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ABSTRACT. The main aim of the study is to deepen understanding of quasilinear hyperbolic systems 

through the investigation of their asymptotic solutions, with specific objectives related to theoretical 

analysis, wave dynamics characterization, and practical applications in physics and engineering. The 

methods of mathematical analysis employed include asymptotic analysis, Taylor series expansions, and the 

formulation of transfer equations. The paper considers systems of quasilinear hyperbolic equations in 

partial derivatives of the first order with two independent variables. The main results of the paper are: 1) 

high-frequency asymptotic solutions of small amplitude for quasilinear hyperbolic systems of the first order 

were obtained. For fixed values of t and 𝑥𝑘 , values of the modulus |𝜎0(𝑡) − 𝜎0(𝑡0)|, |𝜎0
𝑣(𝑡) − 𝜎0

𝑣(𝑡0)| are 

limited by р→∞, because the transfer equations depend on p. Thus, the moduli of the decomposition 

coefficients are bounded at p→∞ and at fixed u and 𝑥𝑘; 2) It has been established that for ui
0= const, 𝐴𝑖𝑘

𝐾 , 𝐵𝑖, 

independent of t, 𝑥𝑘 the solution of the equation is greatly simplified because the coefficient а0 is constant. For 

the linear function 𝜙(𝑡, 𝑥), 𝑏00′ is also constant. Practical applications of the results lie in fields such as fluid 

dynamics, wave propagation, and materials science, where understanding dispersion phenomena is crucial. 
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Introduction 

The relevance of applying systems of differential equations in various fields of science, technology, and 

natural and social sciences is beyond doubt. Hyperbolic partial differential equations describe wave 

phenomena in physical models in which information is transmitted with finite velocities (Abdel-Rehim, 

2021). Equilibrium and diffusion phenomena, as well as the conservation of mass, momentum, and energy, 

are represented by two additional broad categories of partial derivative equations: elliptic equations and 

parabolic equations. These equations capture various physical phenomena such as the motion of continuous 

media, disintegration of discontinuities, explosion, and high-speed fluid flow. 

Literature review 

These issues have been considered by many authors (Gugat & Herty, 2020). Despite advances in the 

physical and mathematical sciences, at the moment there is still no general theory providing the existence, 

uniqueness and qualitative behaviour of solutions (Ebert & Reissig, 2018). In process engineering and 

hydraulics, the one-dimensional Euler system is successfully used, which allows for simulating flow regimes 

under non-stationary conditions with high accuracy. However, in the literature, there are also data on the use 

of this system for modelling nonlinear processes (Sahoo, Sekhar, & Sekhar, 2019). The application of the finite 

difference method to the approximate solution of hyperbolic partial differential equations will be considered 

in the example of a simple wave equation, which is a mathematical model of the problem of vibrations of an 

elastic string with fixed edges (Beketaeva, Naimanova, Shakhan, & Zadauly, 2023; Macías-Díaz, 2021). It is 

known that the most important property that clear differential schemes should have is stability, that is, the 

ability of the scheme not to accumulate computational noise (Sharma & Venkatraman, 2012). In the case of 

a hyperbolic equation, stability analysis is usually performed concerning the output data based on the 

spectrum of eigenvalues of the transition operator to a new time layer, based on which the adopted difference 

schemes are selected (Sharma & Venkatraman, 2012). The Janenko method (Sahoo et al., 2019), is used to 

find the exact solution of the gas dynamics equations. The general form of the asymptotic expansion in the 
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vicinity of individual characteristics was set with the accuracy up to the second-order terms on the parameter 

determining the distance from the characteristics (Sahoo et al., 2019). The authors of (Moussati & Dalle, 2006) 

used the systematic reduction approach to obtain separate classes of solutions for this system. It is also known 

about obtaining invariant-like solutions to this problem for a class of fast-type materials and second-kind 

fluids (Wang & Wang, 2020a,2020b) and solving the fast diffusion equation, relaxation processes, nonlinear 

diffusion-convention equations, and the problem for transport flow. In Suleimanov and Shavlukov (2021) the 

authors explain the evolutionary behaviour of the shock wave for flat and nonplanar space. In the paper 

(Abdel-Rehim, 2021) the authors present a new classical proof of the results (Gugat & Herty, 2020). Much 

attention is paid to the study of nonlinear evolution equations: Klein-Gordon, Schrödinger, etc., which are 

special cases of classical linear equations. In Abdel-Rehim (2021), Gugat and Herty (2020) the method of 

obtaining asymptotic solutions for the quadratic quasilinear wave equation is presented. The authors 

Moussati and Dalle (2006) used the method of approximate Lie symmetries to solve one-dimensional 

quasilinear hyperbolic systems; Wang and Wang (2020a, 2020b) also used high-frequency asymptotic 

solutions for similar problems. It is known that integrals in most cases are almost not calculated explicitly. 

Therefore, such problems require a lot of effort and powerful computing resources, especially when the 

integrand contains a large parameter (Moussati & Dalle, 2006). It should be noted that differential equations 

with a small parameter describing the above-mentioned phenomena and processes are usually nonlinear or 

quasilinear. To solve such problems, the main method is asymptotic analysis, which allows one to construct 

approximate (asymptotic) solutions of the equations. Asymptotic solutions allow approximating the exact 

solutions of quasilinear hyperbolic systems (Wang & Wang, 2020a, 2020b). 

Sharma (2010) found asymptotic solutions for singularly perturbed hyperbolic systems of first-order 

equations in which a small parameter is contained only in some derivatives. In Symak, Sabadash, Gumnitsky, 

and Hnativ (2021) the singularly perturbed hyperbolic systems of linear and quasilinear systems are 

considered, for which asymptotic solutions of the linear hyperbolic system of first-order equations for the 

case when a small parameter is contained in some derivatives are constructed by the boundary function 

method. Systems of equations for functions of both regular and singular parts of the asymptotics have been 

studied and it is shown that the terms of the asymptotic singular part have the properties of the boundary 

layer functions (Sharma, 2010). 

Research gap 

Even though quasilinear hyperbolic equations describe many processes, at the moment it is important to 

obtain solutions to this problem asymptotically (Kintonova, Sabitov, Povkhan, Khaimulina, & Gabdreshov, 

2023; Beketaeva, Bruel, & Naimanova, 2019). The asymptotic behavior of solutions to these problems can 

provide valuable insights into the long-term behavior of physical systems described by such equations. Here 

are a few reasons why studying asymptotic solutions of quasilinear hyperbolic problems is important:  

1. Asymptotic solutions describe the behavior of solutions as time or space tends to infinity or to some 

other critical point. Understanding this behavior is crucial for predicting the long-term evolution of physical 

systems described by hyperbolic equations. 

2. In many practical applications, it may not be feasible to solve hyperbolic equations exactly. 

Asymptotic analysis provides a framework for deriving approximate solutions that are valid under certain 

limiting conditions. Understanding the accuracy and limitations of these approximations is essential for 

practical engineering and scientific applications. 

3. Hyperbolic systems often exhibit discontinuous solutions known as shock waves. Understanding the 

asymptotic behavior of these shock waves is essential for developing accurate shock-capturing numerical 

schemes and for predicting the behavior of systems in extreme conditions. 

4. Asymptotic analysis can provide insights into the stability of solutions to hyperbolic equations. 

Stability analysis is crucial for determining whether small perturbations to a system's initial conditions lead 

to significant changes in the solution over time. 

5. Asymptotic matching techniques allow for the construction of composite solutions that capture the 

behavior of a solution in different regions of space or time. These techniques are particularly useful for 

problems with multiple scales or discontinuities. 

Given the importance of understanding the long-term behavior and stability of solutions to hyperbolic 

equations, further research into the asymptotic solutions of quasilinear hyperbolic problems is warranted. 
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This research can lead to improved predictive models, more accurate numerical methods, and a deeper 

understanding of the underlying physical phenomena. 

The main aim of the study is to deepen understanding of quasilinear hyperbolic systems through the 

investigation of their asymptotic solutions, with specific objectives related to theoretical analysis, wave 

dynamics characterization, and practical applications in physics and engineering. This investigation 

encompasses several specific objectives: to derive asymptotic solutions for the given quasilinear hyperbolic 

equations; to characterize the dynamics of wave propagation described by the hyperbolic equations; to 

analyze weak discontinuities in the solutions of the equations; to demonstrate the practical relevance of the 

asymptotic solutions in physics, particularly in the study of shock waves in gas and particulate media; to 

provide a theoretical justification for the constructed asymptotic solutions; to compare its findings with 

existing results in the literature, highlighting similarities, differences, and areas of agreement or 

disagreement. Lastly, the study may aim to discuss the methodological approaches used in deriving the 

asymptotic solutions, including any assumptions made, techniques applied, and challenges encountered. 

Material and methods 

System of equations and solution development 

Let us consider a quasilinear system of first-order differential equations in general form (Sharma, 2010): 

𝐴𝑖𝑘
𝐾 (𝑢, 𝑥)

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝑝𝐵𝑖(𝑢, 𝑥) = 0 (1) 

Equation (1) for K=0,1…..n and i, k=1, … n by definition is a symmetric hyperbolic equation. Moreover, 

𝐴𝑖𝑘
0 = 𝐼𝑖𝑘 , 𝑥𝑘 = 𝑡. The equation coefficients are regular functions of the variables uk, as well as the variables xk 

around the U and D. The area of existence of a sufficiently regular solution 𝑢𝑖𝑘
𝐾 ∈ 𝑈 of the equation (1). If 𝑢𝑖𝑘

𝐾 =

𝑐𝑜𝑛𝑠𝑡 and 𝐵𝑖(𝑢0) = 0, then 𝑢𝑖𝑘
0  is a solution to the system (1). 

The symmetric hyperbolicity condition is essential for transitioning from a traveling wave equation to a 

well-defined transport equation. This condition ensures the stability and well-posedness of the system. The 

asymptotic behavior of the solution tends towards hyperbolic equations, but not necessarily symmetric ones. 

This indicates a distinction between the behavior of solutions in the long-term limit and the symmetry of the 

equations. 

The asymptotic solution of (1) will be presented in the following form: 

𝑢𝑖(𝑥) = 𝑢𝑖
0(𝑥) + ∑ 𝑔𝑖

𝜈(𝑥)𝑆𝜈(𝜙) + 𝑅𝑖(𝑥)𝑁
𝜈=1  (2) 

Moreover: 𝑆𝜈(𝜙) = (𝑖𝑝)−𝜈𝑒𝑖𝑝𝜙, 

where ϕ(x) – phase function. 

The authors assume that the coefficients of the series 𝑔𝑖
𝜈(𝑥) and the rest of the series  are sufficiently 

regular in the range D. 

Equation coefficients (1) 𝐴𝑖𝑘
𝐾 (𝑢, 𝑥) and 𝐵𝑖(𝑢, 𝑥) are represented in the form of a Taylor series in the vicinity 

of 𝑢𝑖𝑘
0  at the steady-state value 𝑥𝑘. All equations containing the remainder of the series 𝑅𝑖(𝑥) are grouped in 

expressions 𝑅̃𝑖𝑘
𝐾 (𝑥) and 𝑅̃𝑖(𝑥). 

𝑆𝑣
′ = 𝑆𝑣−1, 𝑝𝑆𝑣+𝑀

= −𝑖𝑆𝑣−1, 

𝑆𝑣𝑆𝑀 = 𝑒𝑖𝜙𝑝𝑆𝑣+𝑀
 (3) 

𝐴𝐾(𝑢) = 𝐴𝐾(𝑢0) + ∑
1

𝑛!
𝐴𝐾(𝑛) ∑𝑛𝑁

𝑛=1 + 𝑅̃𝐾 (4) 

𝐵(𝑢) = 𝐵(𝑢0) + ∑
1

𝑛!
𝐵(𝑛) ∑𝑛𝑁

𝑛=1 + 𝑅̃ (5) 

𝑅̃𝐾and 𝑅̃ are the remainder of 𝑅̃𝑖𝑘
𝐾 (𝑥). 𝐴𝐾(𝑛) and 𝐵(𝑛) are the nth-order derivatives of the functions 𝐴𝑖𝑘

𝐾 (𝑢, 𝑥) 

and 𝐵𝑖(𝑢, 𝑥). ∑𝑛 is a quantitative expression of ∑ 𝑖. ∑ 𝑖 = 𝛥𝑢𝑖 − 𝑅𝑖. 

After substituting (2), (4) and (5) into (1), one can obtain: 

𝐿𝑖(𝑢) =
𝜕

𝜕𝑡
(∑𝑖 + 𝑅𝑖) + 𝐴𝑖𝑘

𝐾(𝑢0)
𝜕

𝜕𝑥𝑘
(∑𝑖 + 𝑅𝑖) + (∑ −𝑖𝑘 + 𝑅̃𝑖

𝑘)
𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝑝(∑ −𝑖 + 𝑅̃𝑖)  (6) 

After establishing the solution (2) and finding the coefficients of equation (1), one can obtain: 

∑ 𝐸𝑖
𝑣𝑆𝜈 + 𝑁𝑖[𝑅] = 0𝑀

𝜈=1  (7) 
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To fulfill the following equation it is sufficient to establish that 𝐸𝑖
𝑣  was 0 for y=0,1,....,N-1 and 𝐸𝑖

𝑣𝑆𝜈 +

𝑁𝑖[𝑅] = 0, where one gets a series of recurrent equations: 

𝐴𝑖𝑘𝑔𝑘
1 = 0  (8) 

𝐴𝑖𝑘𝑔𝑘
𝑣+1 + 𝐷𝑖𝑘𝑔𝑘

𝑣 + 𝐻𝑖𝑘
(𝑣)

𝑔𝑘
𝑣 + 𝐺𝑖

(𝑣)
= 0  (9) 

𝐸𝑖
𝑣𝑆𝜈 + 𝑁𝑖[𝑅] =  (10)  

𝐷𝑖𝑘 = 𝐴𝑖𝑘(𝑢0, 𝑥)
𝜕

𝜕𝑥𝑘
 is a differential operator; 𝐴𝑖𝑘 = 𝐴𝑖𝑘

𝑘 + 𝑖𝐵𝑖
𝑘 - dispersion matrix; 𝐴𝑖𝑘 = 𝐷𝑖𝑘𝜙 denotes the 

matrix of characteristic equations (1); 𝐵𝑖
𝑘 denotes the derivative 𝜕𝐵𝑖 𝜕𝑢𝑘⁄ for 𝑢𝑘 = 𝑢𝑘

0;  

Functions 𝐻𝑖𝑘
(𝑣)

, 𝐺𝑖
(𝑣)

 depend also on the multipliers 𝑔𝑘
𝑣, . . . . , 𝑔𝑘

𝑣+1. 𝐻𝑖𝑘
(𝑣)

 depends linearly on 𝑒𝑖𝑝𝜙. 

Let us apply the definition 𝜕𝜙 𝜕𝑥𝑘 = 𝑘𝑘⁄ , herewith 𝑘𝑘 = −𝜔; 𝐴𝑖𝑘 = 𝑘𝑘𝐴𝑖𝑘
𝑘 and 𝐴𝑖𝑘 = 𝑘𝑘𝐴𝑖𝑘

𝑘 − 𝑖𝐵𝑖
𝑘 or: 

𝐴𝑖𝑘 = −𝜔𝐼𝑖𝑘 + 𝐴𝑖𝑘 (11) 

𝐴𝑖𝑘 = 𝑘𝑘𝐴𝑖𝑘
𝑘 − 𝑖𝐵𝑖

𝑘, 𝑘 = 1, . . . . . , 𝑚 

The final condition for the existence of a non-zero value of the solution 𝑔𝑘
1  of equation (8) is the 

disappearance of the determinant 𝑄 = 𝑑𝑒𝑡(𝐴𝑖𝑘). Thus, one can obtain the following dispersion equation: 

𝑄(−𝜔, 𝑘) = 0  (12) 

k – variable of kk. 

For valid values of kk, matrix 𝐴𝑖𝑘 is hermitian under the assumption that the matrix 𝐵𝑖
𝑘 is antisymmetrical. 

Then equation (12) has n real roots for each real number kk. If the matrices 𝐴𝑖𝑘
𝑘 are asymmetric and the matrix 

𝐵𝑖
𝑘 is not antisymmetric, then it is sufficient to assume that for every real number kk there is n real roots kk. 

Fulfillment of this condition ensures the correctness of the following procedure. 

Let us write the roots of equation (10) as: 

𝜔(𝑖) = 𝐻(𝑖)(𝑡, 𝑥, 𝑘) (13) 

for і=1,…,n; x denotes xk. 

It is assumed that 𝐻(𝑖) are sufficiently regular functions. Equation (12) is a first-order differential equation 

defining the phase function 𝜙(𝑡, 𝑥). The branches of this function are defined by equation (13).  

The characteristic bands of equation (13) satisfy the system of canonical Hamilton equations. 

𝑥
•

𝑘 =
𝜕𝐻

𝜕𝑘𝑘
 (14) 

𝑘
•

𝑘 = −
𝜕𝐻

𝜕𝑘𝑘
 (15) 

where the dot indicates the usual derivatives on t. Curves 𝑥𝑘 = 𝑥𝑘(𝑡) are the rays of the asymptotic solution 

of the system, and 𝛾𝑘 = 𝑥
•

𝑘 is the radial velocity. The phase function can be described by the equation: 

𝜙
•

= −𝜔 + 𝑘𝑘𝛾𝑘 = 𝐿 (16) 

The Lagrangian and the Hamiltonian are related by the following relationship, which arises from (16): 

𝐿 = −𝐻 + 𝑘𝑘
𝜕𝐻

𝜕𝑘𝑘
 (17) 

We assume that ω is a q multiple of the dispersion equation. Dispersion matrix 𝐴𝑖𝑘(𝑡, 𝑥, 𝜔, 𝑘) includes q 

zero right and left vectors li
0 ri

o.  

From equations (9) and (10) it follows that: 𝑔𝑘
1 = 𝜎0𝑟𝑘

0 𝑔𝑘
𝑣 = 𝜎0

𝑣𝑟𝑘
0 + ℎ𝑘

𝑣 , 𝑣 = 2, . . . , 𝑀 (18) 

The coefficient σ0 is determined on the rays at the asymptotic solution of the transport equation. 

𝜎
•

0 + 𝑎0′𝑒𝑖𝑝𝜙𝜎0′𝜎0 + 𝑏00′𝜎00′𝜎0′ = 0 (19) 

𝑎0 = 𝑟𝑘
0 𝜕𝐻

𝜕𝑢𝑘
, 𝑢𝑘 = 𝑢𝑘

0 (20) 
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𝑏00• = 𝑚00•
−1 (𝑙𝑖

0′
𝐷𝑖𝑘𝑟𝑘

0 + 𝑙𝑖
0′

𝐴𝑖1
𝑘𝑣𝑟𝑘

0 𝜕𝑢1
0

𝜕𝑥𝑛
)        (21) 

𝑚00•
−1 = 𝑙𝑖

0𝑟𝑖
0′

 inverse matrix. 

𝐴𝑖𝑙
𝑘𝑘 =

𝜕𝐴𝑖𝑙
𝑘

𝜕𝑢𝑘
, 𝑢𝑘 = 𝑢𝑘

0. (22) 

Function ℎ𝑘
𝑣 (16) is the root of the equation: 

−𝐴𝑖𝑘ℎ𝑘
𝑣 = 𝐷𝑖𝑘𝑔𝑘

𝑣−1 + 𝐻𝑖𝑘
(𝑣−1)

𝑔𝑘
(ℎ−1)

+ 𝐺𝑖
(𝑣−1)

 (23) 

Coefficient 𝜎0
𝑣 is defined in the rays through the equation: 

𝜎
•

0
𝑣 + 𝑏00•

(𝑣)
𝜎0•

𝑣 + 𝑐0
(𝑣)

= 0 (24) 

where  

𝑏00•
(𝑣)

= 𝑚00•
−1 (𝑙𝑖

0″
𝐷𝑖𝑘𝑟𝑘

0′
+ 𝑙𝑖

0″
𝐻𝑖𝑘

(𝑣)
𝑟𝑘

0′
); (25) 

𝑐0
(𝑣)

= 𝑚00•
−1 (𝑙𝑖

0″
𝐷𝑖𝑘ℎ𝑘

𝑣 + 𝑙𝑖
0′

𝐻𝑖𝑘
(𝑣)

ℎ𝑘
𝑣 + 𝑙𝑖

0″
𝐺𝑖

(𝑣)
), (26) 

for О, О', O''= 1, 2, …., q. 

Results 

This section includes 3 necessary subsections (Figure 1). 

 
Figure 1. Flow-chart of section results. 

Formulation of transfer equations 

Formal application of the travelling wave expansion to the system of quasilinear dispersion equations in 

first-order partial derivatives leads to the transfer equations determining the expansion coefficients. Both the 

travelling wave expansion and the system of equations contain a large parameter p. The study will show that 

the travelling wave expansion is asymptotic under the condition p →∞. The general solution of the first 

transfer equation can be found under simplifying assumptions, a few examples illustrate the difficulties of 

applying the theory to the well-known equations of mathematical physics. 

Functions 𝑥𝑘(𝑡) and 𝑘𝑘(𝑡), which are solutions of the canonical Hamilton equations (14) and (15) are 

regular in the vicinity t=t0 due to the regularity of the function 𝐻(𝑡, 𝑥, 𝑘). The same goes for the phase function 

defined on the asymptote (ray) by the integral: 

𝜙(𝑡, 𝑥) = ∫ 𝐿
𝑡

𝑡0 (𝑠, 𝑥, 𝑘)𝑑𝑠 + 𝜙(𝑡0, 𝑥0) (27) 

it is regular in the vicinity of t=t0 for t˃t0. 

From the above equation 𝑥𝑘 = 𝑥𝑘(𝑡) , 𝑘𝑘 = 𝑘𝑘(𝑡) , 𝑥𝑘
′ = 𝑥𝑘(𝑡′) . The solution 𝜙(𝑡, 𝑥)  of the dispersion 

equation (13) with the initial value 𝜙(𝑡0, 𝑥) = 𝜙0(𝑥) is obtained by the equation in the initial value of x0 k for 
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the function 𝑥𝑘(𝑡). Finally, it is argued that the function is regular in some vicinity of the initial surface 𝑡 =

𝑡0at t > t0, if only the initial function 𝜙0is regular. 

Asymptotic analysis and parameter р 

The coefficients of transfer equations (19) and (24) are regular functions of the variable t. It follows that 

there exist one-valued solutions to these equations that are regular in some vicinity 𝑡 = 𝑡0. Functions, 𝜎0, 𝜎0
𝑣 

depend on the parameter p, since the coefficients of the transfer equations depend /linearly/ on the function 

𝑒𝑖𝑝𝜙. However, it can be shown that the modules |𝜎0(𝑡) − 𝜎0(𝑡0)|, |𝜎0
𝑣(𝑡) − 𝜎0

𝑣(𝑡0)| limited to р→∞. 𝜎0(𝑡), 𝜎0
𝑣(𝑡) 

should be understood as functions 𝜎0(𝑡, 𝑥), 𝜎0
𝑣(𝑡, 𝑥), where 𝑥𝑘 = 𝑥𝑘(𝑡) is a solution to the canonical equation. 

Let us write equation (19) as: 

𝜎
•

0 = 𝑓(𝑡, 𝜎1, . . . . , 𝜎𝑞) (28) 

Let the area of determination of the function f0 be defined by the inequalities |𝑡 − 𝑡0| ≤ 𝑇 and |𝜎0 − 𝜎0
0| ≤

𝑆, where T and S — are positive constants, the functions of f are continuous. Moreover, they satisfy the 

Lipschitz condition by the dependences 𝜎0, |𝑓0| ≤ 𝑀, 𝑀 >  0, and the Lipschitz constant K, and the constant 

M do not depend on the parameter p, hence the conclusion about the presence of an environment for the 

point t0, defined by the inequality: 

|𝑡 − 𝑡0| ≤ 𝑆 = 𝑚𝑖𝑛 (
1

𝐾
,

𝑆

𝑀
, 𝑇) (29) 

in which the system of equations (28) has a single-valued solution with an initial value in 𝜎0(𝑡0) = 𝜎0
0 and 

|𝜎0(𝑡) − 𝜎0
0| ≤ 𝑆 for each p. The same conclusion is true for the system of transfer equations (24). 

Varying the initial value 𝑥0
𝑘, we get the regular functions 𝜎0(𝑡, 𝑥), 𝜎0

𝑣(𝑡, 𝑥) in some vicinity of the initial 

surface 𝑡 = 𝑡0at 𝑡⟩𝑡0, if only the initial data are regular. After taking into account equation (23) and the final 

formulation, these expansion coefficients 𝑔𝑖
0(𝑡, 𝑥), 𝑔𝑖

𝑣(𝑡, 𝑥) of the form (18) are regular in some vicinity of the 

initial surface with regular initial data. 

Regularity and stability considerations 

As follows from the theory of partial differential equations (Chaturvedi, Gupta, & Singh, 2019; Bachir, 

Giacomoni, & Warnault, 2021), there exists a single-valued solution of the initial problem for the system of 

equations (1) regular in some vicinity of the initial surface. Let us assume that the initial data have an 

asymptotic expansion of the form (2), i.e.: 

𝑢𝑖(𝑡0, 𝑥) = 𝑢𝑖
0(𝑡0, 𝑥) + ∑ 𝑔𝑖

𝜈(𝑡0, 𝑥)𝑆𝜈(𝜙0) + 𝑅𝑖(𝑡0, 𝑥)𝑁
𝜈=1  (30) 

𝑔𝑖
𝜈(𝑡0, 𝑥) are fairly regular and 𝑅𝑖(𝑡0, 𝑥) = 𝑜(𝑆𝑁) at р→∞, originating in the region of D0, primary area. D0 

denotes the intersection of the area D of the initial surface. Then the residue of the expansion (2) is regular 

in some vicinity of the initial surface at t > t0, because the coefficients of the decomposition of the function 

ui
0 and functions u are regular, and 𝑅𝑖(𝑡0, 𝑥) = 𝑜(𝑆𝑁) at р→∞ as well since 𝑢𝑖 → 𝑢𝑖

0. The above considerations 

show that the following is true: 

In some vicinity of the initial surface, there is an asymptotic expansion of the form (2) at p→∞, provided 

that the initial function has an asymptotic expansion of this form. In the vicinity of the initial surface, the 

expansion of the quasilinear hyperbolic equation has the property that successive terms of the expansion 

have increasing order, and the residual of the expansion has the highest order with respect to the degrees of 

1/p at p →∞. In the case of quasilinear hyperbolic equations, the expansion coefficients of the equation 

depend on the parameter p included in the functions. However, it should be emphasized that this dependence 

has the form of a function. 

In summary, the Results section delves into applying traveling wave expansion to quasilinear dispersion 

equations, focusing on their behavior as the parameter p tends to infinity. It underscores the regularity of 

solutions and coefficients near initial surfaces, crucial for stability and well-posedness. By formalizing 

transfer equations, it elucidates the asymptotic nature of the expansion and the existence of expansions 

contingent on initial conditions. Dependencies on p are noted, particularly in coefficient functions, with 

limits as p→∞ revealing specific patterns. The discussion extends to the properties of expansion terms, where 

successive terms exhibit increasing orders, and the residual term dominates at large p. This analysis elucidates 

the intricacies of quasilinear systems, bridging theoretical formulations with their asymptotic behaviors, 
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offering insights into how solutions evolve and stabilize under certain conditions, enriching our 

understanding of dispersion phenomena in mathematical physics.  

Discussion 

The application of the travelling wave type expansion to the dispersive quasilinear equations, as has been 

done in this paper, causes additional difficulties. Namely, the transfer equations explicitly contain the 

parameter p, which is included in the Sy functions and in the system of partial derivative dispersion equations 

under consideration.  

In Sahoo et al. (2019), a wave-type expansion was applied to the quasilinear equations. In this case, the 

SyM functions are fixed since the transfer equations depend on the choice of the variable {Sy}. Applying this 

expansion to linear dispersion equations (Macías-Díaz, 2021) shows that quasilinear hyperbolic equations 

depend on the sequence {Sy}. The properties of quasilinear equations due to the presence of discontinuities 

in the solutions of derivatives are similar to those of linear systems: weak discontinuities arise only on 

characteristic surfaces and correspond to ordinary differential equations (transfer equations). However, there 

is a fundamental difference. Now the characteristic surfaces, radii, and transfer equation coefficients depend 

on the solution. Thus, values for weak discontinuities can be found along the ray of the asymptotic solution 

if the solution near this ray is known. Knowing the initial solution of the system of equations is also necessary 

when studying the weak gap decay problem (Yadav, Singh, & Arora, 2021). This means that the initial problem 

should be solved with initial conditions taking into account the weak discontinuities on and near the surface 

under study (Gabdreshov, Magzymov, & Yensebayev, 2023). The weak discontinuity damping method, which 

should be emphasized, remains the same as for the linear equations, except that to determine it one must 

additionally know the initial data on the surface D. While the results on weak discontinuities in the solutions 

of linear hyperbolic equations can be considered as classical, for example, in Abdel-Rehim (2021), the 

properties of weak discontinuities in the case of quasilinear equations are the subject of recent studies. First 

of all, let us mention Gupta and Singh (2022) in which the weak discontinuities for the system of two 

quasilinear equations of the first order with dissociating variables were investigated. By introducing new 

dependent variables and keeping the system of equations in normal form, he obtained the transfer equation 

for the chosen characteristic. It turned out that the transfer equation for discontinuities of first-order 

derivatives is a nonlinear ordinary differential equation, while the transfer equations for discontinuities of 

higher derivatives are linear differential equations. From the form of the transfer equation of the first 

derivatives discontinuities, one could conclude that these discontinuities cannot arise if they are not given 

by initial conditions (Abdel-Rehim, 2021), and become unbounded after a finite time. Transfer equations 

describing the discontinuities of the first derivatives through the properties of a hyperbolic system of 

differential equations with two independent variables were developed by the authors (Ebert & Reissig, 2018). 

In deriving these equations, they used the term extended system, whose solutions are the functions contained 

in the original system of equations and their first derivatives. They also investigated discontinuities of first 

derivatives for the case of a system of quasilinear equations with two independent variables (Baikov, Gazizov, 

& Ibragimov, 1988). This paper contains considerations about the critical time after which the discontinuity 

of the solution occurs. It is shown that for an exceptional characteristic, the critical time is infinite, i.e., the 

discontinuities of the first derivatives for such a characteristic are bounded. The case of a system of 

quasilinear equations with m independent variables was analyzed in Yadav et al. (2021). Here new variables 

are introduced near the chosen characteristic surface so that one of them is the distance from the surface (let 

us call it the nominal variable). Then the coefficients of the system of equations were decomposed near the 

unperturbed state. After substituting the two sweeps into the original system of equations, the transfer 

equations for the discontinuities of the first and second derivatives on the rays corresponding to the chosen 

characteristic surface were obtained. A mathematical description of shock waves in an ideal gas consisting of 

solid particles is used to describe space phenomena, pneumatic transport, supersonic aircraft motion in dust 

storms, gas flows during volcanic eruptions, nuclear reactions, etc. The present study used the method of 

multiple time scales to obtain a high-frequency asymptotic solution of small amplitude. The obtained 

solutions may be relevant for solving the transport equations for shock wave propagation and other 

hyperbolic systems. In a mixture of gas and particulate matter, the study of the shock wave is of greater 

importance because of its wide application in several fields, such as supersonic vehicles in sandstorm 

conditions, supersonic flights in polluted air, nuclear reactions, aerospace engineering, etc. In the works by 
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Abdel-Rehim (2021) and Sharma (2010) the propagation of a shock wave in a dusty gas medium with different 

densities were discussed, in Wang and Wang (2020a, 2020b), Symak et al. (2021) - the results of studies of a 

weak shock wave in a supersonic flow of dusty gas. Dusty gas consists of finely dispersed particles of the solid 

gas phase. The concentration of particles is no more than 5% vol. In Sharma and Venkatraman (2012), the 

multiple timescale scheme by Wang and Wang (2020a, 2020b) was used to study the interaction of waves in a 

nonequilibrium gas flow. In Symak et al. (2021) and Yadav et al. (2021), to analyze the evolution of weak shock 

waves in non-ideal magnetogasdynamics and non-ideal radiative gas flow, the asymptotic method was used. 

In Sharma (2010), a theoretical substantiation of shock wave propagation in terms of radiation 

magnetogasdynamics is given. Shock wave propagation in a mixture of gas and dust particles has also been 

widely studied by several authors (Chaturvedi et al., 2019; Bachir et al., 2021; Li & Rao, 2019). In Sharma and 

Venkatraman (2012), the authors applied methods of relatively undistorted waves and weakly nonlinear 

geometric optics to study the fluxes of a nonideal relaxing gas at unboundedly small disturbance amplitudes.  

The findings we have acquired may be juxtaposed with the outcomes of the study by Angeles (2023). The 

link between the equations of motion of an inviscid compressible fluid in space and an objective Cattaneo-

type extension for the heat flow was examined by the authors. The equations were expressed in quasilinear 

form, and we ascertain which of the provided formulations for the heat flow permits the hyperbolicity of the 

system. A physically acceptable concept of well-posedness for the Cauchy problem of a system of equations 

necessitates the inclusion of this property. 

The solvability of the Ionkin problem for differential equations with a single space variable was 

investigated by Kozhanov (2024). The equations include a variety of classifications, such as parabolic and 

quasiparabolic, hyperbolic and quasihyperbolic, pseudoparabolic and pseudohyperbolic, elliptic and 

quasielliptic equations, as well as several additional varieties. The splitting technique is used to show the 

following theorems for the given equations: the presence of regular solutions, which are solutions that have 

weak derivatives according to S. L. Sobolev and take place in the relevant equation. 

This consolidated Table 1 provides a comprehensive comparison between the current study and recent 

research, covering various aspects such as methodology, parameter analysis, regularity considerations, and 

discussion points. 

Table 1. Comparison of results with recent research. 

Aspect Current study Recent Research 

Formulation of Transfer Equations Traveling wave expansion Wave-type expansion 

Explicit inclusion of parameter p Variable dependence 

Asymptotic under p→∞ Applied to linear dispersion equations 

Asymptotic analysis of parameter p Linear dependence on p Variable dependence 

Regular functions of t Regularity not explicitly discussed 

Stability addressed with p→∞ Stability not explicitly discussed 

Regularity and Stability Considerations Stability near initial surfaces Stability not explicitly discussed 

Emphasized for well-posedness Regularity implications not discussed 

Successive terms with increasing order Not discussed in context of expansions 

 

Conclusion 

The present study obtained asymptotic solutions of a quasilinear hyperbolic system of first-order 

equations. The main results and the significance of the paper are:  

 – The study obtained high-frequency asymptotic solutions of small amplitude for quasilinear hyperbolic 

systems of the first order.  

– The justification of the constructed asymptotics is given.  

– The connection between the solution of the hyperbolic system of quasilinear equations of the first order 

with one spatial variable and the solution of the corresponding problem for the system with no time 

derivatives is proved.  

– The theorem on the asymptoticity of the solution of the nonlinear boundary value problem for the 

hyperbolic system of the first order for p→∞ is proved, provided that the initial function has an asymptotic 

development of this form.  

Moreover, it is proved that the quasilinearity of the system of equations (1), appearing already in the first 

term of the asymptotic expansion (2), at p→∞ in the first approximation should be omitted. At least that is 
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what happens when ui
0= const. Indeed, expression P containing multiplier A is of order 1/p at р→∞. On the 

other hand, the function B depends only on the variance matrix 𝐴𝑖𝑘(𝑢0), which is the zero vector, i.e., from 

the value of the matrix 𝐵𝑖
𝑘(𝑢0). However, this relationship of function b with the nonlinearity of the non-

differential term in equation (1) is of little importance. This is because (1) can be replaced by a system of 

equations with an undifferentiated linear term of the form 𝐵𝑖𝑘𝑢𝑘, where 𝐵𝑖𝑘𝑢𝑘 = 𝐵𝑖
𝑘(𝑢0).  
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