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ABSTRACT. Precipitation causes runoff with significant uncertainty. The rainfall-runoff modeling 

relationship depends on the runoff coefficient. Many models have been developed with different methods 

to calculate the runoff coefficient. Black box or fuzzy models can be preferred instead of deterministic 

methods in uncertain natural events. However, black box methods often do not consider the event's physical 

aspect. Therefore, in the present study, Simple Membership Functions and Fuzzy Rules Generation 

Technique (SMRGT) which base on fuzzy logic was preferred in determining the runoff coefficient since it 

also reflects the physical cause-effect relationship of the event. By this way, both the hydrological event's 

uncertainty and physical aspects were addressed. Therefore, it can be used for any basin when the limit 

values of the variables are expanded. Correctly determining fuzzy sets and fuzzy rule bases are essential 

points to be considered in fuzzy modeling. According to the literature, SMRGT is the best one to use for this 

purpose. On the other hand, SMRGT is relatively new. Meteorological, geomorphological, and land use-

related characteristics were considered for modeling. The Kalecik Basin's runoff coefficient is found as 0.28 

which is lesser than the average of Turkey. The model has 2.28% of MARE. 
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Introduction 

The actuation of the precipitation waters under the effect of gravity is called runoff. Precipitation and 

runoff are the two main factors shaping the water cycle. Not all precipitation that falls into the basin of a 

channel can runoff because of infiltration, evaporation, and retention on the earth. The runoff coefficient, 

which is the rate of runoff, is calculated by dividing the runoff depth by the rainfall depth. There are two 

different approaches to estimating the runoff coefficient; time (annual, monthly) and event-driven 

(hydrograph analysis). There are significant differences and challenges in calculating the runoff coefficient 

between a large and small basin. Because as the basin expands, the number of observation stations becomes 

insufficient and needs to provide sufficient data on the behavior of the basin. Estimating the runoff coefficient 

from a model is very challenging. The model depends on many essential variables, such as seasonal 

distribution of precipitation, precipitation area, precipitation intensity, soil type, infiltration rate, basin 

parameters, urbanization, water accumulation structures, artificial groundwater recharge, and in-basin water 

transfers (Pektaş, 2012). However, many variables only sometimes make the model the best. When the 

variables are reflected in the model, it is necessary to give value to each of the variables (Toprak, 2019). 

In the present study, a physics-based model was developed to predict the runoff coefficient of any basin. 

The model was developed by using the Fuzzy Logic Method. Mamdani's Approach was used as the operator. 

The Simple Membership Functions and Fuzzy Rules Generation Technique (SMRGT) Method, developed by 

Toprak (2009), was used to determine membership functions (blurring the inputs and outputs of the model) 

and to create the fuzzy rule base. SMRGT was preferred over the other methods as it also reflects the physics-

cause-effect relationship to the model. 

There are many studies in the literature conducted on runoff coefficient calculations. The runoff 

coefficient, which has an essential role in determining the moisture cycle of the soil, can be considered a 

critical parameter to monitor the change of soil moisture over time. If this coefficient increases, the soil 

becomes barren, and the green areas decrease (Savenije, 1996). Especially in previous studies that were 
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conducted on bankfull discharge, the runoff coefficient was reported to be the most crucial parameter. If there 

is no precipitation, a runoff event does not occur, and the bankfull discharge cannot be determined without 

determining the runoff coefficient. For this reason, the correct calculation of the runoff coefficient (when 

floods are examined and the flood runoff is calculated) will help minimize possible damages. However, the 

data needed for the model in current calculations are obtained by remote sensing technology (Nayak & 

Jaiswal, 2003). For instance, the ArcGIS Method can calculate hydrological variables in basins with small 

drainage areas. Therefore, the determination of direct runoff hydrographs can be easily realized with a 

hydrological model. Akbaş et al. (2018) examined the relationship between precipitation, runoff, and 

evaporation in the Marmara Sea basin with the data received from General Directorate of Meteorology 

(Meteoroloji Genel Müdürlüğü, MGM) and General Directorate State Hydraulic Works (Devlet Su İşleri, DSI). 

The study converted precipitation and evaporation from point data to spatial data using Thiessen Polygons. 

As a result of their research, they reported that evaporation is the variable that has the most significant effect 

on the basin and negatively affects the water budget. It was also emphasized that there is a high correlation 

between precipitation and runoff (Akbaş et al., 2018). It is expected that there is a high correlation between 

precipitation and runoff, except for basins with permeable but unsaturated soils, as in deserts. In the present study, 

evaporation was chosen as one of the model inputs because of its significant effect on the basin runoff coefficient. 

Cleveland et al. (2006) created a precipitation-runoff model with instant unit hydrograph analysis with 

about 1600 storm data taken from 91 stations in the USA of Texas. The observed data were appropriate in the 

model with two different evaluation functions. The model was compared with the Texas Hydrograph and was 

found to have reliable performance. The Unit Hydrograph Model is the most common model used in basin 

modeling. However, the nonlinear precipitation runoff relationship is the most significant difficulty in 

modeling the basin. Some assumptions must be made in such nonlinear systems, and the system must be 

linearized (Cleveland et al., 2006). As well as the study mentioned above, Mimikou and Rao (1983) and 

Cleveland et al. (2006) designed a monthly precipitation-runoff model with a nonlinear component over the 

Aracthos River Basin in Greece. This way, the model had a structure that could be applied to basins with linear 

and nonlinear precipitation-runoff characteristics. Two parameters, k, the degree of the basin characteristic 

model, and n, which controlled the memory of the precipitation runoff process, were used in the model 

(Mimikou & Rao, 1983). Tsykin (1985) developed a model with simple time series and applied it in Australia 

to calculate monthly bankfull discharge rates. The coefficient of determination (R2) between the model 

results and the available data was calculated between 0.90-0.96. However, it must be addressed that the trends 

of the series must stay the same over time, and the data must be normal, linear and homosedastically 

distributed to apply Regression Analysis to time series in this and similar studies (Tyskin, 1985). It must also 

be noted that the high correlation coefficient or the determination coefficient, which is the square of it, 

indicates that the statistical relationship between the two series is high. It only sometimes indicates that the 

model is successful. Merz (2006) used the data of 50.000 rainfall-runoff events in 337 basins with areas of 80 

to 10000 km2 in Australia to calculate the runoff coefficient hourly. In the present study, which they 

conducted according to time and space using the data covering the years 1981-2000, they reported that the 

runoff coefficient depending on the space was weakly correlated with land use and soil type but with a strong 

correlation with the annual average precipitation height. If there is a time-oriented approach in runoff 

coefficient calculations, another point to be considered is that this time is relatively short (hours, days). At 

least six months or annual measures will give more reasonable and realistic results (Merz et al., 2006). Palta 

et al. (2019) worked on precipitation and runoff with two runoff observation stations in the Göksu Basin and 

used the Mann-Kendall Trend Analysis. The runoff coefficient of the Hamam station was found to be 43.49%, 

and the runoff coefficient of the Karahacılı station was 41.28%. Also, it was considered to represent the entire 

basin, and the runoff coefficient of the Göksu Basin was accepted as 41.28% because Karahacılı station is close 

to the exit point of the basin. Evaporation is the most crucial reason for the significant loss difference between 

precipitation and runoff in the basin (Palta et al., 2019). 

Parida et al. (2006) estimated semi-arid basins' runoff coefficient using the ANN Model. They calculated 

the runoff coefficients between 1978 and 2000 by applying the water budget technical model to the Botswana 

Notware basin. It was found that the increase in the runoff coefficient until 2020 was approximately 1%. 

Although the study sets an important example, especially for semi-arid basins, including the slope, which is 

a very important variable and not considered, as well as precipitation, evaporation, temperature, humidity 

capacity and urbanization in the model will contribute to a more realistic result for the runoff coefficient 



Urban hydrology and watershed response Page 3 of 14 

Acta Scientiarum. Technology, v. 47, e70976, 2025 

(Parida et al., 2006). Because the slope increases the runoff rate and reduces the infiltration and evaporation 

time. Similar to the black box study of Parida et al. (2006), Sedki et al. (2009) used the Genetic algorithm 

method to estimate the precipitation-runoff of the Ourika semi-arid basin in Morocco with an area of 503 

km2. Here, the precipitation-runoff values in the previous time were taken as the system's input to predict the 

runoff in any period. The authors argued that the model predictions were supremely satisfactory. It is 

necessary to use retrospective datasets only to train black box methods such as ANN and GA. Therefore, using 

these methods in watersheds with insufficient data must not be expected to yield realistic results. Also, among 

the disadvantages of these methods, they do not deal with the physics aspect of the event (Sedki et al., 2009).   

The MIKE 11 NAM model, which is a deterministic approach, was developed by Kumar et al. (2017) and 

employed it in a runoff simulation for the Arpasub Basin in India. The caliber of the model was made and 

verified using the discharge data of the Kota Station with an area of 1681.8 km2. According to these results, it 

was reported that the model could well define the rainfall-runoff relationship of the basin and predict the 

daily values of the surface runoff (Kumar et al., 2017).  

Materials and methods 

In the present study, a model with Simple Membership Functions and a Fuzzy Rules Generation Technique 

(SMRGT as a simple technique for determining membership functions and fuzzy rule base) was developed to 

estimate the runoff coefficient of the Kalecik Basin. The method was first proposed by Toprak (2009) (Toprak, 

2006). All the details of the technique were included in the present study. Also, there are many articles in the 

current literature (aside from the main article given above, there are also studies conducted by Toprak et al., 

2012; Altaş et al., 2018; Toprak et al., 2017; Yalaz et al., 2016) and studies presented as papers in scientific meetings 

(Toprak, 2018; Toprak, 2017; Toprak et al., 2012; Altaş et al., 2018; Gunal & Mehdi, 2023; Toprak et al., 2013a; 

Toprak et al., 2013b). Because of its easy applicability and very realistic results, it was adopted in a short time after 

entering the literature and used in postgraduate thesis studies in many different disciplines (Altaş, 2018). 

Although SMRGT was employed as a method in the studies mentioned above, each application area was 

different. For example, Altaş et al. used the SMRGT Method for the modeling of water surface profiles in open 

channel flows, in other words, in the field of hydraulics (Altaş et al., 2018). The first application in 

environmental science was made by Gunal & Mehdi. (2023) (Gunal & Mehdi, 2023). Aside from these, Toprak 

(2009) conducted the first study in the field of hydraulics on the dimensioning of open channels. Toprak et al. 

(2013) used it to calculate losses and leaks in drinking water network lines, in other words, in environmental 

sciences (Toprak et al., 2013). The study Yalaz et al. (2016) used fuzzy linear regression in the analysis of 

Fuzzy time-dependent data, in other words, in the field of mathematics (Yalaz et al., 2016). Yalaz et al., (2016) 

also used it in the field of mathematics in fuzzy linear regression analysis (Yalaz et al., 2016). Toprak et al. 

(2017) mentioned both the advantages and disadvantages of the method and its practical applications (Toprak 

et al., 2017). Unes et al. (2020) reported that this method gives more reasonable results when compared to 

other methods in river runoff estimation (Üneş et al., 2020). Ustun et al. (2020) used it to determine the 

estimation of the radiation from the sun (Üstün et al., 2020). Güven (2020) used it to estimate the revenues of 

the Istanbul Bosporus bridges in his master’s thesis (Güven, 2020). The most important advantage of the 

method is that it detects both the Fuzzy Rule (FRs) base and Membership Functions (MFs) at the same time 

with a straightforward technique (Toprak, 2009).  

According to the fuzzy SMRGT method; 

1. Firstly, the decision is made for the current event's dependent and independent variables. Dependent 

variables are taken as input, and independent variables are taken as output (Toprak et al., 2017). 

2. All variables must have a specific limit range, and their minimum and maximum values must be 

known. Xmin and Xmax values must be chosen based on an expert's opinion. They must be expanded as 

desired, considering the problem's situation. The XR change interval is calculated as in Equation 1. 

𝑋𝑅  =  (𝑋𝑚𝑎𝑘) − (𝑋𝑚𝑖𝑛)  (1) 

3.  The shape of the membership functions is decided. When defining the membership functions, 

choosing the right triangle or trapezoidal for the first and last and choosing the trapezoidal or isosceles 

triangle for the membership functions in the middle will be more efficient for the model. Triangular fuzzy 

sets were decided to select since this method gives more positive results on triangular and trapezoidal 

membership functions. 
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The key values of each variable (K1, K2, K3, ... Kn) and membership functions (Ci), unit width (UW), 

expanded unit widths (EUW) symmetrically extended for each membership function, and two neighboring 

membership function’s overlapping value (O) is determined. Also, the number of right triangles (nu) in Fuzzy 

triangular sets must be known (Figure 1). For example, for a membership function with five Fuzzy subsets in 

Figure 1, K1 and K5 are the values at the centroid of the first and last right triangles, and the remaining middle 

key values (K2-K4) are the centroids of the triangles in between (Ci - 1, Ci, Ci + 1). These magnitudes of the 

dependent and independent variables for the Fuzzy SMRGT model are calculated with equations 1 - 9 using 

the formulas below. 

 

Figure 1. The notation of key value, core value, and unit width for the model. 
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2
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𝐸𝑈𝑊 =  
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𝑛𝑢
 +  𝑂 (7) 

𝐾1  =  𝑋𝑚𝑖𝑛  +  
𝐸𝑈𝑊

3
 (8) 

𝐾5  =  𝑋𝑚𝑎𝑥 −
𝐸𝑈𝑊

3
   

 (9) 

4. According to SMRGT, membership functions of all independent variables must consist of at least 

three fuzzy sets. If more clusters are selected, it must be an odd number. The model error decreases, and the 

processing volume increases as the number of fuzzy sets in membership functions increases. 

5. Overlapping the right triangle parts of fuzzy sets up to the centroid (1/3 and 2/3) in membership 

functions reduces the error. 

6. The key values of the first and last fuzzy sets in the membership function of each independent 

variable determine the validity range of the fuzzy model. In other words, the model will be valid between the 

first and last key values of that variable(s). For this reason, it is always helpful to expand the limit ranges of 

the independent variables. In such a case, the error percentage will automatically decrease when the centroid 

method is used in the clarification process. 

7. Key values such as K1, K2, and K3 are inputs of the fuzzy model.These parameters are determined by 

trial and error. Based on these parameters, a conclusion can be made in advance. 

8. After these processes and work, the dependent variable, in other words, the values of the output, will 

be determined in response to these selected values of each variable. Output values against these calculated 

values of the inputs are obtained either experimentally or by an experienced expert. A safe formula in the 

literature can be used for this purpose. The values obtained in this way will be the key values of the fuzzy sets 

of the output. The membership function of the output is found in this way. The membership function of the 
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output will give the fuzzy rule base. Therefore, each key value of the output will yield a rule. Then, the number 

of fuzzy sets in the membership function of the output will be equal to the number of fuzzy rules, and no 

combination will be skipped. 

9. In this way, after determining both membership functions and rules, the next step is the process. In 

this process, the fuzzy SMRGT model is optionally run in a package program. The most suitable package 

program for this job is MATLAB. 

10. Input and output files prepared in this program are loaded into the program with a “.dat” extension. 

If necessary, 4 data files (input and output) can be prepared and loaded into the program for each test and 

calibration stage. The program is loaded into the program with a “.fis” extension. Then, a file with the “.m” 

extension is prepared to run the program. Model results are obtained by running this file with the “.m” 

extension. 

11. Preparing the program with this method will save it from the trial and error process. The process 

volume will be low and short even if it does not. If the membership functions of the output are more 

intertwined than they usually are, two or more intertwined membership functions must be reduced to one 

(Toprak, 2009; Torak et al., 2017). 

Study Area and the Data Used in the Study 

The Kalecik basin, which is the study area, is located in the Upper Euphrates sub-basin of the Euphrates-

Tigris Basin in the Eastern Anatolia Region covering Karlıova (Bingöl), Güroymak (Bitlis), and Muş cities and 

surroundings (Oğuz, 1993). The location of the basin is given in the Figure 2. ; The basin covers the center of 

Muş, Korkut (Muş), and Varto (Muş) counties, Güroymak (Bitlis) county, and almost half of Karlıova (Bingöl) 

county. 

 

Figure 2. The location map of the Kalecik basin. 

The variables affecting the runoff 

The effect of the variables related to meteorological and terrain characteristics was reflected in the runoff 

in the present study. 

Meteorological variables 

Precipitation 

Runoff is directly related to precipitation. Although the amount of precipitation increases in the basin, 

especially when Güroymak county is approached, it decreases as it approaches Varto and Karlıova counties. 

In the present study, precipitation data were obtained with the Kriging Method and are given in Figure 3. The 

range of values found was calculated as the lowest at 583 mm and the highest at 922 mm. However, a minimum 

500 mm and a maximum 1200 mm interval were selected for the use and generalization of the model in 

different basins in the present study. 
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Figure 3. The precipitation map of the Kalecik basin. 

Corrected 

Evaporation 

Evaporation drops to a minimum level in almost half of Karlıova county. The effect of this variable is 

especially included in the model because it is considered that the remaining amount will runoff after the 

leakage, retention, and evaporation losses occurring after precipitation are calculated. When the map of the 

basin was examined, it was seen that evaporation was highest, especially in close place to Güroymak county, 

and evaporation decreased as it approached Varto and Solhan. In the map obtained with the Kriging Method 

given in (Figure 4), the basin's lowest evaporation amount for six months was taken as 500 mm after the 

interpolation process, and the highest value was accepted as 1000 mm.  

 

Figure 4. The evaporation map of the Kalecik basin. 
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The variables dependent on land characteristics 

Slope 

As a variable, the slope must be used in models and calculations because it significantly affects the runoff 

when calculating floods in basins. In the Kalecik basin's slope map, especially the areas within the Muş center 

have the lowest slope values. In this model, the least authority was given to the slope input. It was also noticed 

that the slope generally increased as the water approached the water separation lines of the basin. In the slope 

values produced by using DEM in the map in (Figure 5), the minimum slope of the basin was 0o, the average 

slope was 9.2o, and the maximum slope was 57.2o. The slope values were expanded and chosen as minimum 

0o and maximum 90o to generalize the model and allow it to be used in most  

basins in our country and the world. 

 

Figure 5. The slope map of the Kalecik Basin. 

Land type and use 

The residual precipitation after actual precipitation, evaporation and other losses progresses on the 

ground according to the land type and permeability. Here, land type and use (LTU) was divided into five classes 

regarding precipitation runoff. Starting from the least permeable, these classes were; "mountainous-rocky", 

"settlement areas", "sand alluvium," "agricultural and pasture areas," and "forest areas," respectively. To 

generalize the Fuzzy SMRGT Model developed within the present study's scope to be valid for all types of land 

use, LTU was taken between 0 and 100%, which showed the infiltration rate or runoff of the remaining 

precipitation after it changed from precipitation to evaporation. The LTU map produced by the Corin data of 

the basin is given in (Figure 6). According to this map, agricultural areas primarily covered the basin, followed 

by forestland, mountainous rocky, sand alluvial, and residential regions. 

Results 

The application of the fuzzy SMRGT model 

The SMRGT Method was used in the present study to determine the fuzzy rule base and membership 

functions (Table 1). Karakaya et al., (2018) employed the SMRGT Method to determine the runoff coefficient 

as in the present study. Karakaya et al., (2018) Fuzzy SMRGT Model’s was developed using a university's 

campus data. In this study, the runoff coefficient depended on the slope, land use data, land conditions, 

impermeability, and saturation degree data were determined using the meteorological runoff coefficient. The 

meteorological runoff coefficient is determined by temperature and wind data. Şırnak University campus was 

chosen as the study area. The arithmetic average of these coefficients was converted into a single runoff 
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coefficient. It can be argued that obtaining one single coefficient would be more accurate than the three 

coefficients developed in Karakaya et al., (2018). However, it would be more realistic to take the weighted 

average of the three coefficients produced instead of the arithmetic average. Also, the study area remains very 

small compared to any river basin. The importance of the present study was that the Kalecik Basin is much 

larger than the Şırnak campus, representing an exemplary study among other basins. Another difference was 

that four independent variables representing three different basin characteristics were studied as the model's 

input, and one single coefficient was determined (Karakaya et al., 2018).  

 

Figure 6. The land type and use map of the Kalecik basin. 

Table 1. The key values of the model variables are determined by the SMRGT. 

Inputs 
Xmin    

Xmax 
XR UW EUW O K1 K2 = Ci - 1 K3 = Ci K4 = Ci + 1 K5 

Y 
500    

1200 
700.00 87.50 131.25 43.75 543.75 675.00 850.00 1025.00 1156.25 

B 
500    

1000 
500.00 62.50 93.75 31.25 531.25 625.00 750.00 875.00 968.75 

LTU 0      100 100.00 12.50 18.75 6.25 6.25 25.00 50.00 75.00 93.75 

E 0        90 90.00 11.25 16.875 5.625 5.625 22.50 45.00 67.50 84.375 

a 0          1 1.00 0.0102 0.0229 0.0051 0.0051 0.0204 0.500 0.5255 0.99491 

The relation  

employed 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 

Model results and evaluation 

First, the physical relationship between the system inputs and output, which consisted of the dependent 

and independent variables was determined. The fuzzy relationship was determined by blurring and fuzzy rule 

base, and the clarification process was determined by the centroid method. SMRGT was used in the 

fuzzification and determination of the fuzzy rule base. The fuzzy rule base was determined by considering 

appropriate physical conditions such as “IF”, “WHEN”, and “CONCLUSION”. A few rules about the study are 

given below as examples. 

R1: IF (PRECIPITATION is VL) and (EVAPORATION is VL) and (LTU is VL) and (SLOPE is VL) then 

(RUNOFF is VL) 

 
1 The final key value is K50 for a (runoff coefficient) given in Table 1. 
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R2: IF (PRECIPITATION is L) and (EVAPORATION is VL) and (LTU is VL) and (SLOPE is VL) then (RUNOFF 

is VH) 

R3: IF (PRECIPITATION is M) and (EVAPORATION is VL) and (LTU is VL) and (SLOPE is VL) then (RUNOFF 

is H) 

R4: IF (PRECIPITATION is H) and (EVAPORATION is VL) and (LTU is VL) and (SLOPE is VL) then (RUNOFF 

is M) 

R5: IF (PRECIPITATION is VH) and (EVAPORATION is VL) and (LTU is VL) and (SLOPE is VL) then 

(RUNOFF is L) 

Since the model results in 625 rules (14 pages) in total, with all inputs and outputs, fuzzy rule base, and 

model error, only ten are given in (Table 2) as an example. In the established model, the effects of 

precipitation, evaporation, LTU, and slope on the runoff coefficient were taken differently with the following 

equation (Equation 10). 

𝑎 =  𝑌 − 𝐵 × (1 −
𝐸

100
) − (𝐵 ×

𝐴𝑇𝐾

100
) × (1 −

𝐸

100
) (10) 

In Equation 10, a refers to the runoff coefficient, Y is the precipitation, B is the evaporation, LTU is the 

land type and use, and E is the slope.  

Table 2. The Fuzzy Rule Base of the SMRGT Model. 

Rule No PRECIPITATION EVAPORATION LTU* SLOPE CCALC. CMODEL MARE 

1 543.7500 531.2500 6.2500 5.6250 0.0097 0.0025 74.25 

2 543.7500 531.2500 6.2500 22.5000 0.0995 0.1019 2.38 

3 543.7500 531.2500 6.2500 45.0000 0.2193 0.2243 2.29 

4 543.7500 531.2500 6.2500 67.5000 0.3390 0.3266 3.67 

5 543.7500 531.2500 6.2500 84.3750 0.4289 0.4286 0.06 

6 543.7500 531.2500 25.0000 5.6250 0.0000 0.0025 0.00 

7 543.7500 531.2500 25.0000 22.5000 0.0251 0.0204 18.80 

8 543.7500 531.2500 25.0000 45.0000 0.1665 0.1631 2.03 

9 543.7500 531.2500 25.0000 67.5000 0.3078 0.3062 0.53 

10 675.0000 531.2500 6.2500 5.6250 0.1260 0.1223 2.95 

 

For instance, for the median values of each variable, in other words, the precipitation was 850 mm, the 

evaporation was 750 mm, the LTU was 50%, and the slope was 45°, the output of the model, in other words, 

the runoff coefficient, was obtained as 0.183. 

Another example is given for high values. In this respect, although the precipitation was 1156.25 mm, 

evaporation was 531.25 mm, LTU was 6.25%, and the slope was 84.4o, the runoff coefficient took the maximum 

value as 0.996. 

The basic logic in Equation 10 corrected is the continuity equation. In other words, if precipitation and 

slope are minimum and evaporation and LTU are maximum, the runoff coefficient will take the smallest value 

of 0.00248. If evaporation is minimum, but precipitation and slope are maximum, the runoff coefficient will 

take its maximum value of 0.996. In this respect, the runoff coefficient has a positive statistical relationship 

with precipitation and slope variables and a negative statistical relationship with evaporation and LTU 

variables. In other words, although the independent variable increases with the two variables affecting it, it 

decreases with the increase of the other two. These examples show that the model works not only 

mathematically but also physically. If the precipitation is high, the slope is high, the evaporation is low, and 

the seepage is low, the runoff will be maximum. 

Also, statistical quantities were used to compare the model with the data. These statistical quantities were 

minimum (Xmin), mean (Xm), maximum (Xmax), standard deviation (Sx), coefficient of variation (Cvx), coefficient 

of skewness (Csx), and correlation coefficient (R) and Mean Absolute Relative Error (MARE) was chosen as the 

error type. Statistical comparison results are given in (Table 3). The comparison is also given graphically in 

(Figure 7) and (Figure 8) with a scatter diagram and a series of graphics. 

As seen in the scatter diagram in (Figure 7), the data and the model results are distributed very close to 

the linear regression line that makes an angle of 45° with the horizontal axis. Note that scatter diagram shows 

a nearly linear trend line. This trend indicates that the model's predictive power is very high. The trend line 

angle (regression line) with the horizontal is 45° indicating that the model behaves unbiasedly. 
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Table 3. The statistical values and errors of the model result. 

Statistical Values Error 

Calculation 
Xmin Xm Xmax Sx CvX CSx R MARE (%) 

0.0000 0.2819 10.000 0.2828 10.033 0.6503 
0.992 22.799 

Model 0.0018 0.2825 0.9965 0.2819 0.9878 0.6545 

 

 

Figure 7. The data obtained as a result of the calculation and the results of the model scatter diagram. 

 

 

Figure 8. The serial graph of the model results with the data obtained as a result of the calculation. 

It is seen in (Figure 8) that there is a perfect fit between the calculation and the model and the lines 

completely overlap in the series plot between the data and the results. This is considered important because 

it shows that the model predicts very well, just like the scatter diagram. 

The calculated values of the quantities employed in the comparison for the model are given in (Table 3). 

The statistical relationship between them was measured with the Pearson Correlation Coefficient, calculated 

as 0.992. Such a high Pearson Correlation Coefficient value indicates a high statistical relationship between 

the available data and the model results.  

Negative values appear during the calculation of the runoff coefficient with Equation 10 . These values are 

set to zero because negative runoff is not physically possible. When the mean absolute relative error is 

calculated, infinite values are obtained by dividing by zero. For this reason, negative runoff cases were not 

considered when calculating the mean absolute relative error. MARE was calculated as 2.2799% due to the 
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calculation in the absence of negative values. (Table 3) shows the statistical sizes of the model results and 

data. It is seen in (Table 3) that the statistical sizes of the model results (maximum, minimum, average, 

standard deviation, variation, and skewness coefficients) and the statistical sizes of the data produced by 

Equation 10 are quite close to each other. The average absolute relative error is low, the statistical quantities 

are very close to each other, and the correlation coefficient is relatively high, which shows the model's success. 

In other words, statistical comparison supports visual comparisons positively. For this reason, the Fuzzy 

SMRGT model is quite successful. In other words, it gives realistic results. 

Mapping of the model results 

Parameters used in mapping 

When the runoff coefficient map was prepared, each input's weight coefficient was calculated with the 

following equations. 

𝑏1  =  𝑟1 ×
1

∑ |𝑟|𝑛
𝑖 = 0

 =  0.2672  (11) 

𝑏2  =  𝑟2 ×
1

∑ |𝑟|𝑛
𝑖 = 0

 =  −0.0928 (12) 

𝑏3  =  𝑟3 ×
1

∑ |𝑟|𝑛
𝑖 = 0

 =  −0.1673 (13) 

𝑏4  =  𝑟4 ×
1

∑ |𝑟|𝑛
𝑖 = 0

 =  0.4727 (14) 

Here; 

𝑟1 =  The correlation between precipitation and runoff coefficient 

𝑟2 =  The correlation between evaporation and runoff coefficient 

𝑟3 =  The correlation between LTU and runoff coefficient 

𝑟4 =  The correlation between slope and runoff coefficient 

If 𝑏1, 𝑏2, 𝑏3 and 𝑏4, are normalized correlations (normalized 𝑟1, 𝑟2, 𝑟3 and 𝑟4) 

𝑐 =  2 × |𝑏2  +  𝑏3|  (15) 

𝑐 =  2 × |−0.0928 − 0.1673|  =  0.5202  

 𝑑1  =  
𝑏1

𝑏1 + 𝑏4
 (16) 

𝑑1  =  
0.2672

0.2672 +  0.4727
 =  0.3612 

𝑑4  =  
𝑏4

𝑏1 + 𝑏4
 (17) 

𝑑4  =  
0.4727

0.2672 + 0.4727
 =  0.6388  

𝑒1  =  𝑏1  +  𝑐 × 𝑑1 (18) 

𝑒1  =  0.2672 +  0.5202 × 0.3612 =  0.4551  

𝑒4  =  𝑏4  +  𝑐 × 𝑑4 (19) 

𝑒4  =  0.4727 +  0.5202 × 0.6388 =  0.8050 

Here; 

𝑐 =  Twice the absolute value of the normalized negative correlations 

𝑑1  =  The normalized state of positive correlations of 𝑏1 among themselves 

𝑑4  =  The positive correlations of 𝑏4 normalized among themselves 

𝑒1  =  The map weight coefficient of precipitation 

𝑒2  =  The map weight coefficient of evaporation  =  𝑏2 

𝑒3  =  LTU’s map weight coefficient  =  𝑏3 

𝑒4  =  The map weight coefficient of slope 

Here, evaporation and LTU have a reducing effect because of negative values. In this way, when the average 

runoff coefficient obtained with the fuzzy SMRGT model is processed on the map, it takes 45.51% of its value 
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from precipitation, 9.28% as an absolute value from evaporation, 16.73% as an absolute value from LTU, and 

80.50% from the slope. When the adverse impact is considered, the total is 100%. 

According to the runoff coefficient map given in (Figure 9), it is seen that the runoff is very high in the 

mountainous parts of Muş province, and the runoff increases at some places in Hasköy and Korkut counties. 

Also, the rise in elevation and slope within short distances in these areas where the mountains meet the plain 

has a significantly increasing effect on the runoff because Hasköy is located at the foothills of the southern 

mountains of Bitlis. Also, when the runoff coefficient map given in (Figure 9) is examined, these areas located 

in the south of the basin are where the precipitation value is higher than in the northern part of the basin, 

which causes the precipitation to runoff rapidly. It is also seen that the lowest runoff is in Varto, and although 

it is a high plain area, the decreased amount of precipitation towards the north of the basin ensures that the 

runoff is low. Between Karlıova and Solhan, there are severe decreases in the runoff. Kalecik basin is an 

intermountain basin of tectonic origin. Towards the east, the basin narrows in the north-south direction. The 

streams that originate from mountainous areas and the precipitation water can rapidly be transported to these 

areas because of the increase in slope and elevation. The groundwater is closer to the surface toward the 

southeast of the Kalecik basin. Moreover, the presence of iron reeds in this area indicates this case. The rise 

of the syncline, where a part of it is located in the basin, causes the groundwater to be close to the surface. 

 

Figure 9. The map of the runoff coefficient. 

Conclusion 

The accurate calculation of the runoff coefficient, the most crucial variable for bankfull discharge, is 

essential. However, outdated runoff coefficients calculated with outdated classical methods and transferred 

to tables according to basin or regions are used instead of calculating the runoff coefficient again with new 

and more reliable methods specific to the basin. However, the basin's fixed (basin area, LTU) and dynamic 

(meteorological, hydrological) characteristics must be taken as the basis for calculating the runoff coefficient. 

Because these features change from basin to basin, the data representing features contain uncertainty. Using 

uncertain data, it is not realistic to determine the runoff coefficient with deterministic methods. Similarly, 

using methods that include uncertainty but work as a Black Box method to solve this ambiguous problem can 

be considered unrealistic. For this reason, it is the most accurate and realistic way to calculate or model the 

runoff coefficient with methods that contain uncertainty but also include physical cause-effect relationships. 

The Fuzzy SMRGT, which gives this opportunity, was used in the present study. The SMRGT was used to 

determine the membership functions of the input and output variables and the fuzzy rule base. The Kriging 

method was used for precipitation and evaporation maps of the basin, and the Digital Elevation Model was 

used for slope and LTU maps. 

A fuzzy model with four inputs and one output was prepared to determine the runoff coefficient.  

In the fuzzy model, the runoff coefficient is calculated by using the following variables. Meteorological 

precipitation and evaporation, land use and types depend on land characteristics and geomorphological slope 

variables. The weight coefficient of each model variable was calculated, and the runoff coefficient map was 
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prepared. The data results were compared with the model results using six statistical quantities. These 

quantities are maximum, minimum, mean, standard deviation, coefficient of variation and skewness, Pearson 

Correlation Coefficient, and Mean Absolute Relative Error (MARE). Also, the comparison results were 

visualized with a scatter diagram and different graphics. All criteria based on comparison show that the model 

yields realistic results. 

The following conclusions may be inferred from the test results obtained in this study. The models trained 

with pure datasets in the calculations of the runoff coefficient will only be valid for that basin and region. 

They will only partially reflect the reality of another basin and area. Therefore, they cannot be generalized. 

However, the fuzzy SMRGT Model developed explicitly for Kalecik Basin's model can be used with small 

interventions for other basins. The Fuzzy SMRGT Method is preferred because it allows for reflecting the 

expert opinion on the model in an accurate way. Finally, according to DSI data, the average runoff coefficient 

of the basins in Turkey was 0.37. The Kalecik Basin's runoff coefficient is 0.28. Therefore, considering Turkey's 

average, the water-holding capacity of the basin is relatively higher, and the probability of floods is low. 
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