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ABSTRACT. This study investigates the application of Artificial Neural Networks (ANNs) for modeling 

Personalized Ventilation Systems (PVS) using data from Computational Fluid Dynamics (CFD) simulations. 

In recent years, machine-learning techniques like ANNs have been increasingly used to accelerate CFD 

analysis and improve the accuracy of temperature and airflow velocity predictions in indoor environments. 

The methodology involved conducting twelve CFD simulations in a three-dimensional space, followed by 

data filtering and normalization to train and test the neural network. The room was composed of two 

individuals, positioned side by side, both seated and receiving air from a ceiling supply system. Both 

individuals were modeled to maintain a constant surface temperature while also transferring heat to the 

environment. The quality of the results were analyzed by comparing the neural network outputs with data 

that had been omitted from the network. The results demonstrated the effectiveness of the model, with 

average errors ranging from 1% to 3% and maximum errors between 6% and 15%. This approach 

significantly reduces the computational time required for traditional CFD simulations while maintaining 

high accuracy, offering promising prospects for optimizing PVS performance in various indoor settings. The 

use of machine learning makes the analysis and design of personalized ventilation systems faster and more 

efficient, with practical applications in offices, classrooms, and residential spaces. 
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Introduction 

A personalized ventilation system is a ventilation system custom designed to meet the specific needs of 

an individual or a particular space, as opposed to conventional ventilation, which treats with a general area. 

It allows for the control and adjustment of ventilation conditions, such as airflow rate, temperature, and air 

quality, based on the preferences and requirements of a particular person. These systems are often used in 

environments such as offices, classrooms, and residences to enhance the thermal comfort, air quality, and 

energy efficiency by providing a more personalized and effective ventilation experience. 

The efficiency of ventilation systems plays a key role in ensuring the comfort and safety of occupants in 

indoor environments. Customizing these ventilation systems is crucial to cater to individual needs, 

considering factors like temperature distribution and air velocity in enclosed spaces. However, conducting 

Computational Fluid Dynamics (CFD) simulations to design personalized ventilation systems is a complex 

task that often consumes a considerable amount of time. 

In their work, Katramiz et al. (2021) initially assessed the evaluation of contaminants expelled by a single 

user in a closed room. Subsequently, the same authors, Katramiz et al. (2021), introduced a system with air 

supply from the desk and evaluated the dispersion of contaminants generated by users to each other. The 

progression from a single-user analysis to one involving two users is evident in a lot of places. However, this 

progression results in an increase in the time required to generate results. 

Rissetto et al. (2021) also explores the use of personalized ventilation systems. In this study, an evaluation 

of six different jet inflow angles are conducted for an individual positioned in six different locations. This is 

further analyzed by Xu et al. (2020), who investigates the flow effects of personalized ventilation systems. 

The study assesses the efficiency of a PV system at varying angles originating from a desk inflow. The 

application of machine learning could potentially enhance processing time and facilitate the study of new 

cases in both research endeavors. 
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The demand for solutions that optimize analysis time has surged with the growing complexity of personalized 

ventilation projects. Xu et al. (2021) delve into the analysis of modeling strategies, with the primary goal of 

enhancing both precision and processing efficiency within confined environments. Their approach involves the 

utilization of tetrahedra, hexahedra, and polyhedra as mesh elements to fine-tuning the cost-effectiveness of their 

simulations. The article underscores the manifold advantages associated with the application of such modeling 

strategies but also highlights the substantial demand on computational memory resources.  

In this context, the application of neural networks, a machine learning technique, has shown as a great 

promise. Neural networks can be employed to expedite the analysis of CFD simulations, enabling a quicker 

and more efficient assessment of ventilation conditions. Jing et al. (2023) have contributed to the field by 

introducing a new physics-guided neural network framework for rapid full-field temperature prediction in 

indoor environments. Their approach, comprising surrogate, discrepancy, and recovery models, effectively 

bridges the gap between numerical simulations and real-world applications, improving full-field temperature 

predictions for indoor spaces, even when dealing with limited measured data. 

Tian et al. (2021) investigated ventilation methods like stratum and displacement ventilation for efficient 

indoor environments and energy savings. It highlights challenges in managing conditions across different 

heights within a room and uses the back-propagation (BP) model in artificial neural networks to predict 

energy performance, thermal comfort, and indoor air quality. Through CFD cases, the study shows the BP 

model's superior accuracy compared to linear regression, especially in indoor environment prediction. 

Interestingly, air velocity information was redundant for cooling predictions but improved thermal comfort 

during heating. The addition of a genetic algorithm slightly enhanced indoor air quality prediction during 

heating. Validation with experimental data confirmed the robustness of developed ANN models across 

various scenarios in both ventilation methods. 

Jing et al. (2023) proposed a method based on neural networks and physics to rapidly predict full-field 

temperature in indoor environments. The model comprised three main components: a neural network-based 

surrogate model, a discrepancy model using transfer learning, and a recovery model integrating both. This 

approach proved effective in providing accurate predictions with a limited number of measured data, reducing 

the gap between numerical simulation and the real world.  

Li et al. (2022) introduced a Computational Fluid Dynamics (CFD)-based Back Propagation Neural Network 

(BPNN) combined with a Particle Swarm Optimizer (PSO) algorithm. The BPNN-PSO method accurately 

predicts and optimizes IAQ (Indoor Air Quality) with minimal CFD runs. Compared to other methods, BPNN-

PSO reduces indoor air pollutant concentration by up to 6.44% and computational costs by 23.53%. 

Leveraging CFD ensures accurate information acquisition, enabling rapid prediction of indoor environmental 

conditions. The BPNN-PSO algorithm holds promise for effective and intelligent indoor ventilation strategies. 

Zhou and Ooka (2021c) investigate the synergy between energy efficiency and indoor thermal comfort in 

building design, emphasizing the need to integrate building energy performance and indoor environmental 

quality considerations. They employ coupled simulations involving building energy simulation (BES) and 

computational fluid dynamics (CFD) to provide complementary insights. However, CFD's computational cost 

hinders its widespread use, prompting exploration into the potential of neural networks (NNs) as a promising 

CFD alternative. Their research aims to verify NN's feasibility for predicting indoor airflow in a three-

dimensional space. The NN, using boundary conditions as input, produces velocity and temperature 

distributions. Comparative analysis against CFD simulations reveals NN's accuracy, with relative errors below 

12%, and significant time savings of 80%. 

Kim and Park (2023) present a new approach for predicting thermodynamic parameters in indoor 

environments using artificial neural networks (ANN). They employ two independently trained ANN models, 

with the second model receiving the velocity distribution prediction from the first as an additional input to 

predict pressure and temperature distributions. Validation using computational fluid dynamics (CFD) data 

with 100 case scenarios demonstrates the model's improved performance, surpassing existing ANN models 

and offering a viable solution for indoor airflow prediction. These innovative approaches hold the potential 

to revolutionize the study and application of personalized ventilation systems. 

Personalized ventilation systems with ANNs remain an underexplored area in published literature, lacking 

comprehensive studies and analyses. Introducing artificial neural networks (ANNs) in Computational Fluid 

Dynamics (CFD) research for personalized ventilation systems holds significant promise in enhancing the 

study's speed and efficiency. Leveraging ANNs can expedite simulations, potentially accelerating the design 

and evaluation processes for these personalized ventilation systems. 
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Materials and methods 

The methodology has been structured into five steps. In the first step, Data and CFD simulation, CFD 

simulations are conducted to model an environment with a customized air conditioning system. The second 

step, Filtering and Standardization, involves standardizing and normalizing data for uniform analysis. 

Assembly of the network outlines the implementation of neural networks to predict temperature and velocity. 

Subsequently, Processing Time introduces methods to assess the processing time between CFD and neural 

networks. Lastly, Results Analysis and Comparison presents the equations used to evaluate the accuracy of 

the developed models compared to other studies. 

Data and CFD simulation 

The initial results of this study were obtained through CFD simulations, using Ansys Inc. software. The 

investigated environment is a room with dimensions of 3 meters in length, 3 meters in width, and 3 meters in 

height, with the air supply system coming from the ceiling aimed at providing thermal comfort to two 

occupants. Furthermore, the room has four strategically positioned openings in the upper corners, as 

illustrated in Figure 1, to ensure an effective distribution of air in the space. 

 

Figure 1. Representation of the model room for CFD simulations. 

The initial mesh for the simulations consisted of tetrahedral, employing a cone-based approach around 

the users using spheres of influence. The user's surface, as well as the walls and ceiling of the room, were 

prescribed at a fixed temperature, utilizing heat transfer patterns for software-defined surfaces. However, 

temperatures were not specified for the floor in front of the user and the ground. The boundary conditions 

applied to all simulations are detailed in Table 1. 

Table 1. Distribution of evaluated temperatures and velocities. 

Boundary conditions 

Wall Temperature 27ºC 

User Temperature 34ºC 

 

The jet development was achieved by extending the inflow cylinders one meter above the ceiling, which 

remained thermally isolated from the fluid. The SST turbulence model was employed, and refinement was 

carried out using inflations near the surfaces. An inflow device was introduced in the air inlet region to focus 

the air distribution towards the user. 

The data was classified based on temperature and inflow velocity information. Among the available data, 

nine sets were specifically isolated for the neural network learning process, while another three were 

exclusively reserved for the model testing and evaluation step, as highlighted in Table 2. Simulations marked 
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with an asterisk (*) were used to improve and validate the final results, while the remaining simulations were 

employed for the purpose of training the neural network. 

Table 2. Distribution of inlet temperatures and velocities. 

 
Velocity ( m s-1) 

1 2 3 4 5 

Temperature (°C) 

15 T15V1 T15V2* T15V3 T15V4 T15V5 

18 T18V1 T18V2 T18V3 T18V4 T18V5* 

20 T20V1 T20V2 T20V3* T20V4 T20V5 

 

Filtering and Standardization 

To ensure a standardized and uniform analysis, a Python script was developed to resize the results into a 

new grid following a specific set of steps (Figure 2a): 

i. Enclosure of the Room in a Larger Prism: The initial room was encapsulated within a prism of larger 

dimensions. (Figure 2b) 

ii. Division of the Prism into Equal Cubes: The prism was subdivided into a predefined number of identical 

cubes, each with its relative coordinates. (Figure 2c) 

iii. Mapping Room Points to Cubes: Each point in the original room was mapped and assigned to its 

respective cube within the new prism. 

iv. Conversion of Temperature to Celsius: Temperatures were converted to Celsius units to ensure 

uniformity. 

v. Removal of Empty or Null-Valued Cubes: Any cubes that did not contain points or had null temperatures 

and velocities were excluded. 

vi. Calculation of Average Temperature and Speed per Cube: The temperature and velocity of each cube 

was calculated based on the arithmetic average of all the points within it (Figure 2d). 

 

 

Figure 2. Mesh structuring process. 
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The context of the room under study, an initial division into 40,500 cubes was established, each with 

dimensions of 30 mm. However, after the execution of the detailed process mentioned earlier, which involved 

the removal of unnecessary cubes. The number was optimized to 26,462 cubes, providing a representation of 

the environment in a points cloud as depicted in Figure 2. Furthermore, it is important to highlight that the 

normalization adopted for the temperature and velocity variables was the min-max technique, resulting in 

normalized data ranging from 0 to 1. This ensured that the information was on a uniform scale and facilitated 

the analysis and interpretation of the results.  

Assembly of the network 

The implementation of the neural network was carried out using the Python programming language and 

the TensorFlow library. The architecture of the network was designed with two essential inputs, represented 

by inlet temperature and velocity as input variables. The neural network's output was configured to 

correspond to each of the 26,462 data grid cubes, resulting in a total of 26,462 individual outputs. To meet 

the specific analysis requirements, two distinct neural networks were developed. One of them was designed 

for temperature prediction, as illustrated in Figure 3, while the other aimed to predict velocity, as 

represented in Figure 4. 

 

Figure 3. Network structure for temperature prediction. 

 

Figure 4. Network structure for velocity prediction. 

The hyperparameters (the adjustable settings in a machine learning algorithm that influence its 

performance and must be defined before the model training) for configuring the neural network were selected 

through a Bayesian optimization process. To perform this optimization, the Optuna library was used, 

providing an effective method for finding the optimal values of hyperparameters. The hyperparameters that 

underwent the variation and optimization process included the learning rate, batch size and the number of 

epochs for each neural network as showed in Table 3. 

Table 3. ANN hyperparameters. 

Parameter ANN 

Learning rate 0,001 

Batch size 2 

Epochs 10000 

Optimizer Adam 

Loss function MSE 

Activation function Linear and ReLu 

Processing Time 

A fundamental aspect of our approach involves a comprehensive comparison between the neural network's 

predictions and the data obtained from CFD simulations. This comparative analysis will enable us to assess 

the accuracy and reliability of the neural network's results in predicting ventilation conditions. This 

assessment will be followed by a comparison with the average processing time for a simulation. Additionally, 

we will assess the time it takes for the machine to predict the required data for the room from random input 

data. The computer's technical specifications are demostrade below: 

• Processor: AMD RyzenTM 7 5700G 

• RAM: 32GB DDR4 at 3200MHz  

• Graphics: RadeonTM Graphics 2000MHz 

The processing time denotes the average duration required for CFD simulation processing, while learning 

time represents the duration necessary for the machine to assimilate patterns within these simulations. 

Result time indicates the period post-learning, enabling the network to promptly deliver results for any input. 

Notably, in Table 4, an impressive 99% reduction in CFD processing time is observed upon employing an 
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artificial neural network to learning the pattern. Furthermore, post-training, the network exhibits the 

capability to instantly furnish results for any input (Temperature and Velocity) 

Table 4. Distribution of evaluated temperatures and velocities. 

Process Time 

Processing Time (CFD) 01:51:12 

Learning Time (NNs) 08:32:34 

Result Time 00:00:13 

Results analysis and comparison 

In the process of evaluating the results, two crucial aspects were taken into account: comprehensive analysis and 

a focus on critical errors (The absolute difference between the CFD result and the ANN for the same point), defined 

as the worst 5% of identified errors. To quantify the effectiveness of the developed models, two essential metrics were 

employed: RMSE (Equation 1), which provides a measure of overall accuracy of the results, and r² (Equation 2), which 

assesses the model's explanatory capability. Additionally, the average error and maximum error were considered, 

providing a comprehensive view of the quality of predictions in comparison to the actual data. 

RMSE =  √∑
(ŷ−yi)²

n

n
i  (1) 

r² =  1 − 
∑ (ŷi − yi)²n

i

∑ (yi − y̅i)²n
i

 (2) 

where 𝑦̂ is the real value, [°C or m s-1], 𝑦𝑖 is the predicted value, [°C or m s-1], 𝑦̅ is the average of the real values, 

[°C or m s-1], and n is the number of points, [no unit]. 

The results obtained in this study were subjected to a comparative analysis with the final results of articles published 

in highly relevant academic journals. For this comparison, five papers were selected: Zhou and Ooka (2021a), Kim and 

Park (2023), Saiyad et al. (2021), Zhou and Ooka (2021b) and Zhou and Ooka (2021c). The assessment covered various 

areas, including regions of interest related to the individual and the development of the air jet.  

Additionally, as part of the study, a cylinder model was created that encompassed the individual's contour, 

with dimensions as illustrated in Figure 5. For the evaluation of the air jet, the same criteria and metrics used 

to assess the conditions around the individual were applied, as seen in Figure 5. This included the use of 

metrics in cylinder, such as RMSE, r², average error and maximum error. 

  

Figure 5. Region of analysis within the individual’s envelope and air jet development analysis region. 

Results and discussion 

The results section explores five points. Results Analysis of middle plane room visually compares the temperature 

and velocity distributions between the network and CFD simulations in the room, emphasizing patterns recognition. 

Critical Errors highlights acceptable variations in temperature and velocity without discernible systematic errors. 

Error distribution analysis shows consistent temperature behavior and acceptable velocity variations. Comparative 

Analysis demonstrates consistently lower average errors and underscores the importance of a holistic assessment, 

comparing results of articles. Lastly, the Comprehensive Room Analysis presents detailed error insights across 

different room contexts, emphasizing the model's precision in various spatial scenarios. 
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Results Analysis of middle plane room 

The air inflow in this figure is coming from the ceiling at a velocity of 2 m s-1 and a temperature of 15ºC. Slight 

variations in room temperature can be observed; however, the similarity between the temperature contours observed 

in the room is clear. Regions where temperature variation pockets occur are seen in both cases, demonstrating how 

the network was able to project patterns of regions with high temperature gradients. When comparing velocity, there 

is no clear difference overall in the room. Unlike the temperature-related results, both a low absolute variation and a 

similar velocity pattern are observed in both cases. In the room's air exhaust regions; it is evident that the network 

was able to simulate the velocity variation for the flow in the area, indicating its recognition of the pattern. 

In Figure 6, 7 and 8, the relationship between temperature and velocity is also shown, but with different 

supply parameter values. In Figure 6, the inflow air enters the room at temperature of 15°C and a velocity of 

2  m s-1 In Figure 7, the inflowing air enters the room at a temperature of 18ºC and a velocity of 5 m s-1. In this 

result, a small variation in room temperature can also be observed, but the similarity in the temperature 

contours is evident. For the velocity in the lower part of the figure, the same similarity is seen, but with a 

greater difference in terms of velocity variation in the regions. 

 

Figure 6. Middle plane room results for simulation T15V2, with temperature represented in the upper and velocity in the lower, 

network results on the left and CFD results on the right. 

 

Figure 7. Middle room results for simulation T18V5, with temperature represented in the upper and velocity in the lower, network 

results on the left and CFD results on the right. 

In Figure 8, the inflowing air enters at a temperature of 20ºC and a velocity of 3 m s-1. In this case, the best 

result among the three was observed, with minimal variation in both temperature and velocity, both in 

absolute terms and in the regions with very similar contours. 
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Figure 8. Middle room results for simulation T20V3, with temperature represented in the upper part and velocity in the lower part, 

show network results on the left and CFD results on the right. 

Critical Errors 

Figures 9, 10, and 11 represent the absolute error of the room for temperatures and velocities, which is the 

absolute difference between the network's value and the CFD simulation data. Among these results, the top 

5% of the highest values were separated to potentially represent patterns of regions where the highest errors 

could be concentrated.  

In Figure 9, the highest temperature variation is observed to be 0.4ºC, which is an acceptable value given 

the maximum temperature variation from 34ºC (Mannequin surface temperature) to a minimum of 18ºC 

(Inflow temperature) in the room. The same result had a maximum absolute velocity variation of 0.065 m s-1, 

considering the maximum velocity variation between 0 and 2 m s-1.  

 

Figure 9. Critical errors for simulation T15V2. 

In Figure 10, acceptable values for the maximum absolute error were also observed, being both below 0.5ºC and 

0.095 m s-1 for temperature and velocity, respectively. In all cases, no clear error pattern was observed, indicating 

that the developed network does not exhibit systematic errors. It was only observed in Figure 11 that both 

maximum absolute errors concentrated in the same region, which is not enough to diagnose a potential pattern in 

the results representation. 

Error distribution 

A box plot of errors was generated to evaluate the percentage distribution of obtained errors. In the 

analysis of the box plots (Figure 12), there is a noticeable similarity between the training and test values for 

temperature, indicating a consistent behavior across these datasets. Conversely, in the case of velocity, the 

training values remained relatively low as anticipated, while the test values appeared higher but still within 

a margin of 0.1 m s-1. Notably, the T15V2 scenario displayed comparatively higher errors. However, despite 
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these disparities, the deviations remained within a 2°C difference, which aligns with the outlier range 

depicted in the velocity box plot. This observation suggests that although some points exhibit higher errors, 

they still fall within an acceptable range, warranting attention but not necessarily signaling an alarming 

deviation. 

 

Figure 10. Criticals erros for simulation T18V5. 

 

Figure 11. Critical errors for simulation T20V3. 

 

      

Figure 12. Box plot of errors for all simulations with the number of temperature errors represented on the top and velocity errors above. 
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Comparative analysis 

In this study, five reference articles were selected for the purpose of comparing performance metrics as 

showed in Table 5. When assessing the performance of the model in comparison to these articles, it observed 

that the average error consistently remained below the average error presented in the article published by 

Zhou and Ooka (2021c). This suggests that the model demonstrates precision in predicting the variables under 

study. Although the maximum error exceeded that of two of the selected articles, Zhou and Ooka (2021b) and 

Zhou and Ooka (2021c), it is important to note that the maximum error, by itself, should not be considered 

the primary evaluation parameter, as it represents only an extreme point and does not reflect the overall trend 

of predictions. 

Table 5. Comparison of results from other articles and the outcomes obtained by the network. 

Metric 
Zhou and Ooka 

(2021b) 

Kim and Park 

(2023) 

Zhou and Ooka 

(2021b) 

Saiyad et al 

(2021) 

Zhou and Ooka 

(2021c) 
Results 

Mean error 5% - - - - 1,87% 

Maximum error 10% - 12% - - 15,59% 

r² (Temperature) - 0,956 - - - 0,919 

RMSE (Temperature) - 0,237 - 0,825 0,600 0,098 

r² (Velocity) - 0,739 - - - 0,911 

RMSE (Velocity) - 0,0017 - - 0,100 0,068 

 

Regarding the coefficient of determination (R²) for velocity and temperature variables, the results 

approached the values reported in other reference articles, demonstrating general consistency in predictions. 

Notably, in the velocity variable, we observed a significant difference compared to the values presented in 

other studies, Kim and Park (2023), indicating particularly good performance in the modeling. Furthermore, 

the Root Mean Square Error (RMSE) calculated for the model was considerably lower than the values obtained 

in the comparative articles, indicating high precision and lower dispersion in the predictions made by model. 

Comprehensive room analysis 

Full room results: In Table 6 and Table 7, the absolute errors of the test simulations for the entire room 

are presented. It is worth noting that these errors fall within acceptable ranges, with a maximum error of 

15.59% and a maximum average error of 2.79%. The RMSE (Root Mean Square Error) for temperature and 

velocity remained within the maximum range of 0.107 and 0.35, respectively. This demonstrates minimal 

variation within the expected values commonly encountered in this context. 

Table 6. Results for the temperature for full room. 

 Simulation T15V2 Simulation T18V5 Simulation T20V3 

Mean error 0,91% 1,86% 1,73% 

Maximum error 6,38% 8,95% 9,94% 

RMSE 0,082 0,106 0,107 

r² 0,971 0,924 0,864 

 

Table 7. Results for the velocity for full room. 

 Simulation T15V2 Simulation T18V5 Simulation T20V3 

Mean error 1,55% 2,43% 2,79% 

Maximum error 15,59% 11,62% 14,5% 

RMSE 0,009 0,035 0,024 

r² 0,952 0,909 0,873 

 

User’s space results: In both Table 8 and  Table 9, documenting the absolute errors of the test simulations 

for the entire room and the user's space, respectively, notable improvements are evident in the user's space 

regarding average and maximum error values compared to those of the entire room. Specifically, in the user's 

space, the maximum error dropped to 10.91% and the average error to 1.88%, displaying better precision. 

Moreover, the RMSE for temperature and velocity in both spatial areas fell within acceptable narrow ranges, 

emphasizing considerable improvements in error metrics, particularly in the user's space. 
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Table 8. Results for the temperature for user’s space. 

 Simulation T15V2 Simulation T18V5 Simulation T20V3 

Mean error 1,04% 1,07% 1,88% 

Maximum error 4,36% 5,90% 10,91% 

RMSE 0,135 0,099 0,172 

r² 0,987 0,986 0,964 

Table 9. Results for the velocity for user’s space. 

 Simulation T15V2 Simulation T18V5 Simulation T20V3 

Mean error 1,76% 1,57% 1,66% 

Maximum error 10,18% 8,65% 6,81% 

RMSE 0,019 0,037 0,025 

r² 0,956 0,971 0,963 

 

Jet development region: For the jet development region (Table 10 and Table 11), both maximum and 

average error values showed substantial improvements, with the maximum error decreasing to 7.07% and the 

average error to 1.05%. Furthermore, the RMSE for temperature and velocity in this specific area remained 

remarkably low at 0.150 and 0.035, respectively, indicating heightened accuracy in regions characterized by 

significant temperature gradient variations. 

Table 10. Results for the temperature for jet development. 

 Simulation T15V2 Simulation T18V5 Simulation T20V3 

Mean error 0,57% 0,66% 1,05% 

Maximum error 2,63% 3,51% 7,07% 

RMSE 0,126 0,105 0,150 

r² 0,995 0,994 0,984 

Table 11. Results for the velocity for jet development. 

 Simulation T15V2 Simulation T18V5 Simulation T20V3 

Mean error 0,62% 0,54% 0,56% 

Maximum error 3,89% 3,21% 2,61% 

RMSE 0,017 0,035 0,023 

r² 0,992 0,994 0,984 

Conclusion 

This study proposed a method for modeling the spatial distribution of temperature and velocity in 

Personalized Ventilation Systems (PVS) using Artificial Neural Networks (ANNs). To construct the 

training and improve predictions, the main pathways of network development were outlined, including 

data mapping and filtering, data standardization, neural network assembly, and comparative result 

analysis. Data were collected from CFD simulations and processed to create an input mesh for the neural 

networks. The ANN models were designed and trained, including hyperparameter optimization through 

Bayesian optimization. 

The results obtained with the neural networks, as demonstrated by metrics such as RMSE, r², average error, 

and maximum error, highlight the accuracy of predictions compared to other scientific articles. Furthermore, 

these results were compared to reference studies, indicating that the proposed approach rivals the results of 

other relevant academic papers. However, it's worth noting that, as in any scientific research, some 

limitations and areas for improvement were identified. These include the need to consider a larger amount of 

simulation data for training, as well as how data treatment and mesh structure affect the results. These factors 

can enhance result accuracy and expand the range of values output by the network. 
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