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ABSTRACT. This study aimed to design a linear feedback control approach for a parametrically excited
energy harvesting system utilizing a piezoelectric material as the transduction element. The purpose was
to significantly increase the amount of energy produced compared to that produced by the original system.
To do so, firstly, it is necessary to analyze the stability of the system and perform a global sensitivity analysis
to determine the physical parameters of the system that most contribute to energy production. The
sensitivity analysis is done by calculating the Sobol indices, which are statistical indices that measure the
relative contribution of each input variable (in this case, the physical parameters of the system) to the
contribution of all input variables. In the stability analysis, the state transition matrix approximation
techniques created by Sinha and Butcher and the results of the Floquet Theory for periodic systems were
used. Stability analysis and global sensitivity analysis are methodologically complementary techniques for
a better understanding of the dynamics of a system. In the case of this work, they are applied to an energy-
harvesting system based on mechanical vibrations, providing important information to design a more
efficient controller. The control technique used was proposed by Sinha and Butcher (1997), and is known as
Linear Feedback Controller Design via the Lyapunov-Floquet Transform.
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Introduction

The process of energy harvesting involves converting ambient energy into a functional and usable form.
Among the most commonly exploited sources for such devices are solar energy, thermal gradients, and
acoustic and mechanical vibrations (Ando et al., 2010). When implementing new technologies, it is necessary
to research and develop devices capable of producing the energy needed for these technologies to be self-
sufficient, i.e., capable of producing enough energy for their consumption. Mechanical vibrations are one way
of obtaining energy from the environment. Vibration Energy Harvesting Systems (VEHS) harness mechanical
vibrations as their primary energy source. Although VEHS generate relatively small amounts of power, they
remain essential since many devices require minimal energy. Vibration energy harvesting, often considered
supplemental power, can supply energy for low-load applications or sustain remote devices and sensors that
demand limited power. Examples include hearing aids, pacemakers, spinal cord stimulators, and
microelectromechanical systems. The high cost and invasiveness of procedures needed to replace pacemaker
batteries present significant challenges, while spinal cord stimulators require frequent recharging, which can
be both painful and time-consuming. Ideally, these devices would incorporate energy harvesting systems to
enable self-recharging and continuous operation over their lifespan. Research on implementing VEHS within
the human body has shown promising results, with initial studies indicating that blood vessel contractions
could generate up to 20 mW of energy per day (Sohn et al., 2005). Many studies have focused on Vibration
Energy Harvesting Systems (VEHS), especially those using piezoelectric materials as transducers that convert
mechanical energy into electrical energy. Lead Zirconate Titanate (PZT) is among the most commonly used
piezoelectric materials (Challa et al., 2008; Eichhorn et al., 2009; Zhu, 2011).

Several uncertain factors influence the electrical energy output of such systems, including the amplitude,
frequency, and physical characteristics of the excitation force. Studies addressing issues of imprecision and
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uncertainty in parameters are increasingly common, as we can see in Sharma et al. (2023) and Rathour et al
(2024); however, most research on applied dynamics does not address the uncertainty and variation of the system's
parameters, that is, no criteria are defined to determine which parameters exert the greatest influence on system
behavior. One possible approach to this problem is global sensitivity analysis (Cacuci, 2003), which is a
computationally efficient technique based on statistical methods that use Sobol indices, which are variance-based
measures that quantify the contribution of input parameters to portions of an expansion polynomial. Statistical
methods are widely used in research into applied dynamics problems, as observed in Outa et al (2021).

In the stability analysis, the Lyapunov-Floquet (L-F) method is employed, utilizing Chebyshev polynomial
expansion to approximate periodic components. The state transition matrix is approximated through the
Picard iterative method. This approach enables the determination of Floquet multipliers and facilitates the
construction of the dynamic system’s stability diagram.

Stability analysis and global sensitivity analysis are complementary and robust tools for investigating the
dynamic behavior of the system. Stability analysis enables the assessment of system stability by examining the
influence of periodic terms inherent to the governing equations. In contrast, global sensitivity analysis identifies
the physical parameters that most significantly influence the system’s ability to achieve a desired performance. In
the present study, the focus lies on identifying periodic solutions through stability analysis and determining the
parameter configurations that maximize energy output through global sensitivity analysis.

The two aforementioned techniques provide critical insights that can inform the development of more
effective control strategies aimed at enhancing energy harvesting performance. The control methodology
adopted in this study builds upon the foundational works of Sinha and Joseph (1994), David and Sinha (2000),
and Sinha and David (2006).

Material and methods

The methodology used here is primarily based on techniques that complement each other, for a more
accurate analysis of the dynamics of periodic time-varying systems, namely, Stability Analysis via Lyapunov-
Floque Transformation and Global Sensitivity Analysis. The stability analysis method adopted in this study
was originally developed by Sinha and Butcher (1997). For the global sensitivity analysis, a variance-based
method employing the computation of Sobol indices was adopted, as described in Cauz et al (2023), Soize
(2017), and Cacuci (2003). These two techniques can be integrated in a complementary way, establishing a
two-way analysis framework that provides a comprehensive view of the system's dynamic behavior. This
information is essential for guiding the development of more effective control strategies. Figure 1 shows a
schematic representation of the methodologies applied.
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Figure 1. Schematic representation of the Methodology.

Global sensitivity analysis

In general, mathematical models that represent physical phenomena have input parameters whose impact
on the dynamic behavior of the system is not known a priori. Moreover, in many models, some parameters
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affect the response of the system more than others. The global sensitivity analysis seeks to quantitatively

determine the influence of each input parameter on the variability of the system response. As a result of this

analysis, it is possible to x the nominal values of some parameters, varying only the values of the most relevant

parameters. The analysis method adopted herein is based on the Hoeffding-Sobol decomposition and aims to

establish an approximation of the original model by a computational model in sums of increasing dimensionality,

subsequently allowing one to evaluate the variance of each of the terms about the total variance of the model.
Suppose the mathematical model is represented by the following functional relationship

Y = M(X),X = {X1,Xp, o, X}

where X is a vector of independent parameters that are modified by the mathematical operator M, producing
a scalar output Y. The Hoeffding-Sobol decomposition is written as the sum of terms of different dimensions

Y = Mo + Xing Mi(Xp) + Zigg My (X, X)) + 0+ My o (X, Xp, o, Xp),

where M, = E[Y], M; = E[Y|X;] — My, M;; = E[Y[X;, X;] — My — Mi(X;) — M;(X;) and so on. The operator E[ -]
denotes the expected value of the quantity to be calculated.
From the independence of the parameters of X, the global variance of Y is written as

Var[Y] = X, Var[M, (X,)],
with ¥, Var[M, (X,)] = XiL, Var [M;(X;)] + Xig; Var [M;;(X;, X;)] + - + Var [My_,(Xq, Xz, .., Xp)]
and therefore,

Var[My, (Xy,)]
Zuarva# =YuSy =2.Si + Zi<j Sij 4o +Si, =1 "

where S, is known as Sobol indices. Each Sobol index represents the contribution of the variance of the
output of X, to the total variance of the output.

The first-order Sobol indices

= Var[M;(X;)]

t Var[Y]
describes the individual effect of X;, while the second-order indices

S-- _ Var[Mi]-(Xi,Xj)]
u T Var[Y]

measure the joint contribution of the pair (X;, X;), and so on.

Polynomial chaos expansion

The Monte Carlo Method is used in applied dynamics problems to evaluate uncertainty and variability in
systems, through stochastic simulation of different scenarios, as can be seen in Sharma et al (2022), who used
Monte Carlo Simulation for decision-making in medical diagnostic processes in an uncertain environment.
The Monte Carlo method is one way to calculate Sobol indices. Due to the slow convergence of this sampling
method, the use of this method may not be computationally interesting. An alternative and effective way to
calculate Sobol indices is to use a surrogate model of the original model. This method is obtained through the
Polynomial Chaos Expansion (PCE) (Soize, 2017), which approximates the original physical system and allows
calculations to have a high accuracy with little computational processing. In short, PCE is a way to
approximate solutions to the original system. In the literature, there are several methods and research that
involve polynomial approximations, such as the Lagrange polynomial method (Bhat et al., 2024).

Suppose Y = M (X) is a random variable of finite variance. One can then define a Polynomial Chaos
Expansion in the form

Y = ZaEA Yalpa(x)

Where ¥, are orthogonal polynomials of several variables with respect to a joint probability density
function fy of X; y, are real coefficients to be determined, and A ¢ N™ such that it is possible to select all
possible indices of the polynomial expansion.

Because of the orthogonality of a PCE, we have E[Y] = y, and
Var[Y] = Ya=o yZ (2)

a€EA
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From Eq. (2) and the definition of the Sobol index (Eq. (1)), we can rewrite the first and second-order Sobol
indices, respectively, as

S; = (Za::o yg%)/(Zm:o }’o%), Sij = <Z a#0 Y§>/<Za¢03’§)'
AEA; a€EA QAEA;j aEA

Thus, the Sobol indices can be written in terms of the coefficients y, of the Polynomial Chaos Expansion.
These coefficients can be computed by numerical methods, such as the projection method and the regression
method (Soize, 2017).

Stability analysis

In the analysis of system stability (Eq. (25)), we employ Floquet theory, originally formulated by the French
mathematician Gaston Floquet (1847-1920), in conjunction with a methodology proposed by Sinha and
Butcher (1997). Floquet theory is particularly well-suited for analyzing the stability of periodic orbits when
the analytical form of the corresponding solutions is known (Meirovitch, 2010; Monteiro, 2011; Naifeh &
Balachandra, 1995). More precisely, Floquet demonstrated that, under certain regularity conditions, the stability
analysis of linear time-periodic systems can be reduced to the study of an equivalent linear time-invariant system
via a coordinate transformation. Nevertheless, the direct analytical application of Floquet theory is limited in
practice due to the complexity of obtaining closed-form solutions for general periodic systems.

The method proposed by Sinha and Butcher combines Picard iterations with Chebyshev polynomial
expansions to obtain approximate solutions for linear time-periodic systems (Andrade et al., 2012). A
comprehensive formulation and analysis of this technique are presented in Sinha and Butcher (1997).

The main formulation and theorems of the Lyapunov-Floquet Theory are presented below.

Some results from the lyapunov-floquet theory

Consider a system of n first-order linear differential equations expressed as
x(t) = A(t)x(t) 3

where x(t) € R", A(t) € R™". The matrix A4 has elements 4;;(t) that are continuous and periodic in time with
period T, such that A(t + T) = A(t) for all t = 0. Thus, this system (Eq. 2.3) is said to be periodic in time.
Suppose the system (Eq. 3) admits n linearly independent solutions xU’(t). These solutions constitute a
fundamental set, allowing any general solution of the system to be expressed as a linear combination of them.
This set of solutions can be represented in matrix form as ®(t), referred to as the fundamental matrix solution
or state transition matrix (STM) of the system

D(t) = [x(l)(t) x(z)(t) x(")(t)].

In 1883, Floquet proposed the following result (Meirovitch, 1970):

Theorem 1. If @(t) is an STM of the system described by Eq. 3 where A(t + T) = A(t) for all t = 0, then
®(t + T) is also an STM of the system (Eq. 3). Moreover, for each STM &(t) there exists a non-singular periodic
matrix Q(t) of periodic T (with Q(0) = I) and a constant matrix R, such that

@(t) = Q(t)ek. 4)

More specifically, if R is a real (or complex) matrix of constant coefficients, then Q(t) is 2T periodic (or T
periodic) (Iakubovich & Starzinskii, 1975). From (Eq. 4), it can be seen that the decay of the system is
determined by the term e®* and, in the case, when t = T, the R matrix can be calculated by
®(T) = eRT
where the matrix @(t) is calculated at the end of period T. The matrix ®(T) is called the Floquet Transition
Matrix (FTM), also known as the Monodromy Matrix, and its eigenvalues p; are called characteristic
multipliers or Floquet multipliers (Monteiro, 2011). The R matrix is obtained from the FTM matrix using the
identity (Sinha et al., 2000):

-1 -1 2
R = —log ®2T) = = log[®(T)]?.

By Theorem 1, and by applying a coordinate transformation known as the Lyapunov-Floquet
transformation (or simply the L-F transformation), we obtain the following corollary:
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Corollary 1. The Lyapunov-Floquet transformation, T-periodic
x(t) =Q0®z(®)

with z(t) € R™, Q(t + T) = Q(t), Q(0) = I,, in which [, is the identity matrix of order n, transforms the time-
variant system x(t) = A(t)x(t), in the time-invariant system z(t) = Rz(t), where the eigenvalues 4; of R are
related to the characteristic multipliers by means of

p; = M, 5)
It can be concluded from Eq. (5) that the characteristic exponents are given as follows (Sharma & Sinha, 2018):
A =%(log|pj| +iargp]-),j =12, ,n. (6)

Remark 1. Note from Corollary 1 that a linear system with periodic coefficients (time-invariant) can be
transformed into a linear system with constant coefficients (time-invariant).

The numbers 4; are called characteristic exponents or Floquet exponents. The stability of the system (Eq. 3) can
be studied by analyzing the characteristic exponents, as can be seen from the following theorem (Meirovitch, 2010):

Theorem 2. About the stability of the system (Eq. 3), we have the following results:

i) If all characteristic exponents have the negative real part, then all solutions of the system (Eq. 3) are
asymptotically stable.

ii) If at least one of the characteristic exponents has the positive real part, then the system (Eq. 3) is unstable.

iii) If all characteristic exponents have zero or negative real parts, and those with zero real parts are simple
roots of the characteristic polynomial of R, then the system is stable; if the roots with zero real parts are not
simple, then the system is unstable.

Because of Eq. (6) and Theorem 2, the asymptotic stability of the system (Eq. 3) related to the Floquet
multipliers is given in terms of the following corollary:

Corollary 2. If |p;| < 1, for all j = 1,2, -, n, then the system (Eg. 3) is asymptotically stable. If |p;| > 1 for
some j, the system is unstable.

Sinha and Butcher's technique for state transition matrix approximation

The great difficulty in applying both Theorems 1 and 2 is in obtaining the State Transition Matrix (STM)
@(t). This difficulty is overcome when the theorems are applied to commutative systems. However, in most
cases, it is practically impossible to obtain the matrix STM ®(t). To circumvent this problem, Sinha and
Butcher (1997) developed a numerical computational method to approximate the STM ®(t).

Consider a nonlinear periodic dynamical system of dimension n of the form

z(t) = f(z(t), t,a) = f(z(t),t + T,a),z(0) = z° )
where ¢t € R* denotes time, z € R" is the state vector, « € R™ is a vector of system parameters, and
f:R™ x R* x R™ - R" is analytic in the z and @ components and periodic of period T at time t. Suppose that
Z is an equilibrium or periodic solution of period KT of the system (Eq. 7) and x(t) = z(t) — Z(t) a perturbation
of this solution. Thus, by expanding in Taylor series the system (Eq. 7) around z = Z, we have

x=Ata)x + fL(x,t,a) + f3(x,t,0) + - + fr(x, t, @) + O(|x[™*1), x(0) = x° = 2° — 2(0) ®)

where f, represents the terms of order r (r = 2) of the Taylor series expansion of f, and A(t, «) and f,.(x, t, @)
are periodic of period KT. Consider the linear part of Eq. (8) given by

x(t,a) = A(t,)x(t,a),x(0,a) = x°. 9)

Considering Egs. (3) and (9) and theorem 1, the local stability of Eq. (8) is given by the Floquet multipliers
p; of the Floquet transition matrix (FTM) ®(KT, a).

To introduce the Sinha and Butcher technique, we change the variable ¢t = KTt to transform the linear
system (Eq. (9)) of period KT into the following system of period 1

%x(r, a) = A(r,)x(t,a), A(r + 1,a) = A(z, a), x(0, ) = x°, (10)
where

A a) = L (@fi() + A (@) f,(D) + -+ A (@)fr (D), A(@) = TA(@),i = 12,7
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According to Sinha and Butcher (1997) and Butcher and Sinha (1998), the state transition matrix (STM)
®(t, a) of the system (Eq. 10) can be approximated by

®®™(z,0) = TT@[1 + (Z} L] )P (@)].

where in the (p, m), p is the number of Picard iterations, m is the number of terms of modified Chebyshev
polynomials Ty (t), T, (t), -+, Ty_1(t), TT is the Chebyshev polynomial matrix, L(a) = G"Q,, and P(a) =
G"D(a). Sinha and Butcher (1997) describe the process for constructing the D(«) matrix and obtaining the
operational matrices [, G, and Qp.

Control of periodic systems via lyapunov-floquet transformations

Based on the techniques of Sinha and Butcher (1997), Sinha and Joseph (1994), and Sinha and D4avid (2006),
the control method based on Lyapunov-Floquet transformations is described.
Consider the time-invarying nonlinear system represented by

x = f(x(t),t) + ut), (11)

in which x(t) € R™, which exhibits a chaotic attractor for a given set of parameters when u.(t) = 0, and let
y(t) be the desired reference trajectory and x(t) the trajectory of the controlled system. The goal of the
control law u, is to control the chaotic dynamics of the system so that x(t) converges to y(t). To this end, the
control input u.(t) is structured into two distinct components

uc(t) = ur +upup =y — fy(0), 1), ue = F(Ou().

The u; part of the controller is called feedforward, and the u, part is feedback. The matrix F(t) is called
the gain matrix and will be obtained next.
We can then rewrite the system (Eq. 11) in the form

x=fx@,t) +y - f@®, )+ FOu®.
By defining e(t) = x(t) — y(t) as the dynamic error between x(t) and y(t), it follows that
é=ge(®),t) + F(Ou®), 12)

where g(e(t),t) = f(e(t) + y(t),t) — f(y(t),t) is a nonlinear function of class C*.
If the following condition is satisfied

llg(e,t) = A(®)e + FOu@®Il _ 0

lim su =0,
lel=o b, el
where A(t) € R™" and
agj
M”=bﬂ

(9]

one can then linearize (12) in the neighborhood of e = 0 and obtain

e =A®)e() + F{)u(t). 13)
Now, consider that the system described in Eq. (13) can be expressed in the general form

z=A()z(t) + B(t)u,, (14)

in which the matrices A(t) and B(t) are periodic with period T and the pair [4, B] is controllable. Using the
Lyapunov-Floquet transformation (Sinha & Butcher, 1997)

z(t) = Q()q(t),
in Eq. (14), we get

g = Rq(t) + Q"' ()B()uy, (15)

inwhich R = Zl—Tln((DZ(T)) and ®(T) is the Floquet transition matrix.

Since the gain matrix Q~1(¢)B(t) of the system (Eq. 15) is invariant in time, the aim is to build an auxiliary
system with a gain matrix that remains constant over time

d = Rq + Bov(v), (16)
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where B, is a constant matrix of full rank such that the pair [R, B,] is controllable. Consider the control law v
given by
v(t) = Foq (o), 17
in which F, denotes the gain matrix associated with the control input v(t) which is designed to ensure that
the system described by Eq. (17) is asymptotically stable.
If we define the dynamic error as £(t) = q(t) — g(t), apply Egs. (15, 16 and 17) and then add and subtract
By Fye(t) we obtain
£(t) = (R + BoFp)e(t) + Q (1) B(t)u,(t) — BoFoq(d). (18)

If we choose the appropriate matrix F,, the stability matrix (Eq. 18) is (R + B,F,), and, therefore, the
systems (Eq. 15) and (Eq. 16) will be considered equivalent if

QY (t)B(t)u.(t) = ByFyq(t),forallt > 0, (19)

and, therefore,

u.(t) = B*(£)Q(t)ByFoq(t), where B* = (BTB)™!BT. (20)
By applying to Eq. (20) the inverse Lyapunov-Floquet transformation q(t) = Q~1(t)z(t) we obtain

u (t) = B*(1)Q(t)BoF, Q' (1) z(2),

and, therefore, we conclude that the time-varying gain matrix F(t) is given by

F(t) = B*(Q(D)BoF, @~ (0.

Therefore, the state-feedback control law can be expressed as
u = —B*(t)Q(t)ByFoQ () z(t), @1

Analytical model of the energy harvesting mechanism

Vibrational energy harvesting structures encompass a range of configurations, with cantilevered beams or
plates being the most prevalent. These typically feature partial or full coverage with a piezoelectric (PZT) layer
(Challa et al., 2008 and Zhu, 2011). The structure examined in this study consists of a free-floating beam partially
coated with a piezoelectric material layer and subjected to parametric excitation, as depicted in Figure 2.

&
A

Piezoelectric

layers
X -

F'cos(wt*)

Figure 2. Proposed Collector Model (Daqaq et. al., 2009).

Acta Scientiarum. Technology, v. 47, e71579, 2026



Page 8 of 17 Cauz et al.

The piezoelectric material is connected to the beam and a resistive load for energy harvesting. The
mathematical model representing these dynamics was described by Dagaq et al (2009), whose dynamic
equations are given by Eq. (22)

i+ 2u0 + wiu + ol + au® + 2B (Wi + uu?) = u%cos(a}t) + %V,

' - (22)
01+ C,V + 2V =0,

where u is the generalized coordinate representing the deflection of the beam in the x direction, V is the
output voltage measured at the resistor R, u, is the viscous damping term, u, is the quadratic damping
representing the air resistance, a and f are constants, 6 is the electromechanical coupling, C, is the
capacitance of the piezoelectric element, m is the mass of the beam, F is the excitation amplitude, and w is
the excitation frequency. The term au? is used to describe the geometric nonlinearity of the beam, the term
2B (u%ii + un?) represent the inertia. The deflection of the beam, u, nd the time, t, are normalized with respect
to its length, Lb, and the inverse frequency response, win, respectively. After normalization, the equivalent

system given in Eq. (23) is obtained
¥4 2u% + x + pp|x]x + ax® + 2B (x%% + xx?) = xF cos(Qt) + %V,

0% + C,V + =V =0,
eq

(23)

14 Lb? F
where x =%, t=tw,V =t =Z_711, Ho = HaLb, a = aw_%: B =B(Lb)*, F =% Cp = Cp, Reg = Ry, O =a%,
K = mw?.
The time-averaged output power generated by the system described in Eq. (23), over a time interval of
length h, is defined as
_ 1 rtoth 2
P= [ AV () de 24)

1

where AV (t)? is the instantaneous power and 1 = (Norenberg et al., 2022).

ReqCp

Results and discussions

In the numerical analyses conducted throughout this study, the model parameters received the following
nominal values: y; = 0.01, y, = 0.01, « = 0.001, § = 0.001, K = 0.5, and R., = 20. Several values were
considered for the parameters F, 2, and C,, representing, respectively, the amplitude and frequency of the
applied parametric excitation, as well as the capacitance of the piezoelectric component. All computational
simulations were performed using MATLAB software (version R2022a, MathWorks Inc.). The initial conditions
were defined by the state vector (Xo, Xo, Vo) = (0.1, 0.0).

Stability and global sensitivity analysis

Initially, the numerical results for the stability analysis based on the Floquet method (Meirovitch, 2010;
Monteiro, 2011; Naifeh & Balachandran, 1995) and a state transition matrix approximation technique (Sinha
& Butcher, 1997) are presented.

For the global sensitivity analysis, the physical parameters of the system were assumed to be independent,
and a uniform distribution over their nominal values was adopted with a coefficient of variation of up to 20%.

Stability analysis

To analyze the dynamic stability of the system and identify potential steady-state solutions, the
dimensionless dynamic equations (Eq. (23)) are reformulated into a set of state-space equations. For this
purpose, we introduced the change of variable x; = x, x, =%, x3 =V, and obtained the state-space
representation of the system is formulated as follows

X =% = f1(x, 1)

6
[_Zﬂlxz — X1 — ol Xy — @x} — 22, 2% + %, F cos(Qt) + Ex3] = f2(x,t) (25)

6

. 1
Xy ==Xy~ X3 = f3(x,t)

1

Xy =——
27 142px2
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The system has three equilibrium points (x;, x5, x3), namely (0, 0,0), ( /% 0, 0), (— /% 0, 0). The last

two equilibrium points are valid only when Q = 0, i.e., the system is free from periodic excitation. This paper
considers only the system (Eq. (23)) under periodic forcing; consequently, the analysis is focused exclusively
on the equilibrium point (0, 0, 0).

To implement Sinha’s method (Sinha and Butcher, 1997), it is necessary to linearize the equations of states
(Eq. (25)) around the equilibrium point (0, 0, 0). Thus, the equations of the system can be written in the form

2m

x(t,P) = A(t, P)x(t,P), where P represents its parameters, and A(t, P) is a periodic matrix of period T = 0
By performing the transformation t = %ﬂr, the linearized system is rewritten in the form % = A(t,P)x(t,P)
where A(t, P) = A, (P)f, (1) + A,(P) f>(1), f1(1) = 1, f,(7) = cos(2mT),

0 1 0
- 2T —1 —2#1 2 - 2T 0 0 O
A(P) =~ k |,A,(P) ==|F 0 0].
@ _s __1 “lo 0 o
E CpReq

To analyze the structural stability, we investigated whether the modulus of the characteristic multipliers
p; is greater than or equal to 1 for given values of the physical parameters. These multipliers can be calculated
by the Approximate Fundamental Matrix. In the approximation, the degree of the modified Chebyshev
polynomial is m = 20, and the number of Picard iterations is p = 40. In the stability analysis, the nominal
value of the electromechanical coupling coefficient was set to 8 = 0.1.

Figures 3a through 3d present the stability charts associated with the equilibrium point (0,0,0), considering
variations in the amplitude of the external excitation force F. In these diagrams, the dashed line serves solely
as a visual reference to indicate the threshold modules of the characteristic multipliers. The equilibrium is
classified as asymptotically stable whenever all characteristic multipliers have moduli below this reference
line. Conversely, when any of the moduli exceed this threshold, the equilibrium point becomes unstable. In
Figure 3a, Q = 0.9 was adopted and the amplitude F was varied in the interval [0.01, 1]. There is a range of
values of F for which the equilibrium point of the system is stable, i.e., the characteristic multipliers have
modulus less than 1, and a condition for instability in the range of values in which the multipliers have
modulus greater than 1. Figure 3b presents the stability diagram in the resonance region 1: 1 (Q = 1). The
stability change occurs for smaller values of the amplitude F than what occurs for Q = 0.9. Figure 3¢ shows
the stability diagram for the system under the 2 : 1 internal resonance condition (Q@ = 2). In this case, a
transition in stability is observed within a narrow range of the excitation amplitude, specifically for F €
[0.001, 0.08]. In Figure 3d, the parameters are set to Q = 0.64 with 0.01 < F < 0.9. It is again observed that
the system exhibits both stable and unstable regions, as the characteristic multipliers lie within the unit circle
for certain values of F, indicating stability, while for other values they lie outside the unit circle, indicating
instability.

Figure 3e illustrates the regions of stability (shaded in blue) and instability (shaded in green) in the Q — F
parameter space. The blue area corresponds to combinations of Q and F for which all characteristic
multipliers have a modulus less than one, indicating stable behavior. Conversely, the green area identifies
regions where at least one multiplier has a modulus greater than one, signaling instability. The stability
profiles observed in Figures 3a through 3d are consistent with the regions highlighted in Figure 3e. Within
the stability region, the system trajectories converge to the equilibrium point at (0,0, 0). As an example, for
F =0.1and Q = 1.6, the moduli of the characteristic multipliers are |p;| = |[p,] = 0.9615 and |p5| = 0.9902,
confirming stable dynamics. In contrast, for F = 0.0565 and Q = 2, the values |p,| = 1.013, |p,| = 0.927, and
lps] = 0.9922 indicate that the system is unstable due to one multiplier exceeding unity in magnitude.

To further investigate the system’s behavior under specific conditions, time-domain simulations of the
beam displacement were carried out, as presented in Figure 4. Figures 4a and 4b depict two distinct dynamic
responses corresponding to different parameter combinations.

In Figure 4a, the excitation parameters are set to F = 0.1 and Q = 1.6, corresponding to a stable
configuration within the identified stability region. Under these conditions, the system response
asymptotically converges to the equilibrium position. Figure 4b illustrates the case F = 0.0565, and Q = 2,
which falls within the instability region, as previously determined through the analysis of characteristic
multipliers. In this case, the system exhibits an initial transient phase followed by a transition into a periodic
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regime. Figure 4c provides a detailed view of the system’s response over the time interval [7800,8000],
accompanied by the associated Poincaré sections, offering further insight into the long-term dynamical behavior.
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Figure 3. (a) Stability diagram for Q = 0.9, (b) Stability diagram for Q = 1, (c) Stability diagram for Q = 2, (d) Stability diagram for Q =
0.64, (e) Stability region: 0.01 < Q < 3.0,and 0.01 < F < 1.

To start a global sensitivity analysis, the first step is to verify that the surrogate model is a good
approximation to the original model of the problem. The surrogate model used in this study is based on the
Polynomial Chaos Expansion of the average power produced by the energy harvester, which aims to measure
the relative importance of each parameter of the system in energy production. In order to validate the
surrogate model, we adopted C, = 20 and the following values for the parametric power parameters: F =
0.28 and Q = 0.65. Unless otherwise specified, whenever we set a nominal value for a parameter, it will be
allowed to vary by up to 20%. In Figure 5, a correlation is made between the data generated by the original
model (True Model) and the data of the surrogate model (Surrogate Model). Figure 5 shows that the surrogate
model is a good approximation to the true model since their data closely follow the identity curve.
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Figure 4. Time history for the displacement of the beam: (a) F = 0.1 and Q = 1.6, (b) F = 0.0565 and Q = 2, (c) Phase space and
Poincaré section for F = 0.0565 and Q = 2.
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Figure 5. Average power P: comparison between surrogate model and true model.

These results allow us to explore, using the surrogate model, scenarios that can significantly influence the
average output power P (Eq. (24)) of the energy harvester. Figure 6a shows the global sensitivity analysis via
Sobol indices for the energy collector, in order to analyze the influence of the parameters on the average
output power. In this section, special attention has been given to the analysis of the resonance regions, and
this is due to the possibility of the system being driven into a periodic regime for small values of the amplitude
of the parametric force F (Figure 3e). For energy production, the equilibrium point is expected not to have
asymptotic stability, i.e., that the system operates in a region of instability, in a periodic regime.
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For Q ranging from 0.6 to 0.66, and F = 0.82, the frequency Q, and the amplitude F, followed by the
capacitance C,, are parameters associated with the highest sensitivity. In Figure 6b, F = 0.7 and Q ranging
from 0.9 to 1.02 were adopted. It is important to highlight that the values of Q were selected to enable analysis
of the system in the vicinity of the primary resonance condition, specifically Q = 1, corresponding to the 1 :
1 resonance. Under this condition, the system exhibits increased sensitivity to variations in the excitation
frequency Q, followed by the excitation amplitude F, and subsequently by the capacitance C,. Figure 6¢ shows
an analysis of the system around the resonance region 2 : 1 (Q = 2) with a variation of 20%, i.e., Q ranging
from 1.8 to 2.2 and assuming F = 0.4. In this condition, there was an increase in the importance of
capacitance C, in the average power generated by the energy collector. So, the system is most sensitive to the
amplitude F, then the capacitance C,, and at last the frequency Q. We conclude, from Figures 6a, 6b, and 6c,
and respectively from the imposed conditions, that the frequency and amplitude of the parametric force, as
well as the capacitance of the piezoelectric element, are associated with the highest sensitivity, meaning that
they are the parameters that most affect the behavior of the system.
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Figure 6. (a) Sobol indices for 0.6 < Q < 0.66, F = 0.82 and 6 = 0.05; (b) Sobol indices for 0.9 < Q0 < 1.02, F = 0.7 and 8 = 0.05; (¢)
Sobol indices for 1.8 < 0 < 2.2, F = 0.4 and 6 = 0.05.

In Figure 7, the sensitivity of the system was evaluated in the resonance regions: Q = 1.0 (Figure 7a) and
Q = 2.0 (Figure 7b). For Figure 7a, in turn, F ranges from 0.28 and 0.88 with a step size of 0.04. At last, in

Figure 7b F ranges from 0.06 to 0.2 with a step size of 0.01.
Figure 7a shows the predominance of Q in most scenarios followed by the amplitude F. The contribution of

capacitance C, also increases when increasing the amplitude F. In Figure 7b, we observe behaviors similar to those
of Figure 7a, that is, a greater relative contribution in the energy production of parameters Q, F, and C,,.
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Figure 7. (a) Sobol indices for 0.28 < F < 0.88, Q = 0.82 and 6 = 0.05; (b) Sobol indices for 0.06 < F < 0.2, 2 = 2 and 6 = 0.05.
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Taking into account the stability region (Figure 3e) and the sensitivity of the average output power of the
system to parameters Q and C, in the neighborhood of Q= 2 (Figure 6c), the time histories of the
displacement x, (Figure 8a) and the voltage x; (Figure 8b) are presented. The system enters a periodic regime,
as can be observed in the Poincaré section (Figure 9a) and the Lyapunov exponents (Figure 9b).
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Figure 8. Response of the system for F = 0.062, 0 = 2, C, = 2,and 6 = 0.05.
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Figure 9. (a) Phase plane and Poincaré section; (b) Lyapunov exponents.

Figures 10a and 10b present the variation of the output mean power as a function of the capacitance C,.
The average output power was obtained through a polynomial approximation known in the literature as
Polynomial Chaos Kriging (PCK) (Gaussian modeling process). Polynomial Chaos Kriging is a new
metamodeling technique that combines Gaussian process modeling and Polynomial Chaos Expansion (Sudret,
2008). These results were obtained in the 2 : 1 resonance region, for values of Q and F such that the system
is close to the stability frontier, as shown in Figure 3e. Figure 10a shows the average power for 0 < C, < 10,
while Figure 10b shows the magnification of Figure 10a for 0 < C,, < 2. Peak power output is observed at
approximately C, ~ 0.485.
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Figure 10. Output Mean Power via PC-Kriging approximation.
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Control design using the lyapunov-floquet approach

This section aims to develop a control strategy capable of steering the open-loop system towards a
predefined reference trajectory y. To this end, we chose the following parameter values: Q = 2, F = 0.062,
C, = 0.485, and 6 = 0.05. The choice of Q and F was made following the stability studies of section 4.1.1
(Figure 3e). Under this condition, the equilibrium point (0, 0, 0) of the system is unstable, but it enters the
periodic regime (Figures 8 and 9.) The choice of the capacitance value C, is derived from the global sensitivity
analysis, for which the uncontrolled system presents a maximum in energy production (Figure 10).

Consider the nonlinear system (Eq. (25) rewritten as

=f(x0) +uc(t) (26)
where u,(t) is the control law as described in Eq. (11), x = (x1, x5, x3)7 and f(x,t) = (fi(x, 1), f2(x, t), fs(x, )T
as in Eq. (25).

At each time instant ¢, define the error vector e(t) = x(t) — y(t) where x(t) denotes the state trajectory of
the controlled system (Eq. (26)) and y(t) = (v1,¥,,¥3)" represents the desired reference trajectory. Using this
definition, the system in Eq. (26) can be reformulated in terms of the error dynamics ¢ = g(e(t), t) + B(t)u(t).

By linearizing g(e(t), t) around e = 0 and by carefully selecting the trajectory y as y; = a + € cos(Qt), y, =
b + ed sin(Qt), y; = c cos(Qt), such that a,b,c,d,c € R are constant with a > 0,b > 0,¢ > 0,d # 0,b > €|d|
and 0 < € « 1, we get

e =A)e(t) + B(u(t) + G(e(t), ), 27)
where G (e(t), €) denotes the components related to power terms of ¢,

Ay (1) Agp(t)  Ags(d)
A(t) = |A21(t) Axn(t) A®)|, A;() = agl A11(t) =0,4;,(6) = 1,A45(8) =0,
Az1(8) Asx(t) Ass(t)

—___ %2 g — 1 b? — qad — 2 _ _ _ 4pa s\ _
A21(t) = (1+23a2)2[ 2u4b —a — uyb* — aa® — 2pab?*] + 1+2B ~[-1—3aa* — 2Bb?] - r2pa)? (aF+Kc)
1+2B ]cos(Qt)

0
Ay (t) = m[ 20y — 2u, — 4fab], Ay (t) = W ,A31(t) = 0,A5,(t) = G
1
Azs(t) = — CoReq

The system (Eq. (27)) is rewritten by parameterizing time t = Tt, with T = %" as

< e = AMe(r) + BDu(®) + G(e(1), ) (28)

where A(7) = A(z,A) = A,(M)f1(0) + A, (M f>(7), 1) = 1, f,(z) = cos 2mx,

0 1 0 00 0
- C) (€] C) -
A= Oz Os ) za)-= (r 0 0>,
0 —a _CpReq 0 0 O
4p
0,, = —m[—Zulb —a—u,b? —aa® —2pab?] + ” Zﬁ pe [-1 —3aa? — 2B8b?],
1 o _ _ _[__4a 6\ _F
0z, = 1+zﬁa2[ 2py — 24, — 4Bab], 023 = K(1+2,8a2) [(1+2ﬁa2)2( aF + KC) 1+2ﬁa2]'

By applying the Lyapunov-Floquet transformation e = Q(t)q, Sinha’s techniques for state transition
matrix approximation, and using Eq. (28), we can rewrite the system (Eq. (27)) in the form
G =Rq(®) + QT (OB (O, (29)
in which
—-0.0122 0.0203 —0.0085

0.0104 —-0.0118 -—0.0001].
—-0.0093 -0.0030 -0.1012
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The eigenvalues derived from the system's stability matrix (Eq. (29)) are 4, = 0.0030, 1, = —0.0261, and
A3 = —0.1020. Since A, = 0.0030, the time-invariant system (Eq. (29)) is unstable. Since the gain matrix of the
system (Eq. (29)) is constant with respect to time, an equivalent time-invariant formulation of the system (Eq.
(16)) must exist, along with a matrix B, that fulfills the conditions specified in Egs. (16) to (19). In this work,
B, is selected as I3, the 3 x 3 identity matrix.

Based on the methodology outlined in the works of Sinha and Joseph (1994), David and Sinha (2000), and
Sinha and David (2006), a linear controller can be synthesized using the pole placement technique. By
selecting the desired closed-loop poles at —1, —1, and —1, the resulting time-invariant gain matrix F,,
obtained through this procedure, is denoted by

0.9878 0.0203 —0.0085
Fy=10.0104 09882 —0.0001|.
—0.0093 -0.0030 0.8988

Consequently, the control law for the nonlinear system described in Eq. (26) adopts the structure presented
in Eq. (21), where the matrix function Q(t) is defined according to Theorem 1.

Figure (11) illustrates the temporal responses of both the controlled and uncontrolled systems. It is evident
that the states of the controlled system rapidly converge to the designated trajectory (see Figs. 11a, 11b, and
11c). Furthermore, a marked increase in the oscillation amplitude of the x; voltage is observed in the
controlled system relative to the uncontrolled case, which contributes positively to enhanced energy
harvesting (Figure 11c).
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Figure 11. Time history of uncontrolled and controlled states: (a) Displacement of the beam x;; (b) Velocity of the beam x,; (c)
Voltage x;.

Figures 12a and 12b show the average power as a function of capacitance C, for 0.05 < C,, < 1. Figure 12a
presents a comparison of the average power output between the controlled and uncontrolled systems. To
provide greater detail, Figure 12b offers a magnified view of the region surrounding the curve corresponding
to the average power of the uncontrolled system.
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Conclusion

The stability analysis conducted in this study revealed that the equilibrium point of the system may exhibit
either stable or unstable behavior, contingent upon the selected nominal values of the parameters defining
the parametric excitation. At the boundary separating the stable and unstable regions, periodic operating
regimes were identified and explored.

The global sensitivity analysis via Sobol indices evidenced that near the resonance region, the most
relevant parameter for energy harvesting is the frequency of the parametric force. Also, in the resonance
region 2 : 1, the system is sensitive to the capacitance variation.

The stability and sensitivity analyses offer complementary insights that contribute to the development of
a more effective control strategy for energy harvesting in the system under investigation.

Ultimately, the controller designed based on the Lyapunov-Floquet transformation successfully guided the
system's trajectory toward the desired reference. As a result, a substantial improvement in the system's energy
output was achieved.
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