilizing EEGNet. We investigate the performance of EEGNet in 

classifying three different states: right-hand MI, right-elbow MI, and the rest state EEG signal. Our findings 

demonstrate that EEGNet achieves mean classification accuracy of 71.24% for the three-class classification 

task. The lowest accuracy observed was 58.89%, while the highest classification accuracy reached 84.44%. 

The results indicate that EEGNet has the potential to effectively differentiate MI signals of joints located 

on the same limb, offering promising avenues for intuitive control of external equipment in BCI 

applications. By surpassing the limitations of conventional techniques, EEGNet opens up new possibilities 

for improving control dimensions and enhancing the functionality of BCI systems. 

Keywords: brain computer interface; electroencephalogram; intuitive control; stroke; convolutional neural networks; 

support vector machine. 
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Introduction 

Traditional stroke rehabilitation methods involve physical exercise that a physiotherapist supervises. In 

contrast, active rehabilitation enables subjects to execute deliberate movements with their paralyzed 

extremities, thereby promoting neuroplasticity in the brain (Cassidy & Cramer, 2017). Utilizing 

Electroencephalogram (EEG) based BCI can enable individuals to operate a device or directly engage with the 

external space using their brain activations (Yadav & Maini, 2023). Compared to other BCI protocols, like 

those involving evoked and P300 potentials, MI-based BCI has the potential to be self-contained and 

indicative of the individual's intentional movement perception. Thus, MI-based BCI has a distinct advantage 

in stroke rehabilitation because it uses active imagery to stimulate the plastic potential of neurons to 

reconstruct control functions between the limb and brain (Hong et al., 2017). 

The predominant area of research in MI- BCI pertains to the classification of movement intention into 

distinct categories, namely left or right arm, left or right leg, or a combination of arm, leg, and tongue 

movements (Padfield et al., 2022), because the cerebral site of event-related de-

synchronization/synchronization is on separate regions of the brain when left- and right-limb MI is 

performed (Pfurtscheller & Lopes da Silva, 1999). There are two main limitations in using these multi-lateral 

task-based BCI systems: (i) The system exhibits low-dimensional control, implying a limited ability to 

distinguish a restricted set of cognitive tasks as specific control directives. (ii) The mental process of 

envisioning movements of distinct limbs to manipulate a peripheral device can lead to cognitive dissonance, 

characterized by a discrepancy between the intended movement goal and the actual action. For example, it is 

unnatural for the users to imagine moving both hands to propel the helicopter forward (Doud et al., 2011). 

Hence, only a few BCI are suited for real-world applications.  

The MI paradigm involving multiple parts of the same limb can provide a natural means of controlling 

external equipment, such as an exoskeleton, without imposing additional cognitive stress on the user. This 
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approach avoids the need for the user to establish any artificial connections between imagined and 

neuroprosthetic movements. Using EEG signals to differentiate the MI of distinct actions within a limb is 

problematic since these MI have contiguous spatial depiction in the motor cortex (Sanes et al., 1995). 

Nonetheless, it is an urgent necessity to complete this task successfully. On the contrary, there are fewer 

investigations on multitasking MI-BCIs of the same extremity. Table 1 provides a survey on the available 

unilateral MI BCI tasks. 

Table 1. MI studies focused on classifying intuitive movement tasks. 

Reference No of classes MI tasks Feature extraction ML Algorithms Accuracy 

Vučković and 

Sepulveda (2012) 
4 

Extension, flexion, pronation, 

and supination  
Gabor transform ENN 63 ± 10%  

Edelman et al. 

(2016) 
4 Imaginary wrist movements   Time-frequency features 

Extended EEG source 

imaging method 
81.4% 

Liao et al. (2014) 2 Ten pairs of finger movements   
PCA and power spectral 

features 
SVM  77.1%   

Yong and Menon 

(2015); Tavakolan 

et al. (2017) 

3  
Rest, grasp, elbow, and elbow 

with goal   

CSP, FBCSP and log band 

power, time-domain 

features, autoregressive 

model coefficients, 

waveform length, root 

mean square 

LDA, SVM, LR 

Multiclass SVM     

60.7%,  

74.2% 

Chu et al. (2020) 6  

Wrist flexion, extension, 

pronation, and supination; hand 

close and open 

CSP, FBCSP, Riemannian 

Geometry feature 

extraction     

LDA and SVM 

classifier    
80.50%     

Alazrai, Alwanni, 

Baslan, Alnuman, 

and Daoud (2017) 

11 

Rest, three types of grasps, wrist 

ulnar/radial deviation, flexion 

and extension of five fingers 

separately      

Choi-Williams time-

frequency distribution   

Binary and 

multiclass SVM       
90.2% 

Zhang et al. 

(2017) 

2 

 

Rest vs task (MI Tasks: elbow 

flexion /extension; opening 

/closing draw; drinking with a 

spoon; lifting and putting down a 

dumbbell; open/close a door; 

cleaning a plate; combing hair; 

cutting a pizza; and   pick a ball 

and put it into basket  

 FBCSP 

LDA and dual-

augmented 

Lagrangian method 

55% to 62% 

Ma et al., (2020b) 3   Rest, right hand and right elbow 

Sliding window approach, 

correlation matrix and 

coherence matrix 

Channel-Correlation 

Network  
87.03% 

Zhou et al. (2009) 2 Torque at the shoulder or elbow 

Time-frequency 

synthesized spatial 

patterns and transforms 

SVM    

92% in healthy 

and  

75% in paretic 

Ma et al. (2022) 5 
Hand, wrist, elbow, shoulder, and 

rest 

CSP and time distributed 

attention module 
LSTM 

46.8 % for 5 

classes; 53.4 % 

for 4 classes 

Lee et al. (2021) 4 
Tappimg of index, middle, ring, 

and little finger 
CSP 

SVM, LDA, kNN, ESD 

and GNB 

46.94 ± 5.99% 

for healthy; 66.0 

± 14.96% for 

stroke patients 

Bi and Chu (2023) 6 

Flexion and extension of elbow, 

pronation and supination of 

forearm, open and close hand 

- 
Transfer data 

learning network 
65 ± 0.5% 

Rao et al. (2024) 4 
Thumb and finger flexion of the 

left and right hand 
- 

EEGNet with an 

attention module 
72.91% 

Satam (2024) 3 Rest, right hand, right elbow Wavelet transform ANFIS 90% 

Guo et al. (2024) 2 Knee flexion and extension Superlet transform SVM 78.32% 

Abbreviations used in Table: ANFIS- Adaptive Neuro Fuzzy Inference System, CSP- Common Spatial Pattern, ENN- Elman’s Recurrent Neural Networks, 

ESD- Ensemble Subspace Discriminant, FBCSP- Filter-Bank CSP, GNB- Gaussian Naïve Bayes, kNN- k Nearest Neighbor, LDA- Linear Discriminant 

Analysis, LR- Logistic Regression, LSTM- Long-short Term Memory, PCA- Principal Component Analysis, SVM- Support Vector Machine 

Several studies have concentrated on categorizing distinct MI tasks, including wrist movements, finger 

movements, hand grasping, and elbow movements as seen in Table 1. Diverse techniques for feature 

extraction are utilized, and various ML techniques are employed to decipher MI signals. The attained levels 

of accuracy exhibit variability in different studies, with values ranging from comparatively low (46%) to high 
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(92%). Few researchers have shown that ML algorithms can decode MI from paretic patients (Alazrai et al., 

2017; Zhou et al., 2009; Lee et al., 2021). It is appropriate to evaluate the neural network's efficacy in 

classifying imagined joint motions of the same limb to enhance the probability of developing an intuitively 

operable robotic rehabilitation device. Due to its effectiveness and computational efficiency, EEGNet, a deep 

learning architecture for EEG data interpretation, has attracted much attention lately. Lawhern et al. (2018) 

first presented the EEGNet and the use of temporal and spatial convolutions in the EEGNet encapsulates the 

temporal and spatial features of the EEG without the need for any feature extraction approach. The 

performance of this EEG-specific convolutional neural network was assessed using multiple benchmark EEG 

datasets, which encompasses the evoked potential paradigm, the sensory-motor rhythm, and the movement-

related cortical potential paradigm. The results show that it is more accurate, generalized, and efficient than 

conventional EEG analysis methods. EEGNet is effective in diagnosing various neurological conditions and 

for classifying diverse cognitive states such as concentration, drowsiness, and meditation (Peng et al., 2022). 

Recently architectural modifications have been proposed for the EEGNet architecture to improve its performance 

for single-trial EEG classification (Zhang et al., 2022). The present investigation employs EEGNet for categorizing 

unilateral right arm MI. This study uses openly available datasets from Harvard Dataverse (Ma et al., 2020a). 

Material and methods 

EEGNet is a deep learning architecture designed for EEG-based BCI and can capture local and global 

features. Its architecture, as shown in Figure 1, consists of several essential convolution layers, which makes 

it feasible to learn spatial and temporal features. Feature maps representing data flow across the layers in the 

neural network is shown in Figure 2. The first temporal convolutional layer operates on the temporal aspect 

of the EEG signals to learn frequency filters. The second layer of convolution learns frequency-specific spatial 

filters by employing two tasks: depthwise convolution and pointwise convolution. It learns to fuse the feature 

maps optimally and helps reduce the number of parameters and computations required by the network. Batch 

normalization employed after each convolution layer of EEGNet normalizes the activations between each 

layer, which helps prevent overfitting and stabilizes the network's training. Global average pooling averages 

the activations over all time points and helps reduce the count of parameters and computations. EEGNet also 

uses dropout to prevent overfitting and improve generalization. A dense layer is avoided for feature 

accumulation ahead of the final stage to limit the free parameters. In blocks 1 and 2, the model uses the elu 

activation, while in block 3 softmax activation is used. 

 
Figure 1. Schematic layout of blocks in EEGNet. 

The open-access data from Harvard Dataverse was used. Twenty-five healthy participants completed three 

tasks in this study totaling 22,500 trials. The tasks include imagining the movement of (i) hand, (ii) elbow, 

and (iii) relaxing with eyes open. The EEG signals were recorded using a 64-channel Neuroscan SynAmps2 

amplifier. The target cue ("Hand" or "Elbow") was displayed for four seconds as a visual cue and the order of 

task cues in a session was randomized. The participants were instructed to kinesthetically imagine the 
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indicated movement.  The experiment consists of 300 trials of resting state collected over four sessions (4x75 

trials) and 15 sessions of 40 trials of hand and elbow MI (20 trials for hand and 20 trials for elbow in a session).  

Thus, the dataset contains 300 trials for each type of mental state for each individual. The data were collected 

at 1 kHz sampling rate and subjected to 0.5–100 Hz band-pass filtering followed by a 50 Hz notch filter. The 

data were spatially filtered using common average reference and time-domain filtering from 0 to 40 Hz. In 

order to cut down on processing costs, the data were down-sampled to 200 Hz. The muscle and eye movement 

artifacts were eliminated using the automatic artifact removal toolkit. 

 
Figure 2. Visualization of the information extraction by the 2D convolution layers in the EEGNet. 

The procedure adopted for classifying the EEG signal is illustrated in the block diagram, as shown in 

Figure 3. First, the data set in ‘.mat’ format is downloaded from the Harvard Dataverse. The 25 patients' EEG 

data from .mat files are classified using a subject-dependent or within-subject technique. The .mat files of 

each patient contain 600 trials of task data, 600 task labels, and 300 trials of rest data. These data are read 

into the Python workspace into data and label variables. The data is validated for the presence of any missing 

and infinity values. In step two, the EEGNet model is defined and compiled with sparse categorical cross 

entropy loss function and with required early stopping parameters. The EEGNet model is modified to suit the 

dataset by setting the kernel length to 100, which is half the sampling frequency of the data. In step 3, the 

model is trained in the subject-wise method using a validation technique.   

The 900 trials of 62-channel EEG data of a subject are randomized and divided into a train, validation, and 

test set. The training set included 720 samples (80%), and validation and testing were done using the 

remaining 20% of data each (90 samples for testing and 90 samples for validation). At the end of each epoch, 

90 samples are used to validate the model. Finally, the learned model at the end of training is tested using the 

test data, and its accuracy in classifying unseen data is analyzed. 

 
Figure 3. Block Diagram of the methodology. 



Deciphering Motor Imagery EEG signals Page 5 of 9 

Acta Scientiarum. Technology, v. 47, e69697, 2025 

The Google Collab notebook is used to train and test the EEGNet. The model is trained with an upper limit 

of 500 epochs, but early stopping with a patience value of 50 reduces processing time and avoids overfitting. 

Sparse categorical cross entropy is the loss function used. The best weights are restored at the end of each 

training fold, and the validation loss is monitored for early stopping. During model training, network weights 

are iteratively updated using the Adam optimizer. 

The input of shape (none, 62, 800,1) is fed to the input layer of the EEGNet. The EEG data is passed to the 

first 2D convolution layer where eight filters of size (1, 100) are convolved with the data to produce eight 

feature maps containing EEG signals at different frequency bands, which produces an output of shape (none, 

62, 800,8). Next, a depth-wise convolution filter of size (62, 1) and a depth of 2 are used to obtain the spatial 

filter, which provides an output of shape (none, 1, 800, 16). Both convolutions in block one are performed 

linearly, and batch normalization is performed after each convolution step. Drop out of 0.5 is used to 

regularize the model and prevent overfitting. In block 2, a depth-wise convolution of size (1,16) succeeded by 

32 point-wise convolutions of size (1,1) is done to limit the parameters to fit. An average pooling layer of size 

(1, 8) is employed for dimension reduction. After the dropout, the output shape of block two is (None, 1, 25, 

16). Now the classification layer only has these few data to classify the output into the three classes. The final 

dense layer connects all the 400 flattened layers to the final softmax activation layer.  

Results and discussion 

Table 2 shows the classification accuracy for all 25 subjects while considering all 62 channels of data. 

The three-class classification accuracy of the FBCSP feature extraction and SVM classifier reported by 

Ma et al. (2020a) for the same dataset is also shown in Table 2 and Figure 4. The proposed EEGNet showed 

an average accuracy of 71.24% for the ternary classification. The best classification accuracy of EEGNet 

was found to be 84.44% for subjects 7 and 16. The lowest classification accuracy of 58.89% was obtained 

for subjects 11 and 20. Inter-subject variability in EEG signals can make it challenging to develop a model 

that works well for all subjects. 

Table 2. Classification performance of FBCSP+SVM and EEGNet. 

Subjects 
FBCSP+SVM 

Accuracy 

EEGNet 

Accuracy 
AUC 

Rest Hand Elbow 

S001 69 71.11 0.98 0.84 0.80 

S002 68.11 74.44 0.97 0.79 0.86 

S003 71.67 71.11 0.96 0.84 0.81 

S004 69 73.33 0.98 0.79 0.85 

S005 66.33 71.11 0.96 0.84 0.81 

S006 73.44 70.00 0.96 0.85 0.82 

S007 63.78 84.44 0.97 0.93 0.92 

S008 67.33 63.33 0.92 0.73 0.73 

S009 71.89 78.89 0.97 0.92 0.93 

S010 70.78 72.22 0.97 0.79 0.86 

S011 68.89 58.89 0.90 0.67 0.71 

S012 71.67 67.78 0.96 0.73 0.76 

S013 67.67 66.67 0.95 0.77 0.75 

S014 67.44 72.22 0.92 0.83 0.84 

S015 71.33 76.67 0.95 0.82 0.80 

S016 69.11 84.44 0.98 0.93 0.93 

S017 67.78 77.78 0.98 0.91 0.88 

S018 67.11 77.78 0.97 0.89 0.86 

S019 62.44 63.33 0.94 0.76 0.75 

S020 67.78 58.89 0.87 0.74 0.68 

S021 69.89 60.00 0.92 0.71 0.68 

S022 66.78 76.67 0.96 0.84 0.84 

S023 70.22 75.55 0.95 0.82 0.85 

S024 68 65.55 0.94 0.86 0.82 

S025 68.68 68.89 0.95 0.78 0.82 

Average 68.64 71.24 0.95 0.82 0.81 
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Figure 4. Three class classification performance of EEGNet and FBCSP+SVM. 

With an average accuracy of approximately 71.24% for classifying rest, hand movement MI, and elbow 

movement MI, it is evident that EEGNet effectively discerns MI of the same limb joints using the local and 

global information gathered by its spatial and temporal filters. For Subject 1, with an accuracy of 71.11%, the 

confusion matrix and Receiver Operating Characteristics (ROC) curve are depicted in Figure 5. The confusion 

matrix summarizes the EEGNet performance on the test data and the One-vs-Rest (OvR) ROC curve illustrates 

the separability of a class against the other classes across all possible threshold values. 

 
Figure 5. Confusion matrix (left) and OvR ROC curve(right) for Subject 1 (Labels in Confusion matrix: 0-rest; 1-hand MI; 2-elbow MI). 

In Figure 6, the confusion matrix and ROC curve for the highest classification accuracy of 84.44% are 

shown. The Area Under the ROC curve (AUC) values for all three classes are above 0.92, demonstrating that 

EEGNet can easily decipher the three classes of MI in subjects 7 and 16. Figure 7 presents the confusion matrix 

and ROC curve for the lowest classification accuracy of 58.89%. Here, the AUC value for distinguishing rest 

state from the other two MI classes exceeds 0.85, indicating that EEGNet can better classify rest state against 

hand and elbow MI. The AUC values for hand MI versus the other classes and elbow MI versus the other classes are 

0.67 and 0.71 for Subject 11 and 0.70 and 0.67 for Subject 20. These values are significantly above the chance level 

of 0.5, suggesting that the model can reliably differentiate these classes at all possible threshold values. 
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Figure 6. Confusion matrix (left) and OvR ROC curve (right) for highest classification accuracy (Labels in Confusion matrix: 0-rest; 1-

hand MI; 2-elbow MI). 

 
Figure 7. Confusion matrix (left) and OvR ROC curve (right) for lowest classification accuracy (Labels in Confusion matrix: 0-rest; 1-

hand MI; 2-elbow MI). 
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The model can better classify the {rest} against {hand and elbow}, while {elbow} vs {rest, hand} and {hand} 

vs {elbow, rest} have an AUC on the same level as observed in Table 2. The highest classification accuracy of 

FBCSP+SVM and EEGNet is 71.89 and 84.88% respectively. An improvement in classification accuracy is 

achieved in three-class classification using EEGNet. Automatic feature learning of EEGNet has learned 

relevant features directly from raw EEG data. This eradicates the subjective manual feature engineering step 

and can capture complex patterns in the EEG signals without relying on pre-defined features. EEGNet also 

enables end-to-end learning, where it learns directly from the raw EEG data to the desired classification 

labels. This holistic approach allows the model to optimize all the parameters simultaneously, resulting in 

better performance than traditional methods involving separate feature extraction and classification steps. 

Data availability 

Open access data from Harvard dataverse is used in this study. The link to the data source is 

https://doi.org/10.7910/DVN/RBN3XG 

Conclusion 

The average classification accuracy for the ternary problem of deciphering rest from imaginary hand and 

elbow MI is 71.24%, more significant than the random classification accuracy of 33%. In addition, the EEGNet-

based classification outperformed the FBCSP+SVM with an overall success rate of 71.24% versus 68.64%. The 

findings show that it is possible to interpret the same limb movements with EEGNet to give a natural way to 

manage the external devices and offer the opportunity to enhance the possible degrees of freedom of 

equipment controlled by a BCI. This could open the door to other exoskeletons and robotic devices that the 

user can operate directly rather than depending on external commands or unrelated movement ideas. 
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