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ABSTRACT. This study aimed to design a linear feedback control approach for a parametrically excited 

energy harvesting system utilizing a piezoelectric material as the transduction element. The purpose was 

to significantly increase the amount of energy produced compared to that produced by the original system. 

To do so, firstly, it is necessary to analyze the stability of the system and perform a global sensitivity analysis 

to determine the physical parameters of the system that most contribute to energy production. The 

sensitivity analysis is done by calculating the Sobol indices, which are statistical indices that measure the 

relative contribution of each input variable (in this case, the physical parameters of the system) to the 

contribution of all input variables. In the stability analysis, the state transition matrix approximation 

techniques created by Sinha and Butcher and the results of the Floquet Theory for periodic systems were 

used. Stability analysis and global sensitivity analysis are methodologically complementary techniques for 

a better understanding of the dynamics of a system. In the case of this work, they are applied to an energy-

harvesting system based on mechanical vibrations, providing important information to design a more 

efficient controller. The control technique used was proposed by Sinha and Butcher (1997), and is known as 

Linear Feedback Controller Design via the Lyapunov-Floquet Transform. 
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Introduction 

The process of energy harvesting involves converting ambient energy into a functional and usable form. 

Among the most commonly exploited sources for such devices are solar energy, thermal gradients, and 

acoustic and mechanical vibrations (Andò et al., 2010). When implementing new technologies, it is necessary 

to research and develop devices capable of producing the energy needed for these technologies to be self-

sufficient, i.e., capable of producing enough energy for their consumption. Mechanical vibrations are one way 

of obtaining energy from the environment. Vibration Energy Harvesting Systems (VEHS) harness mechanical 

vibrations as their primary energy source. Although VEHS generate relatively small amounts of power, they 

remain essential since many devices require minimal energy. Vibration energy harvesting, often considered 

supplemental power, can supply energy for low-load applications or sustain remote devices and sensors that 

demand limited power. Examples include hearing aids, pacemakers, spinal cord stimulators, and 

microelectromechanical systems. The high cost and invasiveness of procedures needed to replace pacemaker 

batteries present significant challenges, while spinal cord stimulators require frequent recharging, which can 

be both painful and time-consuming. Ideally, these devices would incorporate energy harvesting systems to 

enable self-recharging and continuous operation over their lifespan. Research on implementing VEHS within 

the human body has shown promising results, with initial studies indicating that blood vessel contractions 

could generate up to 20 𝑚𝑊 of energy per day (Sohn et al., 2005). Many studies have focused on Vibration 

Energy Harvesting Systems (VEHS), especially those using piezoelectric materials as transducers that convert 

mechanical energy into electrical energy. Lead Zirconate Titanate (PZT) is among the most commonly used 

piezoelectric materials (Challa et al., 2008; Eichhorn et al., 2009; Zhu, 2011). 

Several uncertain factors influence the electrical energy output of such systems, including the amplitude, 

frequency, and physical characteristics of the excitation force. Studies addressing issues of imprecision and 
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uncertainty in parameters are increasingly common, as we can see in Sharma et al. (2023) and Rathour et al 

(2024); however, most research on applied dynamics does not address the uncertainty and variation of the system's 

parameters, that is, no criteria are defined to determine which parameters exert the greatest influence on system 

behavior. One possible approach to this problem is global sensitivity analysis (Cacuci, 2003), which is a 

computationally efficient technique based on statistical methods that use Sobol indices, which are variance-based 

measures that quantify the contribution of input parameters to portions of an expansion polynomial. Statistical 

methods are widely used in research into applied dynamics problems, as observed in Outa et al (2021). 

In the stability analysis, the Lyapunov-Floquet (L-F) method is employed, utilizing Chebyshev polynomial 

expansion to approximate periodic components. The state transition matrix is approximated through the 

Picard iterative method. This approach enables the determination of Floquet multipliers and facilitates the 

construction of the dynamic system’s stability diagram. 

Stability analysis and global sensitivity analysis are complementary and robust tools for investigating the 

dynamic behavior of the system. Stability analysis enables the assessment of system stability by examining the 

influence of periodic terms inherent to the governing equations. In contrast, global sensitivity analysis identifies 

the physical parameters that most significantly influence the system’s ability to achieve a desired performance. In 

the present study, the focus lies on identifying periodic solutions through stability analysis and determining the 

parameter configurations that maximize energy output through global sensitivity analysis. 

The two aforementioned techniques provide critical insights that can inform the development of more 

effective control strategies aimed at enhancing energy harvesting performance. The control methodology 

adopted in this study builds upon the foundational works of Sinha and Joseph (1994), David and Sinha (2000), 

and Sinha and Dávid (2006). 

Material and methods 

The methodology used here is primarily based on techniques that complement each other, for a more 

accurate analysis of the dynamics of periodic time-varying systems, namely, Stability Analysis via Lyapunov-

Floque Transformation and Global Sensitivity Analysis. The stability analysis method adopted in this study 

was originally developed by Sinha and Butcher (1997). For the global sensitivity analysis, a variance-based 

method employing the computation of Sobol indices was adopted, as described in Cauz et al (2023), Soize 

(2017), and Cacuci (2003). These two techniques can be integrated in a complementary way, establishing a 

two-way analysis framework that provides a comprehensive view of the system's dynamic behavior. This 

information is essential for guiding the development of more effective control strategies. Figure 1 shows a 

schematic representation of the methodologies applied. 

 

Figure 1. Schematic representation of the Methodology.  

Global sensitivity analysis 

In general, mathematical models that represent physical phenomena have input parameters whose impact 

on the dynamic behavior of the system is not known a priori. Moreover, in many models, some parameters 
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affect the response of the system more than others. The global sensitivity analysis seeks to quantitatively 

determine the influence of each input parameter on the variability of the system response. As a result of this 

analysis, it is possible to x the nominal values of some parameters, varying only the values of the most relevant 

parameters. The analysis method adopted herein is based on the Hoeffding-Sobol decomposition and aims to 

establish an approximation of the original model by a computational model in sums of increasing dimensionality, 

subsequently allowing one to evaluate the variance of each of the terms about the total variance of the model. 

Suppose the mathematical model is represented by the following functional relationship 

Y = ℳ(X), X = {X1, X2, … , X𝑛}  

where X is a vector of independent parameters that are modified by the mathematical operator ℳ, producing 

a scalar output Y. The Hoeffding-Sobol decomposition is written as the sum of terms of different dimensions 

Y = ℳ0 +∑ ℳ𝑖(X𝑖)
𝑛
𝑖=1 + ∑ ℳ𝑖𝑗(X𝑖 , X𝑗)i<j +⋯+ℳ1,…,𝑛(X1, X2 , … , X𝑛),  

where ℳ0 = E[Y], ℳ𝑖 = E[Y|X𝑖] −ℳ0,ℳ𝑖𝑗 = E[Y|X𝑖 , X𝑗] −ℳ0 −ℳ𝑖(X𝑖) −ℳ𝑗(X𝑗) and so on. The operator E[ ∙ ] 

denotes the expected value of the quantity to be calculated.  

From the independence of the parameters of X, the global variance of Y is written as 

Var[Y] = ∑ Var[ℳ𝑢(X𝑢)],𝑢   

with ∑ Var[ℳ𝑢(X𝑢)] 𝑢 = ∑ Var [ℳ𝑖(X𝑖)]
𝑛
𝑖=1 + ∑ Var [ℳ𝑖𝑗(X𝑖 , X𝑗)]i<j +⋯+ Var [ℳ1,…,𝑛(X1 , X2, … , X𝑛)] 

and therefore, 

∑
Var[ℳ𝑢(X𝑢)]

Var[Y]𝑢 = ∑ S𝑢𝑢 = ∑ S𝑖
𝑛
𝑖=1 + ∑ S𝑖𝑗𝑖<𝑗 +⋯+ S1,2,…,𝑛 = 1 (1) 

where S𝑢 is known as Sobol indices. Each Sobol index represents the contribution of the variance of the 

output of X𝑢 to the total variance of the output.  

The first-order Sobol indices 

S𝑖 =
Var[ℳ𝑖(X𝑖)]

Var[Y]
   

describes the individual effect of X𝑖, while the second-order indices 

S𝑖𝑗 =
Var[ℳ𝑖𝑗(X𝑖,X𝑗)]

Var[Y]
  

measure the joint contribution of the pair (X𝑖 , X𝑗), and so on. 

Polynomial chaos expansion 

The Monte Carlo Method is used in applied dynamics problems to evaluate uncertainty and variability in 

systems, through stochastic simulation of different scenarios, as can be seen in Sharma et al (2022), who used 

Monte Carlo Simulation for decision-making in medical diagnostic processes in an uncertain environment. 

The Monte Carlo method is one way to calculate Sobol indices. Due to the slow convergence of this sampling 

method, the use of this method may not be computationally interesting. An alternative and effective way to 

calculate Sobol indices is to use a surrogate model of the original model. This method is obtained through the 

Polynomial Chaos Expansion (PCE) (Soize, 2017), which approximates the original physical system and allows 

calculations to have a high accuracy with little computational processing. In short, PCE is a way to 

approximate solutions to the original system. In the literature, there are several methods and research that 

involve polynomial approximations, such as the Lagrange polynomial method (Bhat et al., 2024). 

Suppose Y = ℳ(X)  is a random variable of finite variance. One can then define a Polynomial Chaos 

Expansion in the form 

Y ≈ ∑ 𝑦𝛼Ψ𝛼(X)𝛼∈𝐴   

Where Ψ𝛼  are orthogonal polynomials of several variables with respect to a joint probability density 

function 𝑓X of X; 𝑦𝛼  are real coefficients to be determined, and 𝐴 ⊂ 𝑁𝑀 such that it is possible to select all 

possible indices of the polynomial expansion. 

Because of the orthogonality of a PCE, we have E[Y] ≈ 𝑦0 and 

Var[Y] ≈ ∑ 𝑦𝛼
2

𝛼≠0
𝛼∈𝐴

   (2) 
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From Eq. (2) and the definition of the Sobol index (Eq. (1)), we can rewrite the first and second-order Sobol 

indices, respectively, as 

S𝑖 = (∑ 𝑦𝛼
2

𝛼≠0
𝛼∈𝐴𝑖

) (∑ 𝑦𝛼
2

𝛼≠0
𝛼∈𝐴

)⁄ , S𝑖𝑗 = (∑ 𝑦𝛼
2

𝛼≠0
𝛼∈𝐴𝑖𝑗

) (∑ 𝑦𝛼
2

𝛼≠0
𝛼∈𝐴

)⁄ .  

Thus, the Sobol indices can be written in terms of the coefficients 𝑦𝛼 of the Polynomial Chaos Expansion. 

These coefficients can be computed by numerical methods, such as the projection method and the regression 

method (Soize, 2017). 

Stability analysis 

In the analysis of system stability (Eq. (25)), we employ Floquet theory, originally formulated by the French 

mathematician Gaston Floquet (1847–1920), in conjunction with a methodology proposed by Sinha and 

Butcher (1997). Floquet theory is particularly well-suited for analyzing the stability of periodic orbits when 

the analytical form of the corresponding solutions is known (Meirovitch, 2010; Monteiro, 2011; Naifeh & 

Balachandra, 1995). More precisely, Floquet demonstrated that, under certain regularity conditions, the stability 

analysis of linear time-periodic systems can be reduced to the study of an equivalent linear time-invariant system 

via a coordinate transformation. Nevertheless, the direct analytical application of Floquet theory is limited in 

practice due to the complexity of obtaining closed-form solutions for general periodic systems.  

The method proposed by Sinha and Butcher combines Picard iterations with Chebyshev polynomial 

expansions to obtain approximate solutions for linear time-periodic systems (Andrade et al., 2012). A 

comprehensive formulation and analysis of this technique are presented in Sinha and Butcher (1997). 

The main formulation and theorems of the Lyapunov-Floquet Theory are presented below. 

Some results from the lyapunov-floquet theory 

Consider a system of 𝑛 first-order linear differential equations expressed as 

𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡)  (3) 

where 𝑥(𝑡) ∈ ℝ𝑛, 𝐴(𝑡) ∈ ℝ𝑛×𝑛. The matrix 𝐴 has elements 𝐴𝑖𝑗(𝑡) that are continuous and periodic in time with 

period 𝑇, such that 𝐴(𝑡 + 𝑇) = 𝐴(𝑡) for all 𝑡 ≥ 0. Thus, this system (Eq. 2.3) is said to be periodic in time. 

Suppose the system (Eq. 3) admits 𝑛  linearly independent solutions 𝑥(𝑗)(𝑡). These solutions constitute a 

fundamental set, allowing any general solution of the system to be expressed as a linear combination of them. 

This set of solutions can be represented in matrix form as Φ(𝑡), referred to as the fundamental matrix solution 

or state transition matrix (STM) of the system 

Φ(𝑡) = [𝑥(1)(𝑡) 𝑥(2)(𝑡) ⋯ 𝑥(𝑛)(𝑡)].  

In 1883, Floquet proposed the following result (Meirovitch, 1970): 

Theorem 1. If 𝛷(𝑡) is an STM of the system described by Eq. 3 where 𝐴(𝑡 + 𝑇) = 𝐴(𝑡) for all 𝑡 ≥ 0, then 

𝛷(𝑡 + 𝑇) is also an STM of the system (Eq. 3). Moreover, for each STM Φ(t) there exists a non-singular periodic 

matrix 𝑄(𝑡) of periodic T (with 𝑄(0) = 𝐼) and a constant matrix R, such that 

Φ(𝑡) = 𝑄(𝑡)𝑒𝑅𝑡 .   (4) 

More specifically, if 𝑅 is a real (or complex) matrix of constant coefficients, then 𝑄(𝑡) is 2𝑇 periodic (or 𝑇 

periodic) (Iakubovich & Starzinskii, 1975). From (Eq. 4), it can be seen that the decay of the system is 

determined by the term 𝑒𝑅𝑡 and, in the case, when 𝑡 =  𝑇, the 𝑅 matrix can be calculated by 
Φ(𝑇) = 𝑒𝑅𝑇 

where the matrix 𝛷(𝑡) is calculated at the end of period 𝑇. The matrix Φ(𝑇) is called the Floquet Transition 

Matrix (FTM), also known as the Monodromy Matrix, and its eigenvalues 𝜌𝑗  are called characteristic 

multipliers or Floquet multipliers (Monteiro, 2011). The R matrix is obtained from the FTM matrix using the 

identity (Sinha et al., 2000): 

𝑅 =
1

2𝑇
log Φ(2𝑇) =

1

2𝑇
log[Φ(𝑇)]2.  

By Theorem 1, and by applying a coordinate transformation known as the Lyapunov-Floquet 

transformation (or simply the L-F transformation), we obtain the following corollary:  
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Corollary 1. The Lyapunov-Floquet transformation, 𝑇-periodic  

𝑥(𝑡) = 𝑄(𝑡)𝑧(𝑡)  

with 𝑧(𝑡) ∈ ℝ𝑛, 𝑄(𝑡 + 𝑇) = 𝑄(𝑡), 𝑄(0) = 𝐼𝑛 , in which 𝐼𝑛 is the identity matrix of order 𝑛, transforms the time-

variant system 𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡), in the time-invariant system 𝑧̇(𝑡) = 𝑅𝑧(𝑡), where the eigenvalues 𝜆𝑗 of 𝑅 are 

related to the characteristic multipliers by means of 

𝜌𝑗 = 𝑒
𝜆𝑗𝑇 .   (5) 

It can be concluded from Eq. (5) that the characteristic exponents are given as follows (Sharma & Sinha, 2018): 

𝜆𝑗 =
1

𝑇
(log|𝜌𝑗| + 𝑖 arg 𝜌𝑗), 𝑗 = 1,2,⋯ , 𝑛.  (6) 

Remark 1. Note from Corollary 1 that a linear system with periodic coefficients (time-invariant) can be 

transformed into a linear system with constant coefficients (time-invariant). 

The numbers 𝜆𝑗 are called characteristic exponents or Floquet exponents. The stability of the system (Eq. 3) can 

be studied by analyzing the characteristic exponents, as can be seen from the following theorem (Meirovitch, 2010): 

Theorem 2. About the stability of the system (Eq. 3), we have the following results: 

i) If all characteristic exponents have the negative real part, then all solutions of the system (Eq. 3) are 

asymptotically stable. 

ii) If at least one of the characteristic exponents has the positive real part, then the system (Eq. 3) is unstable. 

iii) If all characteristic exponents have zero or negative real parts, and those with zero real parts are simple 

roots of the characteristic polynomial of R, then the system is stable; if the roots with zero real parts are not 

simple, then the system is unstable. 

Because of Eq. (6) and Theorem 2, the asymptotic stability of the system (Eq. 3) related to the Floquet 

multipliers is given in terms of the following corollary: 

Corollary 2. If |𝜌𝑗| < 1, for all 𝑗 = 1,2,⋯ , 𝑛, then the system (Eq. 3) is asymptotically stable. If |𝜌𝑗| > 1 for 

some j, the system is unstable. 

Sinha and Butcher's technique for state transition matrix approximation 

The great difficulty in applying both Theorems 1 and 2 is in obtaining the State Transition Matrix (STM) 

Φ(𝑡). This difficulty is overcome when the theorems are applied to commutative systems. However, in most 

cases, it is practically impossible to obtain the matrix STM Φ(𝑡). To circumvent this problem, Sinha and 

Butcher (1997) developed a numerical computational method to approximate the STM Φ(𝑡). 

Consider a nonlinear periodic dynamical system of dimension 𝑛 of the form  

𝑧̇(𝑡) = 𝑓(𝑧(𝑡), 𝑡, 𝛼) = 𝑓(𝑧(𝑡), 𝑡 + 𝑇, 𝛼), 𝑧(0) = 𝑧0   (7) 

where 𝑡 ∈ ℝ+ denotes time, 𝑧 ∈ ℝ𝑛  is the state vector, 𝛼 ∈ ℝ𝑚  is a vector of system parameters, and 

𝑓:ℝ𝑛 × ℝ+ × ℝ𝑚 → ℝ𝑛 is analytic in the 𝑧 and 𝛼 components and periodic of period 𝑇 at time 𝑡. Suppose that 

𝑧̅ is an equilibrium or periodic solution of period 𝐾𝑇 of the system (Eq. 7) and 𝑥(𝑡) = 𝑧(𝑡) − 𝑧̅(𝑡) a perturbation 

of this solution. Thus, by expanding in Taylor series the system (Eq. 7) around 𝑧 = 𝑧̅, we have 

𝑥̇ = 𝐴(𝑡, 𝛼)𝑥 + 𝑓2(𝑥, 𝑡, 𝛼) + 𝑓3(𝑥, 𝑡, 𝛼) + ⋯+ 𝑓𝑟(𝑥, 𝑡, 𝛼) + 𝑂(|𝑥|
𝑟+1), 𝑥(0) = 𝑥0 = 𝑧0 − 𝑧̅(0)  (8) 

where 𝑓𝑟 represents the terms of order 𝑟 (𝑟 ≥ 2) of the Taylor series expansion of 𝑓, and 𝐴(𝑡, 𝛼) and 𝑓𝑟(𝑥, 𝑡, 𝛼) 

are periodic of period 𝐾𝑇. Consider the linear part of Eq. (8) given by 

𝑥̇(𝑡, 𝛼) = 𝐴(𝑡, 𝛼)𝑥(𝑡, 𝛼), 𝑥(0, 𝛼) = 𝑥0.  (9) 

Considering Eqs. (3) and (9) and theorem 1, the local stability of Eq. (8) is given by the Floquet multipliers 

𝜌𝑗 of the Floquet transition matrix (FTM) Φ(𝐾𝑇, 𝛼). 

To introduce the Sinha and Butcher technique, we change the variable 𝑡 = 𝐾𝑇𝜏 to transform the linear 

system (Eq. (9)) of period 𝐾𝑇 into the following system of period 1 

𝑑

𝑑𝜏
𝑥(𝜏, 𝛼) = 𝐴̅(𝜏, 𝛼)𝑥(𝜏, 𝛼), 𝐴̅(𝜏 + 1, 𝛼) = 𝐴̅(𝜏, 𝛼), 𝑥(0, 𝛼) = 𝑥0,  (10) 

where  

𝐴̅(𝜏, 𝛼) = 𝐴̅1(𝛼)𝑓1(𝜏) + 𝐴̅2(𝛼)𝑓2(𝜏) + ⋯+ 𝐴̅𝑟(𝛼)𝑓𝑟(𝜏), 𝐴̅𝑖(𝛼) = 𝑇𝐴𝑖(𝛼), 𝑖 = 1,2,⋯ , 𝑟.  
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According to Sinha and Butcher (1997) and Butcher and Sinha (1998), the state transition matrix (STM) 

Φ(𝜏, 𝛼) of the system (Eq. 10) can be approximated by 

Φ(𝑝,𝑚)(𝜏, 𝛼) = 𝑇̂𝑇(𝜏)[𝐼 + (∑ [𝐿(𝛼)]𝑘−1
𝑝−1
𝑘=1 )𝑃(𝛼)].  

where in the (𝑝,𝑚), 𝑝 is the number of Picard iterations, 𝑚 is the number of terms of modified Chebyshev 

polynomials 𝑇1
∗(𝑡), 𝑇2

∗(𝑡),⋯ , 𝑇𝑚−1
∗ (𝑡) , 𝑇̂𝑇  is the Chebyshev polynomial matrix, 𝐿(𝛼) = 𝐺̂𝑇𝑄̂𝐷 , and 𝑃(𝛼) =

𝐺̂𝑇𝐷(𝛼). Sinha and Butcher (1997) describe the process for constructing the 𝐷(𝛼) matrix and obtaining the 

operational matrices 𝐼, 𝐺̂, and 𝑄̂𝐷. 

Control of periodic systems via lyapunov-floquet transformations 

Based on the techniques of Sinha and Butcher (1997), Sinha and Joseph (1994), and Sinha and Dávid (2006), 

the control method based on Lyapunov-Floquet transformations is described. 

Consider the time-invarying nonlinear system represented by  

𝑥̇ = 𝑓(𝑥(𝑡), 𝑡) + 𝑢𝑐(𝑡),  (11) 

in which 𝑥(𝑡) ∈ ℝ𝑛, which exhibits a chaotic attractor for a given set of parameters when 𝑢𝑐(𝑡) = 0, and let 

𝑦(𝑡) be the desired reference trajectory and 𝑥(𝑡) the trajectory of the controlled system. The goal of the 

control law 𝑢𝑐 is to control the chaotic dynamics of the system so that 𝑥(𝑡) converges to 𝑦(𝑡). To this end, the 

control input 𝑢𝑐(𝑡) is structured into two distinct components 

𝑢𝑐(𝑡) = 𝑢𝑓 + 𝑢𝑡 , 𝑢𝑓 = 𝑦̇ − 𝑓(𝑦(𝑡), 𝑡), 𝑢𝑡 = 𝐹(𝑡)𝑢(𝑡). 

The 𝑢𝑓 part of the controller is called feedforward, and the 𝑢𝑡 part is feedback. The matrix 𝐹(𝑡) is called 

the gain matrix and will be obtained next. 

We can then rewrite the system (Eq. 11) in the form 

𝑥̇ = 𝑓(𝑥(𝑡), 𝑡) + 𝑦̇ − 𝑓(𝑦(𝑡), 𝑡) + 𝐹(𝑡)𝑢(𝑡). 

By defining 𝑒(𝑡) = 𝑥(𝑡) − 𝑦(𝑡) as the dynamic error between 𝑥(𝑡) and 𝑦(𝑡), it follows that 

𝑒̇ = 𝑔(𝑒(𝑡), 𝑡) + 𝐹(𝑡)𝑢(𝑡),   (12) 

where 𝑔(𝑒(𝑡), 𝑡) = 𝑓(𝑒(𝑡) + 𝑦(𝑡), 𝑡) − 𝑓(𝑦(𝑡), 𝑡) is a nonlinear function of class 𝐶1.  

If the following condition is satisfied 

lim
‖𝑒‖→0

sup
𝑡≥0

‖𝑔(𝑒, 𝑡) − 𝐴(𝑡)𝑒 + 𝐹(𝑡)𝑢(𝑡)‖

‖𝑒‖
= 0, 

where 𝐴(𝑡) ∈ ℝ𝑛×𝑛 and 

𝐴(𝑡) = [
𝜕𝑔𝑗

𝜕𝑒𝑖
]
(0,𝑡)

,  

one can then linearize (12) in the neighborhood of 𝑒 =  0 and obtain 

𝑒̇ = 𝐴(𝑡)𝑒(𝑡) + 𝐹(𝑡)𝑢(𝑡).   (13) 

Now, consider that the system described in Eq. (13) can be expressed in the general form 

𝑧̇ = 𝐴(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢𝑡 ,   (14) 

in which the matrices 𝐴(𝑡) and 𝐵(𝑡) are periodic with period 𝑇 and the pair [𝐴, 𝐵] is controllable. Using the 

Lyapunov-Floquet transformation (Sinha & Butcher, 1997) 
𝑧(𝑡) = 𝑄(𝑡)𝑞(𝑡), 

in Eq. (14), we get 

𝑞̇ = 𝑅𝑞(𝑡) + 𝑄−1(𝑡)𝐵(𝑡)𝑢𝑡 ,  (15) 

in which 𝑅 =
1

2𝑇
ln(Φ2(𝑇)) and Φ(𝑇) is the Floquet transition matrix. 

Since the gain matrix 𝑄−1(𝑡)𝐵(𝑡) of the system (Eq. 15) is invariant in time, the aim is to build an auxiliary 

system with a gain matrix that remains constant over time 

𝑞̇̅ = 𝑅𝑞̅ + 𝐵0𝑣(𝑡),  (16) 
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where 𝐵0 is a constant matrix of full rank such that the pair [𝑅, 𝐵0] is controllable. Consider the control law 𝑣 

given by 

𝑣(𝑡) = 𝐹0𝑞̅(𝑡),   (17) 

in which 𝐹0 denotes the gain matrix associated with the control input 𝑣(𝑡) which is designed to ensure that 

the system described by Eq. (17) is asymptotically stable. 

If we define the dynamic error as 𝜀(𝑡) = 𝑞(𝑡) − 𝑞̅(𝑡), apply Eqs. (15, 16 and 17) and then add and subtract 

𝐵0𝐹0𝜀(𝑡) we obtain 

𝜀̇(𝑡) = (𝑅 + 𝐵0𝐹0)𝜀(𝑡) + 𝑄
−1(𝑡)𝐵(𝑡)𝑢𝑡(𝑡) − 𝐵0𝐹0𝑞(𝑡).  (18) 

If we choose the appropriate matrix 𝐹0 , the stability matrix (Eq. 18) is (𝑅 + 𝐵0𝐹0), and, therefore, the 

systems (Eq. 15) and (Eq. 16) will be considered equivalent if 

𝑄−1(𝑡)𝐵(𝑡)𝑢𝑡(𝑡) = 𝐵0𝐹0𝑞(𝑡), for all 𝑡 ≥ 0,  (19) 

and, therefore, 

𝑢𝑡(𝑡) = 𝐵
∗(𝑡)𝑄(𝑡)𝐵0𝐹0𝑞(𝑡), where 𝐵

∗ = (𝐵𝑇𝐵)−1𝐵𝑇 .  (20) 

By applying to Eq. (20) the inverse Lyapunov-Floquet transformation 𝑞(𝑡) = 𝑄−1(𝑡)𝑧(𝑡) we obtain 

𝑢𝑡(𝑡) = 𝐵
∗(𝑡)𝑄(𝑡)𝐵0𝐹0𝑄

−1(𝑡)𝑧(𝑡),  

and, therefore, we conclude that the time-varying gain matrix 𝐹(𝑡) is given by 

𝐹(𝑡) = 𝐵∗(𝑡)𝑄(𝑡)𝐵0𝐹0𝑄
−1(𝑡).  

Therefore, the state-feedback control law can be expressed as 

𝑢𝑡 = −𝐵
∗(𝑡)𝑄(𝑡)𝐵0𝐹0𝑄

−1(𝑡)𝑧(𝑡),  (21) 

Analytical model of the energy harvesting mechanism 

Vibrational energy harvesting structures encompass a range of configurations, with cantilevered beams or 

plates being the most prevalent. These typically feature partial or full coverage with a piezoelectric (PZT) layer 

(Challa et al., 2008 and Zhu, 2011). The structure examined in this study consists of a free-floating beam partially 

coated with a piezoelectric material layer and subjected to parametric excitation, as depicted in Figure 2. 

 

Figure 2. Proposed Collector Model (Daqaq et. al., 2009). 
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The piezoelectric material is connected to the beam and a resistive load for energy harvesting. The 

mathematical model representing these dynamics was described by Daqaq et al (2009), whose dynamic 

equations are given by Eq. (22) 

{
𝑢̈ + 2𝜇1𝑢̇ + 𝜔𝑛

2𝑢 + 𝜇2|𝑢̇|𝑢̇ + 𝛼𝑢
3 + 2𝛽(𝑢2𝑢̈ + 𝑢𝑢̇2) = 𝑢

𝐹

𝑚
cos(𝜔𝑡) +

𝜃

𝑚
𝑉,

𝜃𝑢̇ + 𝐶𝑝𝑉̇ +
1

𝑅
𝑉 = 0,

   (22) 

where 𝑢 is the generalized coordinate representing the deflection of the beam in the 𝑥 direction, 𝑉  is the 

output voltage measured at the resistor 𝑅 , 𝜇1  is the viscous damping term, 𝜇2  is the quadratic damping 

representing the air resistance, 𝛼 and 𝛽  are constants, 𝜃  is the electromechanical coupling, 𝐶𝑝  is the 

capacitance of the piezoelectric element, 𝑚 is the mass of the beam, 𝐹 is the excitation amplitude, and 𝜔 is 

the excitation frequency. The term 𝛼𝑢3 is used to describe the geometric nonlinearity of the beam, the term 

2𝛽(𝑢2𝑢̈ + 𝑢𝑢̇2) represent the inertia. The deflection of the beam, 𝑢, nd the time, 𝑡, are normalized with respect 

to its length, 𝐿𝑏, and the inverse frequency response, 
1

𝜔𝑛
, respectively. After normalization, the equivalent 

system given in Eq. (23) is obtained 

{
𝑥̈ + 2𝜇1𝑥̇ + 𝑥 + 𝜇2|𝑥̇|𝑥̇ + 𝛼𝑥

3 + 2𝛽(𝑥2𝑥̈ + 𝑥𝑥̇2) = 𝑥𝐹 cos(Ω𝑡) +
𝜃

𝐾
𝑉,

𝜃𝑥̇ + 𝐶𝑝𝑉̇ +
1

𝑅𝑒𝑞
𝑉 = 0,

  (23) 

where 𝑥 =
𝑢

𝐿𝑏
, 𝑡 = 𝑡𝜔, 𝑉 =

𝑉

𝐿𝑏
, 𝜇1 =

𝜇1

𝜔𝑛
, 𝜇2 = 𝜇2𝐿𝑏 , 𝛼 = 𝛼

𝐿𝑏2

𝜔𝑛
2 , 𝛽 = 𝛽(𝐿𝑏)2 , 𝐹 =

𝐹

𝐾
, 𝐶𝑝 = 𝐶𝑝 , 𝑅𝑒𝑞 = 𝑅𝜔𝑛 , Ω =

𝜔

𝜔𝑛
, 

𝐾 = 𝑚𝜔𝑛
2.  

The time-averaged output power generated by the system described in Eq. (23), over a time interval of 

length ℎ, is defined as 

𝑃 =
1

ℎ
∫ 𝜆𝑉(𝑡)2𝑑𝑡
𝑡0+ℎ

𝑡0
   (24) 

where 𝜆𝑉(𝑡)2 is the instantaneous power and 𝜆 =
1

𝑅𝑒𝑞𝐶𝑝
 (Norenberg et al., 2022). 

Results and discussions 

In the numerical analyses conducted throughout this study, the model parameters received the following 

nominal values: 𝜇1 = 0.01, 𝜇2 = 0.01, 𝛼 =  0.001, 𝛽 =  0.001, 𝐾 =  0.5, and 𝑅𝑒𝑞 = 20. Several values were 

considered for the parameters 𝐹, 𝛺, and 𝐶𝑝, representing, respectively, the amplitude and frequency of the 

applied parametric excitation, as well as the capacitance of the piezoelectric component. All computational 

simulations were performed using MATLAB software (version R2022a, MathWorks Inc.). The initial conditions 

were defined by the state vector (x₀, ẋ₀, V₀) = (0.1, 0.0). 

Stability and global sensitivity analysis 

Initially, the numerical results for the stability analysis based on the Floquet method (Meirovitch, 2010; 

Monteiro, 2011; Naifeh & Balachandran, 1995) and a state transition matrix approximation technique (Sinha 

& Butcher, 1997) are presented.  

For the global sensitivity analysis, the physical parameters of the system were assumed to be independent, 

and a uniform distribution over their nominal values was adopted with a coefficient of variation of up to 20%. 

Stability analysis 

To analyze the dynamic stability of the system and identify potential steady-state solutions, the 

dimensionless dynamic equations (Eq. (23)) are reformulated into a set of state-space equations. For this 

purpose, we introduced the change of variable 𝑥1 = 𝑥 , 𝑥2 = 𝑥̇ , 𝑥3 = 𝑉 , and obtained the state-space 

representation of the system is formulated as follows 

{
 
 

 
 𝑥̇1 = 𝑥2 = 𝑓1(𝑥, 𝑡)

𝑥̇2 =
1

1+2𝛽𝑥1
2 [−2𝜇1𝑥2 − 𝑥1 − 𝜇2|𝑥2|𝑥2 − 𝛼𝑥1

3 − 2𝛽𝑥1𝑥2
2 + 𝑥1𝐹 cos(Ω𝑡) +

𝜃

𝐾
𝑥3] = 𝑓2(𝑥, 𝑡)

𝑥̇3 = −
𝜃

𝐶𝑝
𝑥2 −

1

𝐶𝑝𝑅𝑒𝑞
𝑥3 = 𝑓3(𝑥, 𝑡)

 (25)  
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The system has three equilibrium points (𝑥1
∗, 𝑥2

∗, 𝑥3
∗), namely (0, 0, 0), (√

𝐹−1

𝛼
, 0, 0), (−√

𝐹−1

𝛼
, 0, 0). The last 

two equilibrium points are valid only when Ω = 0, i.e., the system is free from periodic excitation. This paper 

considers only the system (Eq. (23)) under periodic forcing; consequently, the analysis is focused exclusively 

on the equilibrium point (0, 0, 0). 

To implement Sinha’s method (Sinha and Butcher, 1997), it is necessary to linearize the equations of states 

(Eq. (25)) around the equilibrium point (0, 0, 0). Thus, the equations of the system can be written in the form 

𝑥̇(𝑡, 𝒫) = 𝐴(𝑡, 𝒫)𝑥(𝑡, 𝒫), where 𝒫 represents its parameters, and 𝐴(𝑡, 𝒫) is a periodic matrix of period 𝑇 =
2𝜋

Ω
. 

By performing the transformation 𝑡 =
2𝜋

Ω
𝜏, the linearized system is rewritten in the form 

𝑑𝑥

𝑑𝜏
= 𝐴̅(𝜏, 𝒫)𝑥(𝜏, 𝒫) 

where 𝐴̅(𝜏, 𝒫) = 𝐴̅1(𝒫)𝑓1(𝜏) + 𝐴̅2(𝒫)𝑓2(𝜏), 𝑓1(𝜏) = 1, 𝑓2(𝜏) = cos(2𝜋𝜏), 

𝐴̅1(𝒫) =
2𝜋

Ω

[
 
 
 
0 1 0

−1 −2𝜇1
𝜃

𝐾

0 −
𝜃

𝐶𝑝
−

1

𝐶𝑝𝑅𝑒𝑞]
 
 
 

 , 𝐴̅2(𝒫)  =
2𝜋

Ω
[
0 0 0
𝐹 0 0
0 0 0

] .   

To analyze the structural stability, we investigated whether the modulus of the characteristic multipliers 

𝜌𝑗 is greater than or equal to 1 for given values of the physical parameters. These multipliers can be calculated 

by the Approximate Fundamental Matrix. In the approximation, the degree of the modified Chebyshev 

polynomial is 𝑚 =  20, and the number of Picard iterations is 𝑝 =  40. In the stability analysis, the nominal 

value of the electromechanical coupling coefficient was set to 𝜃 = 0.1. 

Figures 3a through 3d present the stability charts associated with the equilibrium point (0,0,0), considering 

variations in the amplitude of the external excitation force F. In these diagrams, the dashed line serves solely 

as a visual reference to indicate the threshold modules of the characteristic multipliers. The equilibrium is 

classified as asymptotically stable whenever all characteristic multipliers have moduli below this reference 

line. Conversely, when any of the moduli exceed this threshold, the equilibrium point becomes unstable. In 

Figure 3𝑎, Ω =  0.9 was adopted and the amplitude 𝐹 was varied in the interval [0.01, 1]. There is a range of 

values of 𝐹 for which the equilibrium point of the system is stable, i.e., the characteristic multipliers have 

modulus less than 1, and a condition for instability in the range of values in which the multipliers have 

modulus greater than 1. Figure 3𝑏 presents the stability diagram in the resonance region 1 ∶  1 (Ω =  1). The 

stability change occurs for smaller values of the amplitude 𝐹 than what occurs for Ω =  0.9. Figure 3𝑐 shows 

the stability diagram for the system under the 2 ∶ 1 internal resonance condition (Ω =  2). In this case, a 

transition in stability is observed within a narrow range of the excitation amplitude, specifically for 𝐹 ∈

[0.001, 0.08]. In Figure 3𝑑, the parameters are set to Ω =  0.64 with 0.01 ≤ 𝐹 ≤ 0.9. It is again observed that 

the system exhibits both stable and unstable regions, as the characteristic multipliers lie within the unit circle 

for certain values of F, indicating stability, while for other values they lie outside the unit circle, indicating 

instability. 

Figure 3𝑒 illustrates the regions of stability (shaded in blue) and instability (shaded in green) in the Ω − 𝐹 

parameter space. The blue area corresponds to combinations of Ω  and 𝐹  for which all characteristic 

multipliers have a modulus less than one, indicating stable behavior. Conversely, the green area identifies 

regions where at least one multiplier has a modulus greater than one, signaling instability. The stability 

profiles observed in Figures 3a through 3d are consistent with the regions highlighted in Figure 3𝑒. Within 

the stability region, the system trajectories converge to the equilibrium point at (0, 0, 0). As an example, for 

𝐹 = 0.1 and Ω =  1.6, the moduli of the characteristic multipliers are |𝜌1| = |𝜌2| = 0.9615 and |𝜌3| = 0.9902, 

confirming stable dynamics. In contrast, for 𝐹 = 0.0565 and Ω =  2, the values |𝜌1| = 1.013, |𝜌2| = 0.927, and 

|𝜌3| = 0.9922 indicate that the system is unstable due to one multiplier exceeding unity in magnitude. 

To further investigate the system’s behavior under specific conditions, time-domain simulations of the 

beam displacement were carried out, as presented in Figure 4. Figures 4a and 4b depict two distinct dynamic 

responses corresponding to different parameter combinations. 

In Figure 4a, the excitation parameters are set to 𝐹 =  0.1  and Ω =  1.6 , corresponding to a stable 

configuration within the identified stability region. Under these conditions, the system response 

asymptotically converges to the equilibrium position. Figure 4b illustrates the case 𝐹 =  0.0565, and Ω =  2, 

which falls within the instability region, as previously determined through the analysis of characteristic 

multipliers. In this case, the system exhibits an initial transient phase followed by a transition into a periodic 
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regime. Figure 4c provides a detailed view of the system’s response over the time interval [7800,8000] , 

accompanied by the associated Poincaré sections, offering further insight into the long-term dynamical behavior. 

 

Figure 3. (𝑎) Stability diagram for Ω = 0.9, (𝑏) Stability diagram for Ω = 1, (𝑐) Stability diagram for Ω = 2, (𝑑) Stability diagram for Ω =

0.64, (𝑒) Stability region: 0.01 ≤ Ω ≤ 3.0, and 0.01 ≤ 𝐹 ≤ 1. 

To start a global sensitivity analysis, the first step is to verify that the surrogate model is a good 

approximation to the original model of the problem. The surrogate model used in this study is based on the 

Polynomial Chaos Expansion of the average power produced by the energy harvester, which aims to measure 

the relative importance of each parameter of the system in energy production. In order to validate the 

surrogate model, we adopted 𝐶𝑝  =  20 and the following values for the parametric power parameters: 𝐹 =

 0.28 and Ω =  0.65. Unless otherwise specified, whenever we set a nominal value for a parameter, it will be 

allowed to vary by up to 20%. In Figure 5, a correlation is made between the data generated by the original 

model (True Model) and the data of the surrogate model (Surrogate Model). Figure 5 shows that the surrogate 

model is a good approximation to the true model since their data closely follow the identity curve. 
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Figure 4. Time history for the displacement of the beam: (𝑎) 𝐹 = 0.1 and Ω = 1.6, (𝑏) 𝐹 = 0.0565 and Ω = 2, (𝑐) Phase space and 

Poincaré section for 𝐹 = 0.0565 and Ω = 2. 

Global sensitivity analysis 

 

Figure 5. Average power 𝑃: comparison between surrogate model and true model. 

These results allow us to explore, using the surrogate model, scenarios that can significantly influence the 

average output power 𝑃 (Eq. (24)) of the energy harvester. Figure 6𝑎 shows the global sensitivity analysis via 

Sobol indices for the energy collector, in order to analyze the influence of the parameters on the average 

output power. In this section, special attention has been given to the analysis of the resonance regions, and 

this is due to the possibility of the system being driven into a periodic regime for small values of the amplitude 

of the parametric force 𝐹 (Figure 3𝑒). For energy production, the equilibrium point is expected not to have 

asymptotic stability, i.e., that the system operates in a region of instability, in a periodic regime. 
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For Ω ranging from 0.6 to 0.66, and 𝐹 =  0.82, the frequency Ω, and the amplitude 𝐹 , followed by the 

capacitance 𝐶𝑝, are parameters associated with the highest sensitivity. In Figure 6𝑏, 𝐹 =  0.7 and Ω ranging 

from 0.9 to 1.02 were adopted. It is important to highlight that the values of Ω were selected to enable analysis 

of the system in the vicinity of the primary resonance condition, specifically Ω =  1, corresponding to the 1 ∶

 1 resonance. Under this condition, the system exhibits increased sensitivity to variations in the excitation 

frequency Ω, followed by the excitation amplitude 𝐹, and subsequently by the capacitance 𝐶𝑝. Figure 6𝑐 shows 

an analysis of the system around the resonance region 2 ∶  1 (Ω =  2) with a variation of 20%, i.e., Ω ranging 

from 1.8  to 2.2  and assuming 𝐹 =  0.4 . In this condition, there was an increase in the importance of 

capacitance 𝐶𝑝 in the average power generated by the energy collector. So, the system is most sensitive to the 

amplitude 𝐹, then the capacitance 𝐶𝑝, and at last the frequency Ω. We conclude, from Figures 6𝑎, 6𝑏, and 6𝑐, 

and respectively from the imposed conditions, that the frequency and amplitude of the parametric force, as 

well as the capacitance of the piezoelectric element, are associated with the highest sensitivity, meaning that 

they are the parameters that most affect the behavior of the system. 

 

Figure 6. (𝑎) Sobol indices for 0.6 ≤ Ω ≤ 0.66, 𝐹 = 0.82 and 𝜃 = 0.05; (𝑏) Sobol indices for 0.9 ≤ Ω ≤ 1.02, 𝐹 = 0.7 and 𝜃 = 0.05; (𝑐) 

Sobol indices for 1. 8 ≤ Ω ≤ 2.2, 𝐹 = 0.4 𝑎𝑛𝑑 𝜃 = 0.05. 

In Figure 7, the sensitivity of the system was evaluated in the resonance regions: Ω =  1.0 (Figure 7𝑎) and 

Ω =  2.0 (Figure 7𝑏). For Figure 7𝑎, in turn, 𝐹 ranges from 0.28 and 0.88 with a step size of 0.04. At last, in 

Figure 7𝑏 𝐹 ranges from 0.06 to 0.2 with a step size of 0.01. 

Figure 7𝑎 shows the predominance of Ω in most scenarios followed by the amplitude 𝐹. The contribution of 

capacitance 𝐶𝑝 also increases when increasing the amplitude 𝐹. In Figure 7𝑏, we observe behaviors similar to those 

of Figure 7𝑎, that is, a greater relative contribution in the energy production of parameters Ω, 𝐹, and 𝐶𝑝. 

 

Figure 7. (𝑎) Sobol indices for 0.28 ≤ 𝐹 ≤ 0.88, Ω = 0.82 and 𝜃 = 0.05; (𝑏) Sobol indices for 0.06 ≤ 𝐹 ≤ 0.2, Ω = 2 and 𝜃 = 0.05. 
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Taking into account the stability region (Figure 3𝑒) and the sensitivity of the average output power of the 

system to parameters Ω  and 𝐶𝑝  in the neighborhood of Ω =  2  (Figure 6𝑐 ), the time histories of the 

displacement 𝑥1 (Figure 8𝑎) and the voltage 𝑥3 (Figure 8𝑏) are presented. The system enters a periodic regime, 

as can be observed in the Poincaré section (Figure 9𝑎) and the Lyapunov exponents (Figure 9𝑏). 

 

Figure 8. Response of the system for 𝐹 = 0.062, Ω = 2, 𝐶𝑝 = 2, and 𝜃 = 0.05. 

 

Figure 9. (𝑎) Phase plane and Poincaré section; (𝑏) Lyapunov exponents. 

Figures 10𝑎 and 10𝑏 present the variation of the output mean power as a function of the capacitance 𝐶𝑝. 

The average output power was obtained through a polynomial approximation known in the literature as 

Polynomial Chaos Kriging (PCK) (Gaussian modeling process). Polynomial Chaos Kriging is a new 

metamodeling technique that combines Gaussian process modeling and Polynomial Chaos Expansion (Sudret, 

2008). These results were obtained in the 2 ∶  1 resonance region, for values of Ω and 𝐹 such that the system 

is close to the stability frontier, as shown in Figure 3𝑒. Figure 10𝑎 shows the average power for 0 ≤ 𝐶𝑝 ≤ 10, 

while Figure 10𝑏 shows the magnification of Figure 10𝑎 for 0 ≤ 𝐶𝑝 ≤ 2. Peak power output is observed at 

approximately 𝐶𝑝 ≈ 0.485. 

 

Figure 10. Output Mean Power via PC-Kriging approximation. 
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Control design using the lyapunov-floquet approach 

This section aims to develop a control strategy capable of steering the open-loop system towards a 

predefined reference trajectory 𝑦. To this end, we chose the following parameter values: Ω = 2, 𝐹 =  0.062, 

𝐶𝑝 =  0.485, and 𝜃 = 0.05. The choice of Ω and 𝐹  was made following the stability studies of section 4.1.1 

(Figure 3𝑒). Under this condition, the equilibrium point (0, 0, 0) of the system is unstable, but it enters the 

periodic regime (Figures 8 and 9.) The choice of the capacitance value 𝐶𝑝 is derived from the global sensitivity 

analysis, for which the uncontrolled system presents a maximum in energy production (Figure 10). 

Consider the nonlinear system (Eq. (25) rewritten as 

𝑥̇ = 𝑓(𝑥, 𝑡) + 𝑢𝑐(𝑡)  (26) 

where 𝑢𝑐(𝑡) is the control law as described in Eq. (11), 𝑥 = (𝑥1, 𝑥2, 𝑥3)
𝑇  and 𝑓(𝑥, 𝑡) = (𝑓1(𝑥, 𝑡), 𝑓2(𝑥, 𝑡), 𝑓3(𝑥, 𝑡))

𝑇 

as in Eq. (25). 

At each time instant 𝑡, define the error vector 𝑒(𝑡) = 𝑥(𝑡) − 𝑦(𝑡) where 𝑥(𝑡) denotes the state trajectory of 

the controlled system (Eq. (26)) and 𝑦(𝑡) = (𝑦1, 𝑦2, 𝑦3)
𝑇 represents the desired reference trajectory. Using this 

definition, the system in Eq. (26) can be reformulated in terms of the error dynamics 𝑒̇ = 𝑔(𝑒(𝑡), 𝑡) + 𝐵(𝑡)𝑢(𝑡). 

By linearizing 𝑔(𝑒(𝑡), 𝑡) around 𝑒 = 0 and by carefully selecting the trajectory 𝑦 as 𝑦1 = 𝑎 + 𝜀 cos(Ω𝑡),  𝑦2 =

𝑏 + 𝜀𝑑 sin(Ω𝑡),  𝑦3 = 𝑐 cos(Ω𝑡),  such that 𝑎, 𝑏, 𝑐, 𝑑, 𝜀 ∈ ℝ  are constant with 𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝑑 ≠ 0, 𝑏 > 𝜀|𝑑| 

and 0 < 𝜀 ≪ 1, we get 

𝑒̇ = 𝐴(𝑡)𝑒(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝐺(𝑒(𝑡), 𝜀),  (27) 

where 𝐺(𝑒(𝑡), 𝜀) denotes the components related to power terms of 𝜀, 

𝐴(𝑡) = [

𝐴11(𝑡) 𝐴12(𝑡) 𝐴13(𝑡)
𝐴21(𝑡) 𝐴22(𝑡) 𝐴23(𝑡)

𝐴31(𝑡) 𝐴32(𝑡) 𝐴33(𝑡)
] , 𝐴𝑖𝑗(𝑡) =

𝜕𝑔𝑖

𝜕𝑒𝑗
, 𝐴11(𝑡) = 0, 𝐴12(𝑡) = 1, 𝐴13(𝑡) = 0,  

𝐴21(𝑡) = −
4𝛽𝑎

(1+2𝛽𝑎2)2
[−2𝜇1𝑏 − 𝑎 − 𝜇2𝑏

2 − 𝛼𝑎3 − 2𝛽𝑎𝑏2] +
1

1+2𝛽𝑎2
[−1 − 3𝛼𝑎2 − 2𝛽𝑏2] − [

4𝛽𝑎

(1+2𝛽𝑎2)2
(𝑎𝐹 +

𝜃

𝐾
𝑐) −

𝐹

1+2𝛽𝑎2
] cos(Ω𝑡),   

𝐴22(𝑡) =  
1

1+2𝛽𝑎2
[−2𝜇1 − 2𝜇2 − 4𝛽𝑎𝑏], 𝐴23(𝑡) =

𝜃

𝐾(1+2𝛽𝑎2)
, 𝐴31(𝑡) = 0, 𝐴32(𝑡) = −

𝜃

𝐶𝑝
  

𝐴33(𝑡) = −
1

𝐶𝑝𝑅𝑒𝑞
  

The system (Eq. (27)) is rewritten by parameterizing time 𝑡 = 𝑇𝜏, with 𝑇 =
2𝜋

Ω
 as  

𝑑

𝑑𝜏
𝑒 = 𝐴̅(𝜏)𝑒(𝜏) + 𝐵(𝜏)𝑢(𝜏) + 𝐺(𝑒(𝜏), 𝜀)  (28) 

where 𝐴̅(𝜏) = 𝐴̅(𝜏, Λ) = 𝐴̅1(Λ)𝑓1(𝜏) + 𝐴̅2(Λ)𝑓2(𝜏), 𝑓1(𝜏) = 1, 𝑓2(𝜏) = cos 2𝜋𝜏, 

𝐴̅1(Λ) = (

0 1 0
Θ21 Θ22 Θ23

0 −
𝜃

𝐶𝑝
−

1

𝐶𝑝𝑅𝑒𝑞

) , 𝐴̅2(Λ) = (
0 0 0
Γ 0 0
0 0 0

),   

Θ21 = −
4𝛽𝑎

(1+2𝛽𝑎2)2
[−2𝜇1𝑏 − 𝑎 − 𝜇2𝑏

2 − 𝛼𝑎3 − 2𝛽𝑎𝑏2] +
1

1+2𝛽𝑎2
[−1 − 3𝛼𝑎2 − 2𝛽𝑏2],   

Θ22 = 
1

1+2𝛽𝑎2
[−2𝜇1 − 2𝜇2 − 4𝛽𝑎𝑏], Θ23 =

𝜃

𝐾(1+2𝛽𝑎2)
, Γ = − [

4𝛽𝑎

(1+2𝛽𝑎2)2
(𝑎𝐹 +

𝜃

𝐾
𝑐) −

𝐹

1+2𝛽𝑎2
].   

By applying the Lyapunov-Floquet transformation 𝑒 = 𝑄(𝑡)𝑞 , Sinha’s techniques for state transition 

matrix approximation, and using Eq. (28), we can rewrite the system (Eq. (27)) in the form 

𝑞̇ = 𝑅𝑞(𝑡) + 𝑄−1(𝑡)𝐵̅(𝑡)𝑢𝑡    (29) 

in which 

𝑅 = [
−0.0122 0.0203 −0.0085
0.0104 −0.0118 −0.0001
−0.0093 −0.0030 −0.1012

].   
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The eigenvalues derived from the system's stability matrix (Eq. (29)) are 𝜆1 = 0.0030, 𝜆2 = −0.0261, and 

𝜆3 = −0.1020. Since 𝜆1 = 0.0030, the time-invariant system (Eq. (29)) is unstable. Since the gain matrix of the 

system (Eq. (29)) is constant with respect to time, an equivalent time-invariant formulation of the system (Eq. 

(16)) must exist, along with a matrix 𝐵0 that fulfills the conditions specified in Eqs. (16) to (19). In this work, 

𝐵0 is selected as 𝐼3, the 3 × 3 identity matrix. 

Based on the methodology outlined in the works of Sinha and Joseph (1994), David and Sinha (2000), and 

Sinha and Dávid (2006), a linear controller can be synthesized using the pole placement technique. By 

selecting the desired closed-loop poles at −1, −1 , and −1 , the resulting time-invariant gain matrix 𝐹0 , 

obtained through this procedure, is denoted by 

𝐹0 = [
0.9878 0.0203 −0.0085
0.0104 0.9882 −0.0001
−0.0093 −0.0030 0.8988

].   

Consequently, the control law for the nonlinear system described in Eq. (26) adopts the structure presented 

in Eq. (21), where the matrix function 𝑄(𝑡) is defined according to Theorem 1. 

Figure (11) illustrates the temporal responses of both the controlled and uncontrolled systems. It is evident 

that the states of the controlled system rapidly converge to the designated trajectory (see Figs. 11𝑎, 11𝑏, and 

11𝑐 ). Furthermore, a marked increase in the oscillation amplitude of the 𝑥3  voltage is observed in the 

controlled system relative to the uncontrolled case, which contributes positively to enhanced energy 

harvesting (Figure 11𝑐). 

 

Figure 11. Time history of uncontrolled and controlled states: (𝑎) Displacement of the beam 𝑥1; (𝑏) Velocity of the beam 𝑥2; (𝑐) 

Voltage 𝑥3. 

Figures 12𝑎 and 12𝑏 show the average power as a function of capacitance 𝐶𝑝 for 0.05 ≤ 𝐶𝑝 ≤ 1. Figure 12𝑎 

presents a comparison of the average power output between the controlled and uncontrolled systems. To 

provide greater detail, Figure 12𝑏 offers a magnified view of the region surrounding the curve corresponding 

to the average power of the uncontrolled system. 
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Figure 12. Output Mean Power: (a) Controlled vs. uncontrolled system comparison; (b) Zoomed-in view of (a) focusing on the 

uncontrolled response. 

Conclusion 

The stability analysis conducted in this study revealed that the equilibrium point of the system may exhibit 

either stable or unstable behavior, contingent upon the selected nominal values of the parameters defining 

the parametric excitation. At the boundary separating the stable and unstable regions, periodic operating 

regimes were identified and explored. 

The global sensitivity analysis via Sobol indices evidenced that near the resonance region, the most 

relevant parameter for energy harvesting is the frequency of the parametric force. Also, in the resonance 

region 2 ∶  1, the system is sensitive to the capacitance variation. 

The stability and sensitivity analyses offer complementary insights that contribute to the development of 

a more effective control strategy for energy harvesting in the system under investigation.  

Ultimately, the controller designed based on the Lyapunov-Floquet transformation successfully guided the 

system's trajectory toward the desired reference. As a result, a substantial improvement in the system's energy 

output was achieved. 
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