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ABSTRACT. The Law of Mass Action generally models the equilibrium data from ion exchange 
processes. This methodology is rigorous in terms of thermodynamics and takes into consideration the 
non-idealities in the solid and aqueous phases. However, the artificial neural networks may also be 
employed in the phase equilibrium modeling. In this study, both methodologies were tested to describe 
the ion exchange equilibrium in the binary systems SO4

2--NO3
-, SO4

2--Cl-, NO3-Cl- and in the ternary 
system SO4

2--Cl--NO3
-, by AMBERLITE IRA 400 resin as ion exchanger. Datasets used in current study 

were generated by the application of the Law of Mass Action in the binary systems. Results showed that 
in the equilibrium modeling of binary systems both methodologies had a similar performance. 
However, in the prediction of the ternary system equilibrium, the Artificial Neural Networks were not 
efficient. Networks were also trained with the inclusion of ternary experimental data. The Law of Mass 
Action in the equilibrium modeling of the ternary system was more efficient than Artificial Neural 
Networks in all cases. 
Keywords: artificial neural network, mass action law, ion-exchange. 

Aplicação de redes neurais artificiais e da Lei da Ação das Massas na predição de equilíbrio 
de sistemas ternários de troca-iônica 

RESUMO. Os dados de equilíbrio de processos de troca iônica são geralmente modelados pelo emprego 
de Lei da Ação das Massas. Esta metodologia é rigorosa do ponto de vista termodinâmico e considera as 
não-idealidades na fase sólida e na fase aquosa. No entanto, as redes neurais artificiais também podem ser 
empregadas na modelagem de equilíbrio de fases. Neste trabalho, ambas as metodologias foram utilizadas 
para descrever o equilíbrio na troca iônica nos sistemas binários SO4

2--NO3
-, SO4

2--Cl-, NO3-Cl- e no 
sistema ternário SO4

2--Cl--NO3
- empregando como trocador iônico a resina AMBERLITE IRA 400.  

No treinamento da rede foram utilizados os dados gerados pela Aplicação da Lei da Ação das Massa nos 
sistemas binários. Os resultados obtidos mostraram que na modelagem de equilíbrio dos sistemas binários 
ambas as metodologias apresentaram desempenho semelhante, entretanto na predição do equilíbrio do 
sistema ternário as Redes Neurais Artificiais não foram eficientes. Também foram treinadas redes com a 
inclusão de dados experimentais ternários. Na modelagem do equilíbrio do sistema ternário, a Lei da Ação 
das Massas foi mais eficiente que as redes neurais em todos os casos. 
Palavras-chave: redes neurais artificiais, lei da ação das massas, troca iônica. 

Introduction 

Ionic exchange is a highly employed process for 
the treatment of effluents with ionic species, the 
purification of pharmacological compounds, in 
which adsorption of ionic species occurs in a porous 
material (such as artificial resins or zeolites) and 
followed simultaneously by a desorption process of 
other ionic species (already present in the 
exchanger) in equivalent amounts, according to the 
equation: 

A B A Bz z z z
B S A R B R A Sz A z B z A z B± ± ± ±+ ↔ +  (1)

 
where: 

A and B represent the ion pairs; z is the charge of 
the ionic species; R is the solid phase and S the 
liquid one.  

Most industrial applications of the ion exchange 
process use fixed-bed column systems. The solution 
that would be treated has several distinct ions that 
compete with one another for active sites of the 
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adsorbent material. According to Tamura (2004), 
the understanding and the prediction of ion 
exchange reactions are required for a better 
quantitative and efficient interpretation of ion 
exchange processes. Thermodynamic modeling of 
the ion exchange systems has a very important role 
in acquiring essential information for the project of 
ion exchange separation systems.  

The Law of Mass Action 

Approaches to describe equilibrium in ion 
exchange systems comprise adsorption isotherms 
(AI) and the Law of Mass Action (LMA). However, 
the formulation of IA models, such as Langmuir’s 
isotherm, fails to take into account the effect of the 
solution’s ion force of the counter-ion that desorpts 
the exchanger. LMA is a stricter approach for the 
representation of data equilibrium in ion exchange 
systems. 

The Law of Mass Action is a model 
foregrounded on the fact that ion exchange is a 
reversible process which, according to the equation, 
is ruled by a chemical equilibrium that defines the 
selectivity of the ion exchanger. The reaction’s 
equilibrium constant (K) may be calculated by the 
following (MEHABLIA et al., 1994): 

 
AB

A B

A B

zz
A R B SA

B
A S B R

y m
K

m y

γ γ
γ γ

  
 =        

 (2)

 
where: 

mj is the molality of species j in the liquid phase; 
yj is the mol fraction of the species j in the solid 
phase; γSj is the coefficient of the activity of the 
species j in the solution; γRj is the coefficient of the 
activity of the species j in the resin. 

The parameters of the models of the coefficients 
of activity and the composition of each phase should 
be known so that the equilibrium constant of the 
Equation could be calculated. Literature shows 
several models, such as the Debye-Hückel, 
Bromley, Pitzer and Chen models, for the 
calculation of the coefficient in liquid phases. 
However, reliable theoretical formulations for the 
calculation of the coefficient of the activity of ions in 
the solid phase do not exist. 

Smith and Woodburn (1978) had originally 
proposed a solution to this problem which was later 
used by several authors (ALLEN et al., 1989; 
BOYER et al., 1999; CANEVESI et al., 2009; 
MEHABLIA et al., 1994; SHALLCROSS et al., 
1988) who used Wilson’s model for the calculation 
of the coefficient of activity for fluid phases to 

represent the non-idealities in the solid phase under 
analysis. The model’s parameter was estimated from 
equilibrium data.  

Wilson’s model had the advantage that it 
predicted the behavior of the ion exchange ternary 
systems when the rates of equilibrium constants and 
the parameters of the models of the coefficients of 
activity for the ions in current phases were known. 

Three chemical reactions of binary exchange 
may occur in an ion exchange ternary system, 
depending on the three equilibrium constants. In 
this case, the three equilibrium constants and the 
fraction of the three components involved may be 
related by the following equations: 

 

( ) ( )
CB

A B

zz
B B Bz z
C C CK K K=  (3)

 
1A B Cx x x+ + =  (4)

 
Since the equilibrium constants are a priori 

known, a system of non-linear equations may be 
obtained. Two equations are defined from the 
equilibrium constant and Equation 4. A system of 
equations is thus available whose unknowns are the 
three compositions of the solid phase which may be 
calculated by the numerical method for the solution 
of non-linear systems  

Artificial Neural Networks 

An important and highly relevant alternative for 
the modeling of industrial processes is the use of 
Artificial Neural Networks (ANNs). In spite of the 
fact that it has the highest number of parameters to 
be determined, ANN is a method that calculates 
variables in an explicit way, or rather, without the 
need of solving a system of non-linear equations. 

ANNs are being successfully applied in several 
areas in the industry of chemical processes, such as, 
the solution of differential equations, interpolation of 
GPS data, studies of mono- and multi-component 
equilibrium data of adsorption, prediction of stability 
of phases, modeling of chicken carcasses cooling and 
others (FAGUNDES-KLEN et al., 2007; JHA; 
MADRAS, 2005; KLASSEN et al., 2009; PRAKASH 
et al., 2008; SCHMITZ et al., 2006; SILVA et al., 
2003; SOUZA et al., 2006).  

ANNs, a mathematical model based on the 
neural system of intelligent organisms, are capable of 
learning from experience and identify logical 
patterns in mathematical sequences. Neurons in 
ANN are placed in layers: the entrance, the 
intermediate and the exit layers. Each neuron 
comprises a mathematical logic structure in which 
the stimuli captured by the synapses are processed 
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through the soma function and the threshold 
potential is represented by transference. Equation 5 
represents the above mathematically:  

 

( ),
1

N

k k j j k
j

Y f w x b
=

 
= + 

 
  (5)

 
where: 

w is the synaptic weight; x is the entry stimulus, 
b is the threshold; f represents the transference 
function; Y is the neurons’ exit. Subscripts k and j 
represent respectively the number of layers and the 
stimulus. 

ANN application is divided into three parts: 
training, validation and generalization. Data sets are 
required for ANN training so that it may identify 
patterns between the entrance and exit variables and 
adjust the synaptic weights by an optimization 
algorithm. The validation stage confers whether 
ANN effectively learned the previous training and 
the generalization stage is the effective use of the 
adjusted model to the simulation of the process 
under analysis.  

ANN performance depends on several factors, 
such as the number of intermediate layers, the 
number of neurons in each layer and the function of 
the transference employed. The use of a great 
number of neurons converges to more precise 
responses, although they may trigger a network 
generalization issue when new entries occur. 
However, if the number of neurons is low, there is a 
possibility that the response obtained is not 
sufficiently precise. 

Current research compares results of the 
modeling of ion exchange process of the binary 
systems SO4

2--NO3
-, SO4

2--Cl-, NO3
- Cl- and of 

the prediction of the ternary system SO4
2--NO3

--
Cl-, by LMA and ANNs, in the concentration 0.2 
N at 298 K, employing the resin AMBERLITE 
IRA 400 as ion exchanger and sodium as counter-
ion. 

Material and methods 

The evaluation of LMA and ANN 
methodologies was undertaken by using 
equilibrium data of the binary systems SO4

2--
NO3

-, SO4
2--Cl-, NO3

- Cl- and of the ternary 
system SO4

2--NO3
--Cl-, both at concentration  

0.2 N and temperature 298 K, obtained by Smith 
and Woodburn (1978). These authors investigated 
the ion exchange of these ions in solution using 
the synthetic resin AMBERLITE IRA 400, with 
capacity for anion exchange of 1.4 eq L-1. 

Modeling by LMA 

LMA was employed for the adjustment of 
equilibrium data of the binary systems to obtain the 
parameters of Wilson’s model and the equilibrium 
constant for each binary system. Bromley’s model 
was thus used to calculate the coefficient of ion 
activity in the solution, according to Equation 6:  

 
2
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where: 

A is the Debye-Huckel Constant; I is the ion 

force defined by =
i

ii zmI 2

, with zi as the number of 
íon i loads. Fi is the sum of interaction parameters 
defined by Equation 7. 
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(7)

 
Term B is the parameter of Bromley’s model of 

the electrolyte formed by the cation j and the  
anion i. Table 1 shows B rates for the systems under 
analysis. 

Table 1. B rates in the calculation of the coefficient of ion 
activities in the solution. 

Compound B (kg mol-1) 
Na2SO4 0.0207 
NaCl 0.0574 
NaNO3 -0.0128 
 

Wilson’s model was employed to calculate the 
coefficient of ion activity in the solid phase, by 
Equation (8). 

 

 
= ==








 ΛΛ−Λ−=
n

j

n

k
jkkjij

n

j
ijji yyy

1 11
/1lnγ

 
(8)

 
where: 

Λij are Wilson’s parameters and n is the number 
of ions in the solid phase.  

The application of LMA requires estimates of the 
parameters of interaction Λij. For binary systems  
Λii =1, with crossed parameters determined as from 
the experimental data of equilibrium. 

Parameters in current research were estimated 
with minimum quadratic error, represented by 
Equation and using Downhill Simplex method 
(NELDER; MEAD, 1965). 
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where: 

( )EXPn
R p
X  is the fraction of the solid phase 

obtained experimentally and ( )MODn
R p
X is the fraction 

of the solid phase calculated by the model. 
When rates of parameter Λij are estimated, 

equilibrium curves of each binary system are 
produced for later utilization in ANN training and 
prediction of ternary equilibrium data. Curves 
were produced taking into account the 
composition in the interval [0.1], totaling 100 
equilibrium scores for each binary pair. Further, 
ternary equilibrium curve was predicted to solve 
the non-linear equation system by modified 
Newton-Rapson method when Wilson’s 
parameters and equilibrium constants from the 
analyzed binary system were taken into account. 

Modeling by ANNs 

Artificial Neural Networks were also employed 
in the modeling of equilibrium data of the binary 
systems SO4

2--NO3
-, SO4

2--Cl-, NO3
- Cl- and of the 

ternary system SO4
2--NO3

--Cl-. ANNs used a 
logistic function and only one hidden layer for 
activation. 

In all cases, the number of neurons in the 
entrance and intermediate layers varied between 4 
and 14 to decrease the rate function represented by 
the Equation. Synaptic weights were determined by 
the Downhill Simplex method (NELDER; MEAD, 
1965). 

Binaries of data equilibrium previously produced 
by LMA (100 scores for each system) were used for 
ANNs training so that a model adequately representing 
the exchange process of each system under analysis 
would be obtained. In this case ANNs’ entry variables 
were total concentration of the liquid phase (N) and 
the compositions of each species; compositions in the 
solid phase were used as exit variables.  

Ternary system’s equilibrium data were 
predicted by employing the 100 data produced in 
each binary pair (300 scores in all) for training. 
ANNs’ entry and exit variables were the same as 
those used in the network training for modeling 
the binary data. However, data were fed as ternary 
data, or rather, the normal fraction of the metal 
absent in the binary system was presumed to be 
equal to zero. Several network architectures were 
tested to obtain a structure with a good 
performance in the prediction of ternary 
equilibrium based on the target analysis.  

So that the performance of Artificial Neural 
Networks in the prediction of the ternary system 
could be improved, other tests were undertaken 
using the network structure which had the best 
performance in previous tests. Five ternary 
experimental data were randomly inserted to the 
data set used previously in ANN training and thus 
concluding the validity, as has been done with other 
methodologies. 

Results and discussion 

Modeling equilibrium binary data 

By using MLA for the modeling of binary data, 
the parameters of the systems SO4

2--NO3
-, SO4

2--Cl- 
and NO3

--Cl- were adjusted as from the equilibrium 
binary data of the systems under analysis obtained 
by Smith and Woodburn (1978) and provided in 
Table 2. Table 2 shows equilibrium constants, 
Wilson’s parameters and the rates of target functions 
obtained in current research for the optimization of 
these parameters. 

It may be verified from Table 2 that parameters 
estimated by the Law of Mass Action have different 
rates than those originally obtained by Smith and 
Woodburn (1978). This difference is due to the type 
of target function used in the two research works. 
The target function in Smith and Woodburn (1978) 

was the coefficient of selectivity ( )BAλ  defined by 
Equation, whereas in current research it comprised 
the minimization of error among the compositions 
of ions in the resin.  
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Table 2. Parameters estimated by the application of the Law of 
Mass Action to binary data. 

Parameters of Wilson’s equation 
System Keq 

12Λ  21Λ  

Smith and Woodburn    
SO4

2- - NO3
- 73.386 0.7655 2.8892 

SO4
2- - Cl- 5.0339 0.1127 4.0295 

Cl- - NO3
- 3.9090 2.4502 0.40856 

Current research    
SO4

2- - NO3
- 177.626 1.716 2.179 

SO4
2- - Cl- 10.8881 1.534 1.318 

Cl- - NO3
- 3.90034 2.214 0.507 

 

Figures 1, 2 and 3 show that MLA described in a 
precise way the experimental data of binary 
equilibrium obtained by Smith and Woodburn 
(1978). 

The Law of Mass Action methodology was 
successfully employed by Shallcross et al. (1988), 
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Valverde et al. (2002) and Vo and Shallcross (2003) 
who applied it for the prediction of the binary and 
ternary systems.  

Several structures were tested to model the binary 
data by ANNs to obtain the structure that best 
represented the equilibrium data analyzed. Table 3 
shows structures that produced the best result for each 
system and the respective rates of target functions and 
absolute average deviation (AAD). 

Table 3. Results from the application of ANNs to binary data. 

System Structure AAD Target Function (10-3)
SO4

2- - NO3
- 8-10-2 1.22 1.388 

SO4
2- - Cl- 8-10-2 1.59 4.732 

Cl- - NO3
- 6-10-2 2.55 4.198 

 

Table 4 presents results from the Law of Mass 
Action for each system, coupled to the respective 
rates of the target function and relative average 
deviations (AAD). 

Table 4. Results from the application of LMA to binary data. 

System AAD Target function 
SO4

2- - NO3
- 2.50 0.041 

SO4
2- - Cl- 0.73 0.876 

Cl- - NO3
- 2.02 0.041 

Table 3 shows that ANNs adequately represent 
binary equilibrium data since target function and ADD 
rates, obtained from each system, were low. The 
comparison of the two methodologies showed that 
both described with precision the experimental data of 
equilibrium, which may be observed in Figures 1, 2 
and 3. However, ANN application is more 
advantageous when compared to that of MLA, since 
data of resin composition may be directly obtained. 
This is due to the fact that MLA requires the solution 
of a non-linear system with the unknowns N-1, in 
which N is the number of ion species that participate in 
the exchange. In methods for the solution of equation 
systems, their convergence highly depends on a good 
initial estimate. 

Prediction of ternary equilibrium data 

Two approaches were employed to predict 
ternary equilibrium data, or rather, solving the 
equation system and predicting by ANNs. Whereas in 
the former, the adjusted parameters of binary systems 
were used (Table 2), prediction by ANNs was done by 
equilibrium curves produced by MLA applied to the 
binary data for the training of networks and 
experimental data, as a validation set. 
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Figure 1. Equilibrium curves produced for the Binary system Cl- - NO3
-.  
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Figure 2. Equilibrium curves produced for the binary system SO4
2- - Cl-. 
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Figure 3. Equilibrium curves produced for the binary system 
SO4

2- - NO3
-. 

Neural networks with different structures were 
tested with variations between 4 and 14 in the 
number of neurons of the entry and intermediate 
layers. It has been verified that ANN had the best 
performance with 13-12-3 and target function equal 
to 3,953 x 10-3. 

For the prediction of experimental data of 
ternary equilibrium, the network with the best target 
function was used. Table 5 shows the results. 

Table 5. Validation results of the network13-12. 

Experimental Model 
YSO4 YNO3 YCl YSO4 YNO3 YCl 

0.104 0.332 0.564 0.056 0.157 0.786 
0.218 0.353 0.429 0.120 0.160 0.720 
0.322 0.235 0.443 0.186 0.108 0.705 
0.352 0.375 0.273 0.215 0.276 0.509 
0.412 0.396 0.192 0.268 0.387 0.345 
0.48 0.419 0.101 0.309 0.512 0.179 
0.029 0.771 0.2 0.002 0.659 0.337 
0.07 0.706 0.224 0.023 0.475 0.502 
0.126 0.62 0.254 0.053 0.342 0.605 
0.19 0.517 0.293 0.094 0.274 0.632 
0.278 0.564 0.158 0.153 0.465 0.381 
0.346 0.253 0.401 0.220 0.126 0.654 
0.175 0.76 0.065 0.056 0.646 0.298 
0.207 0.656 0.137 0.082 0.477 0.440 
0.25 0.522 0.228 0.122 0.344 0.534 

Figure 4 shows results from MLA and ANN 
(structure 12-13) modeling. 

 

 
 

 
Figure 4. Result from Ternary Data Modeling. (A) MLA and (B) 
ANN. 

Other tests were undertaken with the 
addition of experimental data of ternary 
equilibrium applied to the Artificial Neural 
Network. Figure 5 shows improvements in the 
description of the ternary system equilibrium. 
AAD rates were equal to 11.55% for ANN 
trained with ternary data. Using only binary data, 
modeling by ANN presented AAD equal to 
13.15%. 

Results in Figure 5 show that ANNs failed to 
describe with precision the experimental data of 
equilibrium of the ternary system SO4

2--Cl--NO3
-. 

This fact demonstrates that the methodology is 
non-efficient in representing the equilibrium data 
of the ternary system, due to the fact that the 
network was trained only for binary equilibrium 
data. 
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SO4RNA 
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Figure 5. Result from Modeling of Ternary Data by ANN with 
the addition of 5 data from Ternary Equilibrium. 

Conclusion 

In current investigation, the efficiency of the two 
methodologies, the Law of Mass Action and the 
Artificial Neural Networks, were compared with 
regard to the representation of data of the binary 
(SO4

2--NO3
-, SO4

2--Cl- and NO3
--Cl-) and ternary 

(SO4
2--Cl--NO3) equilibrium.  

ANNs and the Law of Mass Action described 
with efficiency the binary equilibrium data which 
may be represented from AAD rates given in Tables 
2 and 4, with close results obtained by MLA and 
ANNs. 

ANNs did not reveal a good capacity for the 
prediction of the ternary system although 
Artificial Neural Networks fed with binary and 
ternary equilibrium data (AAD = 11.55) had a 
better efficiency than that trained only with 
binary data (AAD = 13.15). The Law of Mass 
Action (AAD = 10.07) managed to predict 
satisfactorily the behavior of the ternary system 
equilibrium. In fact, it was the methodology with 
the highest efficiency.  

Nevertheless, the application of ANNs may be 
an alternative to conventional modeling since it 
calculates explicitly the fraction in phases in 
equilibrium. MLA requires the solution of non-
linear equation system.  
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