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ABSTRACT. This paper proposes a physical non-linear formulation to deal with steel 
fiber reinforced concrete by the finite element method. The proposed formulation allows 
the consideration of short or long fibers placed arbitrarily inside a continuum domain 
(matrix). The most important feature of the formulation is that no additional degree of 
freedom is introduced in the pre-existent finite element numerical system to consider any 
distribution or quantity of fiber inclusions. In other words, the size of the system of 
equations used to solve a non-reinforced medium is the same as the one used to solve the 
reinforced counterpart. Another important characteristic of the formulation is the reduced 
work required by the user to introduce reinforcements, avoiding "rebar" elements, node by 
node geometrical definitions or even complex mesh generation. Bounded connection 
between long fibers and continuum is considered, for short fibers a simplified approach is 
proposed to consider splitting. Non-associative plasticity is adopted for the continuum and 
one dimensional plasticity is adopted to model fibers. Examples are presented in order to 
show the capabilities of the formulation. 
Key words: SFRC, FEM, plasticity. 

RESUMO. Um método simples para a análise não-linear de concreto reforçado 
com fibras de aço. Este artigo apresenta uma formulação baseada no Método dos 
Elementos Finitos (MEF), para a análise física não-linear de estruturas de concreto 
reforçadas com fibras de aço. A formulação proposta permite a consideração de fibras curtas 
e longas inseridas num meio contínuo. A mais importante característica da formulação é que 
nenhum grau de liberdade adicional é introduzido no sistema de equações que modela o 
problema, independente da quantidade e da forma de distribuição das fibras. Em outras 
palavras, o tamanho do sistema de equações para resolver o problema de reforço com fibras 
é o mesmo do problema sem reforço. Uma outra importante característica da formulação é 
o reduzido trabalho requerido para a inserção das fibras, evitando-se o uso de elementos 
rebar, comuns em pacotes comerciais, ou qualquer readequação de malha. É considerada 
ainda a conexão entre diferentes tipos de fibras (curtas e longas) e uma simplificada 
aproximação para a consideração de escorregamento das fibras é proposta. Plasticidade não-
associativa é adotada para a modelagem do meio (matriz) e para as fibras unidimensional. 
Exemplos são apresentados para mostrar a potencialidade da formulação proposta. 
Palavras-chave: concreto reforçado com fibras, método dos elementos finitos, plasticidade. 

Introduction 

The importance of a good representation of fiber 
reinforced media for engineering analysis can be 
identified when observing the great amount of effort 
in studying the phenomenological behavior of this 
kind of material and various alternatives present in 
commercial softwares or scientific papers in order to 
solve this kind of problem (BARZEGAR; 
MADDIPUDI, 1994; GOMES; AWRUCH, 2001). 
For microscopic situations, sophisticated schemes 
have been recently developed to model non-

homogeneous materials including fibers (FISH; 
BELSKY, 1995; LE TALLEC, 1994; HUET, 
1990). However, for macroscopic engineering 
problems, as reinforced concrete the adoption of 
usual computational softwares1,2 becomes a 
difficult task for engineers and applied scientists, 
due to the existent cumbersome schemes for fiber 
inclusion into the discrete model. 
                                                 
1
Abacus 6.2. Standard user's manual. Hibbitt, Kerlsson and Sorrensen, Inc© 

publications, 2001. 
2
Ansys Realease 6.1. Basic analysis procedures, SAS IP Inc© publications, 2002. 
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Engineering finite element analysis of fiber-
reinforced domains, with arbitrary fiber distribution, 
for long or short fibers, is limited to two main 
approaches. The first is based on coincident nodal 
positions for fiber and continuum discretization. 
The second is based on special continuum elements 
that include fiber characteristics (rebar elements) 
following a simple straight pattern. The first 
procedure results in an exhaustive discretization of 
the continuum in order to adapt it to the fiber 
discretization, resulting in either a huge number of 
degrees of freedom and difficult mesh and re-mesh 
strategies or a simple mesh where the user should 
introduce node by node the reinforcement 
connection. The second alternative results in 
difficulties for the connection among elements and 
may generate truncated fibers (Figure 1). 

Another possibility, for Finite Element Method 
(FEM) analysis, is to treat the reinforced medium as 
homogeneous, with equivalent properties (HYER, 
1997; LEKHNITSKII, 1981). This approach leads to 
simplified stress distributions that may overestimate 
the strength of the analyzed solid or structure. This 
characteristic is worse when dealing with low rate 
fibers/continuum. 

 
 

 
Figure 1. Rebar element, extracted from the Abacus 6.3® user's 
manual guide. 

Following this reasoning this paper proposes a 
finite element formulation that avoids the 
inconvenience of exhaustive discretization and 
truncate fiber discretization of FEM procedures. 

The proposed formulation allows the 
consideration of short or long fibers, arbitrarily (or 
not) distributed inside the domain without 
increasing the number of degrees of freedom of the 
numerical model (Figure 2). It is based on 
kinematical considerations that write the 
displacement of fiber nodes as function of the 
displacement of continuum elements. 
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Figure 2. Roposed free connection. 

In order to be complete, in section 2 the basic 
equations of FEM are presented, preparing the 
introduction of fibers. In section 3 the stiffness 
matrix including fibers is deduced and in section 4 
plastic residuals are introduced in the final system. 
The strategy to allow the fiber meshing to be free 
from the matrix discretization is described by Vanalli 
(2004). A simple random fiber generation is specially 
applied in order to reproduce the fiber-reinforced 
specimen. Examples are shown, testing the 
formulation against theoretical solutions and 
experimental data. 

Material and methods 

Basic equations  

In this section the basic equations necessary to 
build the proposed technique are briefly described, 
following the Principle of Virtual Work (PVW) 
together with the concept of non-linear residual 
stress. This approach is interesting because one can 
introduce plasticity or damage mechanics into the 
equations without changing the basic steps. Index 
notation will be followed. In order to achieve the 
PVW statement one may start from the equilibrium 
equation of an infinitesimal portion of the body,  

 
0bij,ij   (1)

 
where: bi  represents body force and ij  stress. 

Comma means partial derivative and repeated 
indices represent summation. Performing the inner 
product between equation (1) and the virtual 
displacement field iu  and integrating it over the 
analyzed body   results: 

 
  0dbu ij,iji  


 (2)

Using the Gauss’ theorem one achieves: 
 

0dbududu iiijj,ijiji    


 (3)
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where:   is the boundary and j  its outward 

normal. Applying the known properties ijij p  

and ijijijj,iu  , where ij  is the virtual strain, 

equation (3) turns into: 
 

0dbuddpu iiijijii    


 (4)

 
This equation is the PVW for static problems. 

The first and the last integrals are, respectively, the 
work variation of surface and domain forces and the 
second represents the variation of internal energy. 
The internal energy can be conservative, resulting in 
an elastic analysis. For this situation one may adopt 
linear elasticity, given by the Hookes law 
( klijklij C  ) turning equation (4) into: 

 
0dbudCdpu iiklijkl

e
ii ij

   


 (5)

 
The total strain kl is the composition of elastic 

and plastic parts, i.e.: 
 

p
kl

e
klkl   (6)

 
The elastoplastic constitutive model is defined as: 
 

  p
ijklijkl

p
klklijkl

e
klijklij CCC   (7)

 
where: p

ij  is the accumulated residual stress 

achieved by any well known elastoplastic procedure 
(SIMO; HUGHES, 2000). It is worth noting that 
the formulation described here does not use tangent 
matrix, but it can be implemented if desired. The 
residual stress can also be achieved following other 
non-linear behavior, as damage mechanics for 
example. Substituting equation (7) into equation (4), 
the desired non-linear statement is written as: 

 

0dbu

dCdCdpu

ii

p
klijklijklijklijii



   



  (8)

 
Or as, 
 

0dbu

ddCdpu

ii

p
ijijklijklijii



   



  (9)

The stiffness matrix 

The starting point of the proposed formulation is 
equation (9). Fibers will be considered bounded 
inside the domain and free of external forces, so the 
first and last integrals of equation (9) will not suffer 
its influence. The simplified model to consider 
splitting of short fibers is described in section 5. 

The second integral represents the variation of 
elastic strain energy stored inside the wholly body, 
so it contains both matrix and fiber’s influence, i.e., 
it can be split out into two parts: 

 

 

  





dE

dCdCU

f

m

)f()f()f(

)m(
kl

)m(
ijkl

)m(
ijklijklij

e

 (10)

 
where: )f(E  is the Young´s modulus for fibers 

and )m(
ijklC  is the Hooke´s elastic tensor for matrix. 

Fibers are approached by simple two-node truss 
elements, so the considered strain is only the 
longitudinal one and is written as a function of the 
displacement of the two nodes and the angle (  ) 
that the element forms with the horizontal 
(Cartesian) axis (x), as follows:  

 























2

2

1

1

f
)f(

v
u

v

u

)sin,cos,sin,cos(
1


 (11)

 
where: u represents displacement in x direction and 
v represents displacements in y direction. Equation 
(11) is written in a more general way, as follows: 

 
)f()f( ub   (12)

 
where: )f(u  are the four degrees of freedom of 

the fiber element and b  relates nodal 
displacements to the longitudinal strain of the truss 
bar. The adopted solid element (2D case) is the 
well-known quadratic strain triangle (QST). From 
usual FEM assumptions similar expression, as 
equation (12), for displacement-strain relation can 
be written, as: 

 
( m ) ( m )
ij ijB u   

 (13)

 
This time )m(u  represents 20 degrees of freedom 

of the QST element and ijB  relates nodal 
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displacements to strains. Substituting equations (12) 
and (13) into equation (10) results: 

 

)f()f()f(

)m(
kl

)m(
ijklij

)m(e

udbEbu

udBCBuU

f

m



















 (14)

 
Performing the indicated integrals over solid and 

fiber elements and changing representations to 
vector notation, one writes: 

 

    )f(
f

t)f()m(
m

t)m(e ukuuKuU   (15)

 
Recalling that the fiber element is the two-node 

truss element, the displacement vector 1x4
f }u{  can 

be written as 
 














f
j

f
if

u

u
u  (16)

 
where:   1x2

f
iu  is related to the first node of the 

element i and  
1x2

f
ju  is related to the second node 

node j. For any fiber element, using equations (15) 
and (16) one writes:  

 

 

























f
j

f
i

jji

ijitf
j

f
i

f
ij

u

u

kk

kk
uuU  (17)

 
At this point one should accept knowing in 

which element each fiber node is contained and 
its non-dimensional co-ordinate (Figure 2). The 
important kinematical consideration is that the 
displacements of any node of the fiber element 
can be written as a function of the displacement of the 
nodes of the 2D element that contains it, as follows: 

 
m
j

m
i

)i(tf
i u0uu   (18)

m
j

)j(tm
i

f
j uu0u    (19)

 
where: 2x20  is a matrix that contains the shape 

functions of QST element (i or j) calculated for the 
node location of the reinforcement. The null matrix, 

2x200 , is an auxiliary value introduced to allow each 

node of any reinforcing element to belong to 
different (or the same) 2D elements. From 
equations (17), (18) and (19) one writes: 
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or in a compact form 

 
)m(f

ij
t)m(f

ij uKuU   (21)

 
This expression shows that the variation of fiber 

strain energy can be written as a function of 
continuum elements that contains it. The upper bar 
means that the fiber characteristics are written 
following exactly the degrees of freedom of the 
continuum. 

One should observe that an adequate degree of 
freedom numbering must be respected in order to 
build the global stiffness matrix. This numbering is 
implicit for indices i and j present over matrix 

40x40K , which means lines and rows belonging to 
different (or same) 2D finite elements. From 
equation (21) and the former reasoning, equation 
(15) is written as 

 
    )m()f()m(t)m( UKKUU  (22)

 
Equation (22) results into a general reinforced 

medium strain energy variation and, as a 
consequence, the resulting stiffness matrix can 
model as many as desired reinforcing fibers using 
exclusively the original continuum degrees of 
freedom. 

The plastic residual force 

In the previous section the stiffness matrix for 
reinforced media was developed, in this section a 
similar procedure is followed to determine the 
residual force, derived from residual stress, applied 
only in the positions due to the matrix media. From 
equation (9) one writes the variation of the work of 
dissipative internal forces as: 

 
 


dW p

ijij
p  (23)

 
This equation can be split out into two parts: 
 

  


ddW
fm

)f(p)f()m(p
ij

)m(
ij

p  (24)

 
Taking into account that residual stress and 

virtual strain are constant along the truss element 
and using the results of equations (12) and (13), 
equation (24) is rewritten as: 
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)f()f(p)f()m(p
ijij

)m(p AlbudBuW
m

 


 (25)

 
where A is the area of the cross section of the fiber. 
Equation (25) can be written following the vector 
notation of equation (15) and using relations (18) 
and (19) as: 

 

 
 

 

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
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


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
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 




Ab
0

0

dB

UW
)f(pt)f(

)m(pt)m(

t)m(p m
 (26)

 
Equation (26) can be written considering all 

finite elements simply as: 
 

     )f(p)m(pt)m(p FFUW  (27)

 
where upper bar means that the fiber residual 
forces are written following exactly the degrees of 
freedom of the continuum. Introducing equations 
(22), (27) into equation (9) and considering, for 
simplicity, only concentrated external forces, the 
PVW turns into: 

 
 

 )f(p)m(pt)m(

extt)m()m()f()m(t)m(

FFU

FUUKKU




 (28)

 
Considering that the virtual displacement of 

nodes are arbitrary, equation (28) turns into the 
non-linear system of equation to be solved, i.e.: 

 
  )f(p)m(pext)m()f()m( FFFUKK   (29)

 
The non-linear aspect of equation (28b) falls into 

the achievement of plastic residuals, as elastic 
stiffness matrices are adopted. The achievement of 
the residual plastic stress follows any well-
established procedure (SIMO; HUGHES, 2000). 
Here we follow the non-associative rule for Tsai-
Wu yielding surface presented by VANALLI, 
2004. 

It is important to note that to write equation (28) 
and (29) the nodes of fibers are considered free from 
continuum discretization, but its position regarding 
solid elements were considered known. In order to 
guarantee the necessary comfort for users, section 6 
presents the way the computational code 
automatically identifies fiber nodes positions. 

Results and discussion 

Reinforced concrete beam 

In this example a reinforced concrete beam is 
analyzed using the developed formulation. The 
concrete is considered elastoplastic following two 
well-known criteria, Drucker-Prager and Tsai-Wu 
(adapted to run isotropic material). The 
reinforcement follows one-axial bilinear elastoplastic 
relation as it is modeled by simple truss elements. 
The results are compared with experimental values 
given by Takeya (1972) and with a numerical model 
based on BEM – FEM coupling given by Coda (2001). 

The geometry and the reinforcement 
arrangement are shown in Figure 3. The material 
properties are the same as the one measured in 
laboratory, i.e., for steel the Young modulus is Es   

196000 MPa and the yielding stress is y  500 

MPa. For concrete, the Young modulus is Ec  

21000 MPa, the Poisson´s ratio is 2.0c   and the 

strength limits are c   27.3 MPa for compression 

and t   1.2 MPa for tension. The hardening is 
adopted null for both materials. 

Symmetry is considered in order to model the 
problem. A half of the beam is discretized into a 
homogeneous mesh of 20 x 20 QST finite elements 
(plane stress) constituting a total of 1992 degrees of 
freedom. Thirty two truss finite elements, located 
exactly in the position of the reinforcement, are 
employed to model the reinforcement. As 
previously mentioned, no sliding between long 
reinforcements and concrete is allowed. 
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Figure 3. Geometry and reinforcement distribution, lengths in 
centimeters and diameters in millimeters. 
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In Figure 4, the displacement at the center of 
the beam is plotted against the applied force. 
Displacement control has been adopted. As one 
can see the behavior of the proposed formulation 
is very close to the average of the experimental 
result and compares well with BEM – FEM 
formulation. The smooth behavior of the 
BEM/FEM technique is explained by the poor 
discretization used by that author to model 
concrete along vertical direction. 
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Figure 4. Numerical and experimental results. 

Additional information is given in what 
follows using a mesh of 130 x 30 finite elements. 
In Figure 5 one can see the behavior of shear 
forces along the interface of concrete and 
reinforcement for an elastic situation, considering 
and not considering stirrups. As one can see the 
transfer of forces between fiber and matrix is 
slightly faster in the situation where stirrups are 
considered. Finally, the Figure 6 shows the 
evolution of concrete degeneration (in terms of stress) 
for different levels of imposed displacement. 
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Figure 5. Contact shear forces regarding stirrup consideration. 

 
Imposed displacement of 5 mm. 

 
Imposed displacement of 7 mm. 

 
Imposed displacement of 10 mm. 

Figure 6. Evolution of concrete degeneration for prescribed 
displacements. 

It is possible to verify that at an imposed 
displacement of 10 mm the beam loses its 
supporting capacity. 

Reinforced concrete beam –- experimental analysis 

This example compares experimental results 
from Ashour et al. (2000) with numerical results 
obtained using the developed formulation. The 
tested beams are reinforced by long and short fibers. 
Long fibers are called tensile reinforcement and 
short fibers are called simply as fibers. A comparison 
between experimental and numerical results was 
made for 3 of the 27 tested beams. It is interesting to 
note that the fibers are randomly spread over the 
domain in order to reproduce the laboratory 
conditions. As the numerical model is two-
dimensional, the total amount of fibers to spread 
over the domain is 70% of the total used to model 
the three-dimensional specimen. 

As in the experimental analysis, concrete 
compressive strength of 49 MPa and tensile 
reinforcement ratios of 1.18% were used and the 
fiber contents were 0.0, 0.5 and 1.0% by volume. 
The geometry and reinforcement arrangement are 
shown in Figures 7 and 8 extracted from Ashour  
et al. (2000). 

 

 
Figure 7. Geometry and reinforcement arrangement. 
Source: Ashour et al. (2000). 

As can be seen in Figure 8 flexural 
reinforcements, 2  18 mm and 2  6 mm totaling a 
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tensile reinforcement ratio of 1.18% are used. 
Perfect plasticity behavior is adopted for this 
material. Hooked-ends mild carbon steel fibers 
(short) with average length of 60 mm, nominal 
diameter of 0.8 mm and yield strength of 1100 MPa 
are employed in the experimental specimen 
(ASHOUR et al., 2000). A concrete with 
compressive strength of 49 MPa composed the 
matrix media. Again, perfect plasticity behavior was 
adopted for concrete and softening behavior for 
fibers reinforcements. Table 1 presents general 
material data for reinforcement. 

 

 
Figure 8. Transverse section details. 
Source: Ashour et al. (2000). 

Table 1. General material data. 

Flexural Reinforcement 
Nominal Diameter 
(mm) 

Elastic Modulus 
(MPa) 

Yield Strength 
“” (MPa) 

Plastic 
Modulus “H” 

(MPa) 
2  18 and 2  6 210,000,00 530 0 

Steel Fibers 
Nominal 
Diameter 
(mm) 

Average 
Length (mm) 

Elastic 
Modulus “E” 

(MPa) 

Yield Strength 
“” (MPa) 

Plastic 
Modulus “H” 

(MPa)  
 0.8 60 210,000,00 1,100,00 - 2.5% of “E”

Concrete 
Elastic 
Modulus “E” 
(MPa) 

Poisson´s 
Ratio 

f’c 

(MPa) 
fr 

(MPa) 
f’sp 

(MPa) 
Plastic 

Modulus “H” 
(MPa) 

16.594 0.2 48.61 5.64 3.69 0 
f’c : Compressive strength of concrete (at 28 days); fr : Modulus of rupture of concrete; 
f’sp : Splitting tensile strength of concrete. 

The adopted effective yielding stress for short 
fibers is 276.75 MPa. The difference between the 
analyzed beams is the fiber contents (percentage of 
fibers) (Table 2): 

Table 2. Characteristics and quantities of steel fibers used in each 
beam. 

Beam 
Fiber 
length 
(mm) 

Fiber 
volume(mm3)

% of fibers 
(beam 

volume) 

Fibers 
quantities 

70% of 
Fibers 

quantities 
1 0.0% 0 0 

2 0.5% 28,184 19,726 
3 

0.8 30.15929 

1.0% 56,367 39,457 
Obs.: fibers area: 0.50265 mm2 ; Beam volume: 170,000,000 mm3. 

The numerical results, in Figures 9, 10 and 11, 
extracted are compared with experimental ones for 
0.0, 0.5 and 1.0% of fiber contents, respectively. It is 

possible to verify the stiffening in the numerical 
results compared to the experimental ones. These 
differences between the results can be associated 
to factors not considered in the numerical 
formulation as, for example, the slipping of long 
fibers. 
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Figure 9. Numerical and experimental analysis – 0.0% of fiber 
contents. 
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Figure 10. Numerical and experimental analysis – 0.5% of fiber 
contents. 
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Figure 11. Numerical and experimental analysis – 1.0% of fiber 
contents. 
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Conclusion 

A simple finite element formulation based on 
kinematics considerations is presented in order to 
model fibers arbitrarily distributed inside 
homogeneous media. A two-dimensional 
implementation has been successfully carried out 
using QST finite elements to model the continuum 
and constant strain finite element to model the one 
dimensional reinforcement (truss). Very good 
results have been achieved for linear and physical 
non-linear analysis concerning usual civil 
engineering materials. The simple splitting of short 
fibers presented a good behavior and can be easily 
evaluated. The formulation is promising and further 
improvements, such as sliding between long fibers 
and matrix as well as a three dimensional 
implementation are recommended. 
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