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ABSTRACT. Human-computer interaction technologies have been used since the 1970s but have only 

gained growing popularity in recent years with new design paradigms.  Ongoing research and development 

in gesture recognition systems with broad application prospects have focused on improving accuracy and 

real-time performance as well as the robustness of specific machine learning algorithms against 

environmental conditions.  This paper addresses the accuracy enhancement of a novel Fifth Dimension 

Technologies data-glove-based gesture recognition system using a genetic-algorithm (GA)-trained k-

means++-improved radial basis function (RBF) or GK-RBF neural network. First, we analyzed and modeled 

the sensor distribution in the data glove and proposed joint constraints based on the finger joint angle and 

sensor mapping. Then, we trained the model and conducted experimental verification to demonstrate the 

model’s excellent real-time performance. Our results showed a training accuracy of 100%, a reduction in 

training error rate by 89.3%, and an accuracy rate improvement of at least 3.5% between the different static 

gestures, even with different operators. Specifically, the GK-RBF neural network outperforms the RBF and 

GA-modified models by 4.36 and 2.21 abs.%, respectively, in terms of recognition accuracy. The 99.85-% 

accuracy rate of 10-fold cross validation proves a high degree of compatibility with data-glove-based 

recognition systems. 
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Introduction 

Gesture recognition is a widely adopted technique in computer vision technology that enables the control 

of devices, systems, and machines through body gestures or movements. The technique finds applications in 

different fields including distance learning, virtual reality systems, natural user interfaces, automation 

systems, three-dimensional (3D) virtual games, intelligent robot operation, and smart homes. The image 

vision approach enables machines to interpret human hand gestures and convert them into commands or 

instructions (Alnuaim et al., 2022). By leveraging advanced algorithms such as convolutional neural networks 

(CNNs), different types of movements and specific hand postures can be recognized in real time, 

revolutionizing how humans interact naturally and conveniently with computers. However, the simultaneous 

performance of actions in the foreground or background, as well as preceding or subsequent actions, can 

adversely affect image vision and increase the complexity of data collection. The extent of related calculations 

increases, requiring high-performance equipment and introduces constraints related to the physical space 

within which the cameras are installed. To mitigate these challenges, we propose a novel gesture recognition 

system in this study based on data gloves. 

Data gloves are wearable devices that gained popularity in the late 20th century; they consist of multiple 

sensor devices. Through these sensors, the location, posture, and rotation data of the user’s hand and fingers 

can be extracted using computer systems for all degrees of freedom of the human hand. The bending of fingers 

can be detected with high precision, and tactile feedback can be provided to the user. Jaron Lanier, the founder 

of VPL Research, Inc., proposed the concept of human–computer interaction (HCI), and the technology has 
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developed rapidly since (Siegert et al., 2014). During the same period, data gloves were proposed as input 

devices and introduced as a medium for virtual and real data transmission (Huang et al., 2013; Rautaray & 

Agrawal, 2015; Song, 2014). Thereafter, the research and development on data gloves gradually matured. Data 

gloves have since been applied in various industries to provide users with a better sense of HCI experience 

and immersion. The first wired data glove—called the Syre Glove—developed by Richard Sayre, Dan Sandin, 

and Tom Defanti in 1976  (Sturman & Zeltzer, 1994), was utilized for manipulating, controlling, and 

interacting with 3D computer-generated environments, marking the beginning of gesture recognition 

research in computer science. In the early 1980s, VPL Research Inc. patented  (Zimmerman, 1985) a data glove 

based on light intensity modulation for bending measurements (using an optical flex sensor) to reduce the 

complex structure of data gloves and maintain high accuracy. The glove detected changes in light intensity 

through a curved channel for light transmission. Subsequently, force-feedback gloves were developed. 

Figure 1 shows various wired force-feedback gloves developed by the Chinese Academy of Sciences (CAS-

Glove), Rutgers University (Rutgers Master II-ND), and Virtual Technologies (CyberGrasp). 

 
Figure 1. Wired force feedback gloves: (a) CAS-Glove (Fu et al., 2004), (b) Rutgers Master II-ND (Bouzit et al., 2002), and (c) 

CyberGrasp (He et al., 2014). 

Further, the next generation of pneumatic force-feedback gloves were developed, such as the Fluid Power 

Glove developed by Hosei University (Figure 2a) and 5DT Data Glove Ultra developed by Fifth Dimension 

Technologies (5DT) (Figure 2b). As the interest in data gloves for HCI is growing, gesture recognition 

technology has emerged as one of the core applied solutions. The purpose of this study is to realize human 

gesture recognition through algorithms. Gestures involve not only hand posture but also facial expressions 

or physical movements of other parts of the body. These gestures are distinctive, intuitive, and easy to learn. 

They have become an avenue for mutual interaction between computers and humans, providing a rich 

technical experience of HCI. CNNs are often used in this category. Neural networks have a multilayer network 

structure, and the sublayer of the networks contains multiple neurons, unlocking strong data analysis 

capabilities. With a simple and convenient structure, a neural network can learn nonlinear functions, classify 

linearly nonseparable data, and solve nonlinear equation systems. Hence, neural networks are widely used in 

intelligent control and robotics.  

 
Figure 2. Pneumatic force feedback gloves. (a) Fluid Power Glove (Wang et al., 2020) and (b) 5DT Data Glove Ultra (Arkenbout et al., 2015). 
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As reported in (Byun & Lee, 2019) a flexible skin tactile sensor-based gesture recognition system was 

proposed, achieving an extraordinarily high recognition accuracy rate of 97 - 99%.  To boost the popularity of 

robotic assistants, a neural network-based LiDAR gesture recognition system was proposed in (Lindner et al., 

2023). Their study reported a classification accuracy that depended on the utilized neural network 

architecture, providing an accuracy performance upwards of 92%, with the ResNet152 architecture reaching 

up to 96.1 %. Template matching (Mahbub et al., 2013), hidden Markov model (HMM), and support vector 

machine (Huu & Phung Ngoc, 2021; Saha et al., 2015) are also suitable for gesture recognition.  HMM was 

developed in the 1970s as a statistical model and has since rapidly developed and seamlessly improved in the 

subsequent decade. By the 1980s, it became the core development framework for computer communication 

and signal processing. The model was first proposed by Jim Baker (Carnegie Mellon University) and Fred 

Jelinek (IBM Research) and was applied to a language recognition system to realize intelligent classification 

and labeling of computer languages. In (Kapuscinski et al., 2015) a time-of-flight (ToF) camera-based dynamic 

gesture recognition system was proposed based on the HMM and nearest neighbor technique (with dynamic 

time warming) classifiers, and its rotation-sensitive (−10° to 10°) dynamic recognition rate ranges between 

75.5 to 86.1 %. The application of HMM has been compared with that of other classification methods 

(Pisharady & Saerbeck, 2015; Siddiqui et al., 2021; Zhang & Li, 2019). 

Recently, the development of data gloves has brought about a new paradigm in gesture recognition 

research. Data gloves are widely used and not easily affected by the peripheral environment. With the high 

stability of the collected gesture data, meanings associated with different gestures can be more accurately 

identified. This ‘stability of data’ refers to the consistent and reliable recording of user hand movements and 

gestures, ensuring minimal variability in the collected information. This reliability is pivotal for accurate 

gesture recognition, as it signifies that the gloves consistently and accurately capture the intended gestures 

across diverse conditions. An instance of application is in sign language recognition. As discussed in (Tubaiz 

et al., 2015) Arabic sign language recognition was performed at a gesturing recognition rate of 98.9 % by 

combining a pair of DG5-V data gloves with RGB video camera-based information. However, data-glove-based 

gesture recognition technologies still have some inevitable drawbacks, such as those associated with the size 

and length of the user’s hand, and the flexibility and curvature of fingers. Therefore, when high-precision 

operation is required, the recognition accuracy of gestures is affected and the overall performance of the 

gesture recognition technology deteriorates. Moreover, real-time performance is a critical aspect of gesture 

recognition systems, and conventional methods may encounter latency issues. Delays in recognizing and 

processing gestures can impede the seamless interaction between users and applications, affecting the overall 

user experience. To tackle accuracy-related and real-time problems, we propose the implementation of a 

method based on a genetic algorithm (GA)-optimized radial basis function (RBF) neural network for 5DT data 

gloves. Our work aims to overcome the shortcomings of traditional data-glove-based systems and provide a 

robust solution that excels in accuracy and real-time performance. 

Methods 

In this study, a GA-based k-means++-improved RBF (GK-RBF) neural network was employed to classify 

curvature data from a data glove, with the aim of accurately identifying 13 distinct hand gestures.  Each hand 

gesture contained curvature data from 5 fingers. Gesture data collection was performed with a total of 100 

samples using the GloveManager software.  20 samples of data were collected from each of the 5 participants 

(wearing the data glove on the right hand) in a standard laboratory setting at 10 s per gesture. These curvature 

data were normalized, resulting in their values ranging between 0 and 1. The obtained dataset consisted of 6500 

datapoints, of which 80% served as training data and 20% as testing data. For model evaluation, the mean squared 

error was used as the loss function. The experimental environment and parameters were as follows. 

1. Software and versions: Anaconda: 4.7.12 software package including Python version 3.7. 

2. Hardware specifications: CPU: Intel(R) Core (TM) i5-9400F CPU, @2.90 GHz, 16.0 GB  

RAM; graphics card: NVIDIA GeForce GTX1070 8 GB/MSI; Mainboard: MSI Z390M- 

S01(MS-7C24); RAM: Kingston DDR4 2400 MHz 16 GB; hard drive: Samsung SSD 750  

EVO 250 GB; operating system: Windows 10 Education 64-bit. 

3. Training parameters: Learning rate: 0.01; epochs: 100. 

4. GA parameters: population size: 50; crossover probability: 0.8; mutation probability: 0.2;    

maximum iterations: 100 
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Gesture design 

We used the Data Glove 5 Ultra (right hand) designed by 5DT and extracted features of each static hand 

gesture using the data glove. High-accuracy data collection was performed using a self-compensating elastic 

optical fiber sensor with a self-calibration function. Featuring 8-bit flexural resolution, extreme comfort for 

different palm shapes, low drift, and an open architecture, the elastic data glove provided additional 

advantages in HCI. Figure 3 shows the distribution of sensors in the glove (Arkenbout et al., 2015). The data 

collected by each sensor were normalized so that the output value was between 0 and 1. 

 
Figure 3. Sensor positions in the 5DT Data Glove 5 Ultra. 

To clarify the specific sensor configuration (c.f. Figure 3), Table 1 lists the sensor details.  The table guides 

in understanding the origin of the gesture data and related hardware setup, which plays a critical role in 

ensuring accuracy and consistency during experimental data collection and processing. A clear overview of 

which sensors remain active/inactive in the current study is given. For example, sensors F and G are no longer 

integrated in the data glove because they are obsolete. 

Table 1. Sensors of the 5DT Data Glove Ultra. 

Sensor Description 

A Thumb flexure 

B Index finger flexure 

C Middle finger flexure 

D Ring finger flexure 

E Little finger flexure 

F Pitch angle of tilt sensor (obsolete) 

G Roll angle of tilt sensor (obsolete) 

 

In the data glove, gesture recognition primarily relies on a preset template system according to the gesture 

definitions presented in Table 2.  We assigned appropriate binary digits to different gesture types depending 

on the bending or stretching of each finger so that definable outcomes can be obtained. This provides a 

distinct template for each specific gesture, which can be seen as a baseline model. This system determines 

whether the fingers are bent based on set thresholds, thus recognizing gestures. In particular, the functions 

void SetThresholdAll(float[] aUpperVals, float[] aLowerVals) and void SetThreshold(int nSensor, float fUpperVal, 

float fLowerVal) offer the capability to set gesture recognition thresholds (upper and lower) for all sensors and 

some specific sensors, respectively (Arkenbout et al., 2015). Static hand gestures may act as special transition states 

in temporal hand gestures and provide means to identify and classify temporal hand gestures. 

The threshold-based template approach encounters certain unmitigated challenges in practical 

applications. The physical size and form of the hand varies from one operator to another; hence, the same 

gesture might be differently interpreted because the curvature of the fingers may not be identical. To ensure 

accurate gesture recognition for each user, there is a need for tedious threshold adjustments for the individual 

operator. To address these efficiency constraints and enhance the stability and accuracy of real-time gesture 

recognition performance, we used the GK-RBF neural network model for data processing and gesture 

recognition. This model optimizes and learns from various collected gesture data used as input and training 

sets. This approach offers users a more accurate and adaptive gesture recognition experience, eliminating the 

frequent need for manual threshold adjustments.  As shown in Table 3, the real-world data matrix consists of 

13 rows and 5 columns, representing 13 gestures, and each gesture comprises 5 datapoints (from 5 sensors). 
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Table 2. Static gestures and corresponding binary sequences. 

Gesture Morphology Gesture Sequence Gesture Morphology Gesture Sequence Gesture Morphology Gesture Sequence 
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11110 

 

 

11011 
 

10111 

 

 

11111 
    

 

Table 3. Representative gesture input data description. 

Thumb (A) Index finger (B) Middle finger(C) Ring finger (D) Little finger (E) 

0.1542 0.8878 0.8689 0.7886 0.7031 

0.2467 0.1708 0.7909 0.8728 0.5588 

0.1243 0.1126 0.1613 0.8907 0.8907 

0.2102 0.7909 0.1896 0.2361 0.5030 

0.1263 0.2103 0.1596 0.1132 0.552 

0.1106 0.8149 0.8774 0.9108 0.2136 

0.1356 0.1732 0.8812 0.9184 0.2312 

0.1625 0.7145 0.2171 0.8637 0.3125 

0.1040 0.1466 0.1088 0.7343 0.2268 

0.2189 0.8621 0.6748 0.2080 0.1247 

0.2751 0.2169 0.5274 0.2359 0.3167 

0.1123 0.8198 0.1615 0.1028 0.1770 

0.1352 0.1385 0.1456 0.1264 0.1336 

K-means++ algorithm 

The k-means clustering algorithm is an unsupervised machine learning algorithm proposed in (MacQueen, 

1967) and is mainly used to classify and analyze the data. The basic principle for selecting initial cluster 

centers is that the mutual distance between the initial cluster centers should be as large as possible. The 

selection sequence is as follows: 

1. Randomly select a point from the dataset (X) as the first cluster center. 

2. Calculate the shortest distance D(x) between each sample and the existing cluster center, that is, the 

distance to the nearest cluster center (select the sample with the largest distance as the new cluster center 

with some probability). The larger the distance, the greater the probability of being selected as the cluster 

center. Then, calculate the probability of each sample being selected as the next cluster center using the 

roulette method following: 

P(x )= 
2

2

( )

( )
x X

D x

D x


 (1) 

3. Repeat process 2 until k cluster centers are identified. 

4. Assign each point in the sample set to a cluster: calculate the distance between each point and the centroid 

(commonly used Euclidean distance and cosine distance) and assign it to the cluster corresponding to the 

nearest centroid. 

5. Update the centroid of the cluster: the centroid of each cluster is updated as the average of all points in the cluster. 

6. Repeat steps 4 and 5. If the distance between the updated and previous centroid is less than a certain 

threshold, the clustering algorithm can be considered to have achieved the desired result and the iteration is 

terminated. Otherwise, continue iteration. 
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Table 4 enumerates the working principle, strengths, and weaknesses of k-means compared to new 

variants. While each new version of k-means offers specific benefits, not all align well with the demands of 

data-glove-based gesture recognition.  For example, mini-batch k-means, while efficient for large datasets, 

can compromise the precision needed for detailed gesture data due to its approximate centroid update steps. 

Kernel k-means excels with complex, nonlinear separations but may introduce unnecessary computational 

complexity to our relatively structured gesture data. Meanwhile, spherical k-means is adept for spherical 

clusters, yet our gesture data does not inherently conform to such geometrical constraints. In contrast, k-

means++ is distinguished by its thoughtful initial centroid placement, which is critical in capturing the subtle 

nuances between different gestures. This approach to initializing clusters significantly curtails the risk of 

miscalculation inherent to random centroid assignment, a potential issue with standard k-means that could 

lead to inconsistent gesture recognition. Ultimately, k-means++ offers a balance suited to the specificity of 

gesture recognition tasks where the clarity of each cluster formed is pivotal. 

Table 4. Comparison of k-means and its newer variants. 

Algorithm Working principle Advantages Disadvantages Application Scenarios 

K-means 
Random initial cluster 

centers, iterative updates 
Simple and intuitive 

Sensitive to initial centers, 

may converge to local optima 
Broad clustering applications 

Mini-batch k-

means (Hicks et 

al., 2021) 

Batch data updates 

cluster centers 

Efficient, suitable for large 

datasets 
May sacrifice quality for speed Large datasets/Online clustering 

K-means++ 

Improved method for 

selecting initial cluster 

centers 

Fast convergence, accurate Slower initialization Broad clustering applications 

Kernel k-means 

(Wang et al., 

2019) 

Maps data to high-

dimensional space using 

kernel technique 

Handles complex 

distributions 

High computational cost, 

challenging kernel selection 
Clustering complex distributions 

Spherical k-

means (Kim et 

al., 2020) 

Assumes clusters are 

spherical, suitable for 

high-dimensional data 

Suitable for clustering 

spherical clusters 

Not suitable for non-spherical 

clusters 

Text data and high-dimensional 

space clustering 

K-means with 

constraints 

(Huang et al., 

2021) 

Introduces additional 

constraints, such as 

similarities or 

dissimilarities between 

samples 

Can produce clusters 

meeting specific 

requirements 

Introducing constraints may 

complicate the problem 

Clustering tasks with prior 

knowledge or specific constraints 

Fuzzy k-means 

(Zhao et al., 

2023) 

Assigns data points to one 

or more clusters based on 

membership degrees 

Allows soft clustering, 

data points can belong to 

multiple clusters with 

varying degrees 

More computationally 

intensive than standard k-

means, sensitive to the choice 

of fuzziness parameter 

Situations where data naturally 

belongs to overlapping categories 

or when the boundaries between 

clusters are not well-defined 

Weighted k-

means (Yang et 

al., 2015) 

Modifies the k-means 

algorithm by introducing 

weights for each data 

point 

Accommodates the 

importance or reliability of 

data points, more robust 

to outliers 

Determining the appropriate 

weights can be challenging, 

potentially more complex to 

implement 

Clustering tasks where some data 

points are more important or 

reliable than others, or when 

dealing with heterogeneous data 

Genetic algorithm 

GA is a metaheuristic that is widely used in the optimization of neural networks (Domashova et al., 

2021; Feng et al., 2021; Zhang & Qu, 2021) and fuzzy control algorithms (Dang et al., 2020; Huang et al., 

2015). Notable features of GA include the following: 1) direct operation on structural objects with out 

restrictions on derivation or function continuity; 2) inherent implicit parallelism that offers more robust 

global optimization capabilities; and 3) involves probabilistic optimization strategy through which it can 

autonomously navigate and guide the optimized search space and adaptively modify the search direction 

rather than adhering to rigid rules. The global characteristics of GA are utilized to train the neural 

networks; that is, the method of gamblers replaces the evolutionary principle of “survival of the fittest.” 

Individuals are screened for data processing based on biological principles such as genetics, crossover, 

and mutation. In comparison to the outcomes of genetic screening, individuals demonstrating higher 

fitness values are preserved. These individuals, identified through the screening process, contribute to 

the ongoing reorganization and screening of the population in the GA.  Ultimately, the optimal solution 

is derived as the new neural network weight. This training cycle continues unti l the desired accuracy is 

achieved. The specific operating steps are shown in Figure 4.   
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Figure 4. GA flow chart. 

GK-RBF neural network 

The RBF (Bawazeer et al., 2019; Soltani & El-Hag, 2021; Yang et al., 2022) provides a new system structure 

for neural network optimization learning with multilayer topology. For gesture recognition in HCI systems, 

the RBF network achieves universal approximation and exhibits faster learning speed compared to traditional 

neural networks with various gesture data. Training is completed after a targeted number of iterations or 

when the calculated error reaches a target value. Due to the simple representation, radial symmetry, and the 

advantageous property of being differentiable of any order, the hidden layer selects the Gaussian function as 

the transfer function, and the activation function is expressed by Equation 2 (Chen & Bakshi, 2009): 

2

2

( )
( ) exp

2

ix c
R x

b

−
=

−
 (2) 

where X is the input vector (X = (x1, x2, …, xi)), Ci is a reference vector (core or prototype), and b is the 

dimension of the influence field. When b is smaller, the basis function is more optimal. It can be seen from 

(1) that Ci and b are crucial parameters of the RBF neural network, which are usually determined by the nearest 

neighbor clustering method. However, the method may cause the RBF neural network to overfit the data. 

Thus, the selection of the prototype is very important. Given that reference vector selection has great 

influence on clustering results, we applied the improved k-means algorithm (k-means++) to select the 

prototype. The output of the RBF neural network y(x) is usually determined by Equation (3) (Broomhead & 

Lowe, 1988): 

1

( ) ( )
m

j jy x w x c=  −  (3) 

where wj are the weights associated with each RBF center cj, m is the total number of centers, 𝑓 is the radial 

basis function used, and ?𝑥 − 𝑐𝑗? is the Euclidean distance between input x and center cj.  

Integrating GA, k-means++, and RBF into the GK-RBF neural network (Figure 5) is not an arbitrary strategy 

but rooted in addressing the limitations of the RBF neural network. The RBF neural network with nonlinear 

recognition capabilities, while powerful, often struggles in selecting the right centers and weights. k-means++ aids 

in better center selection through efficient clustering, which eliminates the randomness and potential inefficiency 

of traditional methods. Meanwhile, GA displays robust optimization capability owing to its global search 

advantages, ensuring that the weights of the network are optimal. Together, these methods create a network that 

is efficient in learning and shows effective performance. The basic steps are described as follows (see Figure 5):  

Step 1. Initialization: Use the k-means++ clustering algorithm to select optimal initial cluster center for the 

RBF neural network.  

Step 2. Weight optimization using GA: Use GA to optimize the weights of the RBF neural network. The 
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robustness of GA in exploring a broad solution space renders it an ideal choice for weight optimization. 

Weights play a pivotal role in dictating the performance of a network, and conventional methods might easily 

get stuck in local minima. GA furnishes a global search strategy, enhancing the probability of pinpointing 

optimal or near-optimal weights. 

Step 3. Training: With the optimized centers and weights in place, train the RBF neural network using 

standard learning algorithms. The synergistic interplay of k-means++ for center initialization and GA for 

weight optimization lays a robust foundation for the training process, facilitating faster convergence and 

superior generalization. 

Step 4. Evaluation: Once the network is trained, evaluate its performance on validation or test datasets.  

 
Figure 5. Training process of the GK-RBF neural network. 

Results and discussion 

Figure 6 compares the clustering visualization on the dataset for the different k-means versions. The t-

distributed Stochastic Neighbor Embedding (t-SNE) technique (Zhou et al., 2018) was utilized to capture the 

local structures of complex multidimensional data and display them in a low-dimensional space. The visual 

differences among any given k-means visualization results are not significant, especially when visualizing 

high-dimensional data reduced to two or three dimensions. The dimensionality reduction inevitably results 

in some loss of information, leading to similar visual outcomes for different clustering algorithms, particularly 

when the underlying data structure is relatively simple, or the clustering boundaries are clear. The Calinski-

Harabasz (CH) Index (Ekemeyong Awong & Zielinska, 2023) was utilized to assess the different clustering 

methods.  The higher the CH Index value, the better the clustering effect, indicating tighter grouping within 

clusters and more dispersion between different clusters. K-means++ scored the highest on our dataset, 

proving it to be the most suitable approach. Figures 7a and 7b depict the accuracy and loss curves, 

respectively, obtained by training the RBF neural network, GA-RBF neural network (Jia et al., 2014), and GK-

RBF neural network. The final gesture output data description for the optimized GK-RBF neural network is 

shown in Table 5. After testing with an identical amount of gesture input data, the GK-RBF network exhibited 

the highest training accuracy (100%) and test accuracy (98.82%), along with the lowest training error rate 

(0.0038%), as summarized in Table 6 from the ablation studies. A comparison of the ideal and actual output 

shows that the optimized network has better approximation ability.  

The test accuracy of 98.82 % is a notable result in the field of gesture recognition, especially considering 

the complexity involved. In comparison, in (Chevtchenko et al., 2018) a state-of-the-art accuracy rate of up 

to 97.63% was obtained using a multiobjective GA for static hand gesture recognition. Further, in (Smith et 

al., 2021) an accuracy rate of up to 93 and 95% was reported for range and range angle-profiles, respectively, 

using a CNN and frequency-modulated-continuous-wave millimeter-wave radars. Separately, in (Cruz et al., 

2023) an accuracy rate up to 97.45±1.02 and 88.05±3.10% was demonstrated for classification of signal data 

and gesture recognition, respectively, using a Deep Q-network-based learning algorithm. Other accuracy 

results reported in the literature for static hand gesture recognition are mostly lower. Based on these 

comparisons, our application of the GK-RBF model has clearly distinguished itself in terms of accuracy. 

However, the standard for “sufficiently high” accuracy varies from one application to another. When 
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compared with other related research findings, for critical applications such as medical surgeries or high-

security applications, the adequacy 6of this accuracy remains to be further evaluated. For certain routine 

applications or less complicated remote robot-control applications, this accuracy may meet the targeted 

requirements. It should also be recognized that the accuracy assessment of this data glove is closely related 

to its usage conditions and environment. The accuracy may vary under different experimental conditions and 

application contexts. Further research may explore how to maintain or improve this accuracy in different 

application backgrounds. 

 

Figure 6. Clustering visualizations for (a) kernel k-means, (b) fuzzy k-means, (c) k-means, (d) k-means++, (e) k-means with constraints, 

(f) mini batch k-means, (g) spherical k-means, and (h) weighted k-means.  The CH Index values are indicated. 

 

Figure 7. Performance of the RBF, GA-RBF, and GK-RBF neural networks. (a) Accuracy rate and (b) loss function curve. The neural 
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network hyperparameters were as follows: batch size = 6,500 (batch size = 1,300 per sensor, training samples: 80 %, test samples 20 %), 

learning rate=0.01, and epoch=100. 

Table 5. Gesture data collected from the sensors. 

Gesture template Thumb (A) Index finger (B) Middle finger (C) Ring finger (D) Little finger (E) 

1 0 0 0 0 0.0359 0.9879 0.9987 0.9886 0.9763 

1 1 0 0 0 0.0334 0.0447 0.9812 0.9961 0.8981 

1 1 1 0 0 0.0396 0.0621 0.0546 0.9369 0.9201 

1 0 1 1 0 0.0236 0.8708 0.0324 0.0417 0.7925 

1 1 1 1 0 0.0139 0.0268 0.0164 0.0175 0.9316 

1 0 0 0 1 0.0087 0.8986 0.8722 0.9521 0.0157 

1 1 0 0 1 0.0093 0.0770 0.9319 0.9536 0.0151 

1 0 1 0 1 0.0757 0.8269 0.0658 0.8978 0.0571 

1 1 1 0 1 0.0743 0.0516 0.0616 0.9522 0.0725 

1 0 0 1 1 0.0335 0.8949 0.8748 0.0583 0.0708 

1 1 0 1 1 0.0575 0.0216 0.8274 0.0335 0.0316 

1 0 1 1 1 0.0114 0.9127 0.0249 0.2751 0.0213 

1 1 1 1 1 0.0091 0.0087 0.0103 0.0116 0.0113 

 

Table 6. Performance comparison of the RBF, GA-RBF, and GK-RBF neural networks. 

Neural networks algorithm 
Traditional   RBF GA-RBF GK-RBF 

Performance metric 
Training Accuracy (%) 95.3 98.2 100 
Training Error Rate (%) 0.012 0.0085 0.0038 

Test Accuracy (%) 94.46 96.61 98.82 
 

To determine performance reliability, we performed repeated k-fold cross-validation on our datasets, with 

k = 10, which is a frequently chosen value to balance computational cost and model evaluation accuracy. 

Cross-validation assists in determining how the outcomes of a statistical analysis will generalize to an 

independent dataset, bolstering the robustness of our model comparisons. In this evaluation, we observed 

that the three models—GK-RBF neural network, GA-RBF neural network, and RBF neural network—

demonstrated almost similar accuracies (see Figure 8). In particular, the GK-RBF model achieved an accuracy 

of 99.85%, while the GA-RBF and RBF models achieved accuracy of 99.69 and 99.38%, respectively. Although 

there is only a subtle difference in the accuracy among the models, such a minor variation highlights the 

consistency and effectiveness of our experimental method. This marginal discrepancy among the three 

models might be because they all exhibit superior performance when processing the current dataset, which 

might not introduce any extreme or unusual fluctuations leading to significant performance differences. 

 

Figure 8. k-fold cross-validation results. Comparison of 10-fold cross-validation results for the (a) GK-RBF, (b) GA-RBF, and (c) RBF 

neural networks. 

While k-means++ was employed as the clustering algorithm herein, it is still possible to use different 

clustering algorithms combined with GA to test the training performance. In fact, multiple clustering 

algorithms may also be used in an integrated approach; for example, k-means++ combined with density-based 

spatial clustering of applications with noise (DBSCAN). DBSCAN has several advantages over other clustering 

algorithms (Zhang et al., 2022), such as the ability to handle nonlinearly separable clusters, detect clusters of 

different shapes and sizes, and effectively handle noise and outliers. For further enhancement of the training 
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performance and test accuracy, prospective research directions can be dichotomized into parameter fine-

tuning and development of scalability and interpretability. The former involves fine-tuning the values of 

certain parameters within the system, and the latter involves exploring ways to render the system more 

scalable to handle larger and more complex datasets and be more interpretable, which means it can be better 

understood and analyzed by humans. This research direction is considered to have more depth and complexity 

and may require more advanced machine learning and deep learning techniques. 

We have so far presented the use of the GK-RBF neural network algorithm for effective data-based gesture 

recognition; we will further discuss the general limitations of using RBF networks. Compared with deep learning 

networks, RBF networks have limited scalability when dealing with large datasets. When using RBF techniques for 

pattern recognition or data classification, increasing the number of RBF centers with a growing amount of data can 

improve the accuracy of the model. However, at a certain point, increasing the number of centers leads to a 

decrease in training speed and accuracy because processing many centers can become computationally expensive 

and hence slow down the training process. Therefore, it is important to strike a balance between the number of 

RBF centers and amount of training data to ensure efficient and accurate training. Moreover, RBF networks present 

shortcomings when handling complex tasks and adapting to changes in data distribution. The network uses fixed 

centroids, which means that it cannot adjust to changes in the data distribution like deep learning networks can 

through weight updates. Furthermore, the RBF network is a single-hidden-layer network structure, which may not 

be suitable for handling complex tasks such as image classification or natural language processing that often 

require deep learning neural network architectures with multiple hidden layers to extract complex features from 

the data. Nevertheless, in this study, we have shown how the GK-RBF neural network is particularly effective at 

optimizing curvature data in a data-glove-based recognition system, with improved training speed, reduced 

training time, good real-time performance, and high accuracy. 

Conclusion 

In the field of gesture recognition, particularly concerning data gloves, some traditional recognition 

methods, such as those based on template matching, sensor thresholds, and features, often encounter 

limitations. These methods may not achieve sufficient accuracy in certain complex application scenarios. In 

this study, we adopted the GK-RBF neural network algorithm, with local convergence and global search 

capabilities, overcoming the shortcomings of the combined k-means++ and RBF neural network algorithms 

and improving the training quality of the RBF neural network. Through detailed experimentation and 

validation, it was observed that the algorithm reduced the complexity of data processing in the gesture 

recognition process, effectively improving the training speed, reducing the training time, and ensuring state-

of-the-art real-time performance and high accuracy of the data-glove-based gesture recognition system. The 

GK-RBF neural network achieved an accuracy of 100% on the training set, while reducing the training loss 

rate to 0.0038%. In real-world testing, the recognition accuracy reached as high as 98.82%, significantly 

surpassing those of previously reported methods solely based on RBF or GA-RBF neural networks. In 10-fold 

cross-validation, the accuracy reached 99.85%, proving that our adopted method showed a high level of 

compatibility for data-glove-based gesture recognition. 

Considering the frequent changes of human operators in actual situations, we anticipate the prospective 

collection of more gesture data based on different operators, which will enable more accurate recognition 

results. Although the proposed algorithm for gesture recognition has certain advantages for specific tasks, 

such as optimizing curvature data from a data glove, it may have limitations when compared with deep 

learning. Notably, the RBF network structure used in our approach demonstrated inherently fast operation 

and efficient training performance. Because of the simple model structure, the training time was generally 

shorter, especially with smaller datasets. Further, better interpretability was achieved, and the model was 

easy to understand in lieu of more complex deep learning networks. Leveraging GA optimization allowed for 

global search for the optimal set of weights and parameter configurations in the solution space for the RBF 

network, resulting in superior performance. This optimization approach is also less likely to become trapped 

in local optima, which is a pressing concern in traditional optimization algorithms, particularly in deep 

learning networks. Furthermore, GA optimization can handle optimization problems involving multiple 

objectives or constraints, making it suitable for more complex and nuanced optimization tasks. While deep 

learning methods excel with large datasets and complex tasks, our proposed method, which includes GA 

optimization, remains highly competitive for simple and constrained tasks such as data-glove-based gesture 
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recognition. In future explorations, under diverse application backgrounds and conditions, further validation 

and refinement of the algorithm will be essential. We anticipate that this research will provide new insights 

for continuous progress in the field of HCI, particularly gesture recognition. 
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