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ABSTRACT. Real ants and bees are considered social insects, which present some remarkable 
characteristics that can be used, as inspiration, to solve complex optimization problems. This field of study 
is known as swarm intelligence. Therefore, this paper presents a new algorithm that can be understood as a 
simplified version of the well known Particle Swarm Optimization (PSO). The proposed algorithm allows 
saving some computational effort and obtains a considerable performance in the optimization of nonlinear 
functions. We employed four nonlinear benchmark functions, Sphere, Schwefel, Schaffer and Ackley 
functions, to test and validate the new proposal. Some simulated results were used in order to clarify the 
efficiency of the proposed algorithm. 
Keywords: optimization, swarm intelligence, global minimum, algorithm. 

Algoritmo simplificado de otimização de enxame de partículas 

RESUMO. Formigas e abelhas são consideradas insetos sociais, os quais apresentam notáveis habilidades 
que podem ser empregadas, como inspiração, na solução de complexos problemas de otimização. Portanto, 
este trabalho apresenta um novo algoritmo o qual pode ser entendido como uma versão simplificada do 
conhecido Otimização por Enxame de partículas (Particle Swarm Optimization - PSO). O algoritmo 
proposto permite a redução do esforço computacional e a obtenção de um desempenho considerável na 
otimização de funções não-lineares. Foram utilizadas quatro funções não-lineares de referência, como 
Esférica, Schwefel, Schaffer e Ackley, para teste e validação da nova proposta. Alguns resultados simulados 
são apresentados para ilustrar a eficiência do algoritmo proposto. 
Palavras-chave: otimização, inteligência de enxame, mínimo global, algoritmo. 

Introduction 

In natural systems, we commonly observe 
mechanisms where natural agents seem to be 
organized in a rational and ordered way. Social 
insects, such as ants and bees, are especially 
interesting examples, and exhibit some remarkable 
characteristics. Despite the extremely low 
intellectual capacity of the individuals, the colony 
can solve surprisingly complex problems while 
searching for food (DORIGO et al., 1996; 
KARABOGA; AKAY, 2009; KARABOGA; 
BASTURK, 2007).  

Some of these natural agents are the main 
inspiration for interesting and powerful algorithms 
used in the search for optimal solutions of highly 
non-trivial problems (CHENG et al., 2009; 
KARABOGA, 2009; KARABOGA; BASTURK, 
2007; TOKSARI, 2006; WANG et al., 2007) such as 
finding the global minimum of nonlinear functions, 
truss optimization, the classical traveling salesman 
problem, electric power systems, traffic flow, 
polymer design, the Schottky-Barrier estimation in 

diode models and several other applications 
(ALRASHIDI; EL-HAWARY, 2009; HUANG et al., 
2003; MARTINS et al., 2008; TEODOROVIC 
2003; WANG; YE, 2009). 

This field of study is known as “swarm intelligence” 
and has attracted an increasingly number of 
researchers since the proposal of Particle Swarm 
Optimization (PSO) algorithm and also of the Ant 
Colony Optimization (ACO) Algorithm (DORIGO  
et al., 1996).  

In the specific case of PSO, the algorithm can 
be understood as the application of an updating 
process on a set of particles which are moving 
throughout the search space. In the traditional 
version, each particle is defined by three vectors: 
the position in the D-dimensional search space xi, 
the individual best position pi, and the velocity vi. 
Particles are initialized with random vectors for 
initial positions and initial velocities. At each step, 
velocities and positions of the entire swarm are 
updated accordingly with the rules described as 
follows.  
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PSO Algorithm – the updating process 
for each time step t do 
  for each particle I in the swarm do  
    update position xi using  ( ) ( ),xpce+xpce+v=v ig2ii1ii −−  

          xi=xi+vi  
    calculate particle fitness f(xi) 
   update piand pg 

  end for  
end for 

 
where: 

c is a constant with the value of 2.0, e1and e2 are 
random numbers and pg is the best position of the 
neighbors of the particle.  

The main simplification was done by 
suppressing the velocity updating present in the 
original PSO. In this way, we may save some 
computational effort and obtain a reasonable 
performance (i.e. in comparison to that from the 
PSO) in the optimization of nonlinear functions. 
Furthermore, the implementation of the algorithm 
described in the next section is straightforward, 
making it easy to work with. 

Material and methods 

Simplified Particle Swarm Optimization algorithm 

The proposed algorithm, which is presented in 
Figure 1, can be understood as a simplified version 
of the PSO algorithm and can be used to find the 
global minimum of nonlinear functions. Initially, a 
swarm of particles is defined, then they are randomly 
distributed over the search space, and an updating 
strategy is applied at each step in order to define the 
new positions of the particles. This updating process 
is made accordingly to the relation given by the 
Equation 1:  

 
xi+1 = xi + (R + Si)wi (1)

 
where: 

xi represents the position vector of particle i, R is 
a Random number between -1 and +1, wi is a vector 
pointing the direction of the line joining the point 
“i” and xGlobal and with size |w| = (domain 
size)/(number of particles). Si is determined 
accordingly with the relative position of the particle 
and the best result obtained until that moment in 
the simulation, which is called xGlobal and calculated 
by equations (2a), (2b) and (2c), as follow: 
 

|xx|1=S0<xx GlobaliiGlobali −−−  (2a)

 
|xx=|S0>xx GlobaliiGlobali −−  (2b)

0=S0=xx iGlobali −  (2c)
 

The calculation of Si has fundamental 
importance on the proposed algorithm, since it is 
the feature that makes the particles move in a 
non-symmetric way. The updated position tends 
to be located closer to the global solution than its 
predecessor. This behavior allows a fast 
concentration of particles around the 
“instantaneous” best solution until the maximum 
number of iterations is reached, or until a new 
best solution (xbest) is found. Thus, this “directed 
random walk” near xbest can rapidly improve the 
obtained solution when it is not the global 
minimum yet. 

 

 
Figure 1. Diagram of the proposed Simplified PSO algorithm. 

Algorithm test and validation 

The aim of the test and the validation step is to 
discuss the effect of the size of the swarm (or colony) 
proposed algorithm on the performance in the search 
for a global minimum of a nonlinear function. In this 
way, since the main interest is the optimization of 
functions, it is necessary to define some nonlinear 
benchmark functions to compare the obtained results 
with previous studies (KARABOGA; BASTURK, 
2007; TOKSARI, 2006). The chosen functions are 
presented in Table 1. 
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Table 1. Benchmark nonlinear functions employed to test the proposed swarm optimization algorithm. 

Function Analytical Expression Ranges Minimum 

Sphere 2
2

2
11 +x=F  [-10,10] 0 
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
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
−
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
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( )
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2
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Ackley ( )
−
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
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
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−

2

1

2

1
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2
1

2020 i=
i
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i x

e
x
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[-20,20] 0 

 

The benchmark nonlinear functions 
constructed by analytical expressions (presented 
in Table 1) are shown in Figure 2. These 
functions, considered objective functions, were 
generated using the proposed ranges, also 
presented in Table 1.  

Actually, the idea of some kind of asymmetric 
sorting for the direction of the next step is the 
central feature of the algorithm. In this way, the 
asymmetry can be described as an “attraction”, or a 
scent comparing with ant's and bee's algorithms. 
The exclusive source of this scent will always be the 
best solution found until that moment in the 

simulation, and this source changes readily when the 
better solution is improved. 

Results and discussion 

Several tests were carried out in order to compare 
the performance of the proposed algorithm with the 
well known ACO (Ant Colony Optimization) and 
ABC (Artificial Bee Colony) algorithms. For this, a 
computational code was developed using the Fortran 
90 Programming Language. This software makes it 
possible to test the proposed algorithm on the task of 
finding the global minimum from some benchmark 
functions, as presented in Table 1.

 

 
  

  
Figure 2. Benchmark functions: a) Sphere, b) Schwefel, c) Schaffer and d) Ackley. 

a b

c d
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In Figures 3 to 6, we present the results for the 
global minimum search, using the benchmark 
functions shown in Table 1. In these graphs we have 
the mappings of the evolution of the global 
minimum results (y axis) as a function of the 
number of iteration cycles (marked on the x axis).  
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Figure 3. Evolution of best value Sphere function for various 
colony sizes.  
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Figure 4. Evolution of best value Schweffel function for various 
colony sizes. 

Besides that, we may observe that as colony size 
increases, the convergence of the global minimum 
result becomes faster. Actually, for colonies with a 
number of particles higher than a given number, 
which depends on the function considered, the 
global minimum found can be orders of magnitude 
smaller than before. On the other hand, when the 
colony size is larger than the critical size, increasing 
it will not improve significantly the performance. 
This last characteristic evidenced that the analysis 
of these “size-effects” can be an important task 
while evaluating the performance of a new 
algorithm, and that tests could be done using 
colony sizes that optimize the performance for the 
specific problem.  
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Figure 5. Evolution of best value for Schaffer function for 
various colony sizes. 
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Figure 6. Evolution of best value for Ackley function for various 
colony sizes. 

In the Table 2, we may compare numerical 
results obtained through the simulations carried 
out with the benchmark functions. The 
simulations of figures 3 to 6 were chosen to 
represent typical results for specific parameters. 
Several tests were accomplished using different 
seeds for the random number generator in order 
to ensure that the results shown are typical, 
instead of pathological ones.  

Conclusion 

A simplified version of the PSO algorithm was 
presented. The version proposed here is very simple 
to implement and the performance is comparable to 
other “colony” algorithms. 

Four nonlinear “benchmark” functions were 
selected to test the algorithm in the search for the 
global minimum. This kind of test is of great 
importance in the case of functions, such as 
Schwefel, Ackley and Schaffer functions, which 
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present serious difficulties to have their global 
minimum “revealed” by traditional methods.  

Moreover, there is an optimal size (i.e. number 
of particles) for the colony that optimizes the 
convergence and provides great precision for the 
global minimum localization.  

The results shown here, despite their simplicity, 
indicate that even simple algorithms can obtain good 
performance while solving non-trivial problems. 
Other aspect is the simple implementation, which 
makes it good as a “first trying” algorithm, at least 
when proving the power of swarm algorithms. 
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