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Abstract. In this paper, by using belongs to (() and quasi-coincidence (q) between fuzzy points and fuzzy sets, we introduce (α, β)-fuzzy positive implicative ideals in BCK-algebras where α, β are any of {(, q, ( ˅ q, ( ˄ q} with α ≠ ( ˄ q. 
1. Introduction

                                  The concept of a fuzzy set, which was published by Zadeh in his pioneering paper [18] of 1965, was applied by many researchers to generalize some of the basic concepts of algebras. The fuzzy algebraic structures play a vital role in Mathematics with wide applications in many other branches such as theoretical physics, computer sciences, control engineering, information sciences, coding theory, topological spaces, logic [19], set theory, real analysis, measure theory etc. In 1991, Xi applied fuzzy subsets in BCK-algebras [17] and studied fuzzy BCK-algebras. He defined the concept of fuzzy ideal and fuzzy positive implicative ideal and he got some interesting results.

                                 The theory of BCK-algebras was initiated by Imai and Iseki [5]. For the general development of BCK-algebras, the ideal theory and its fuzzification play an important role. The concept of implicative ideals in a BCK-algebra was first introduced by Iseki [6] in 1975, and then the fuzzification of implicative ideals is studied in [17]. In 1994, Jun et al. [11] developed the fuzzy positive implicative ideals in BCK-algebras. 
                                  Murali [14] defined the concept of belongingness of a fuzzy point to a fuzzy subset under a natural equivalence on a fuzzy subset. Pu and Liu [15], give the idea of quasi-coincidence of a fuzzy point with a fuzzy set, plays a vital role to generate some different types of fuzzy subgroups, called (α, β)-fuzzy subgroups, introduced by Bhakat and Das [3]. In particular, ((, ( ˅ q)-fuzzy subgroup is an important and useful generalization of the Rosenfelds fuzzy subgroups [16]. Bhakat in [1, 2] studied (
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)-fuzzy normal, quasi-normal and maximal subgroups. In [10], Jun introduced the concept of (
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)-fuzzy subalgebras in BCK/BCI-algebras and investigated some related results. Zhan et al. in [20], studied on ((, ( ( q)-fuzzy ideals of BCI-algebras. Jun introduced the concept of ((, ()-fuzzy subalgebras of a BCK/BCI-algebra in [9]. 
                                  In this paper, we define (α, β)-fuzzy positive implicative ideals in BCK-algebras where α, β are any of {(, q, ( ˅ q, ( ˄ q} with α ≠ ( ˄ q, by using belongs to and quasi-coincidence between fuzzy points and fuzzy sets. 
2. Preliminaries
                                     Throughout this paper, X always means a BCK-algebra unless otherwise specified. We also include some basic aspects that are necessary for this paper.
Definition 2.1. [8] By a BCK-algebra, we mean an algebra (X, ( , 0) of type 
(2, 0) satisfying the axioms:

(BCK-I)
 ((x ( y) ( (x ( z)) ( (z ( y) = 0  
(BCK-II)
 (x ( (x ( y)) ( y = 0

(BCK-III)
 x ( x = 0
(BCK-IV)
 0 ( x = 0

(BCK-V)
 x ( y = 0 and y ( x = 0 imply x = y
                         ( x, y, z ( X. 

                        We can define a partial order ‘‘≤’’ on X by x ≤ y if and only if x ( y = 0.
Proposition 2.2. [8, 12, 13] In any BCK-algebra X, the following are true:

(1)
 (x ( y) ( z = (x ( z) ( y

(2)
 (x ( z) ( (y ( z) ≤ x ( y

(3)
 (x ( y) ( (x ( z) ≤ z ( y

(4)
 x ( 0 = x
(5)
 x ( (x ( (x ( y)) = x ( y.

             ( x, y, z ( X. 

Definition 2.3. [7] A nonempty subset I of a BCK-algebra X is called an ideal of X if it satisfies (I1) and (I2), where 
(I1)
 0( I
(I2)
 x ( y ( I and y ( I imply x ( I, ( x, y ( X.
Definition 2.4. [12] A nonempty subset S of a BCK-algebra X is called a subalgebra of X if it satisfies
                                      x ( y( S, ( x, y ( S.

                                A fuzzy subset λ of a universe X is a function from X to the unit closed interval [0, 1], that is λ : X ( [0, 1].
Definition 2.5. [4, 13] For a fuzzy set λ of a BCK-algebra X and t ( (0, 1], the crisp set 
                                           λt = {x ( X | λ(x) ≥ t} 
is called the level subset of λ. 
Definition 2.6. [9] A fuzzy set λ of a BCK-algebra X having the form

                                             λ(y) = 
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is said to be a fuzzy point with support x and value t and is denoted by xt.
              For a fuzzy point xt and a fuzzy set λ in a set X, Pu and Liu [15] gave meaning to the symbol xtαλ, where α( {(, q, ( ˅ q, ( ˄ q}. A fuzzy point xt is said to belong to (resp., be quasi-coincident with) a fuzzy set λ, written as xt( λ (resp., xtqλ) if λ(x) ≥ t (resp., λ(x) + t > 1). To say that xt ( ˅ qλ (xt ( ˄ qλ) means that xt( λ or xtqλ (xt( λ and xtqλ). For all t1, t2 ( [0, 1], min{t1, t2} and max{t1, t2} will be denoted by t1 ˄ t2 and 
t1 ˅ t2, respectively.

Definition 2.7. [11] A fuzzy set λ of a BCK-algebra X is called a fuzzy ideal of X if it satisfies (F1) and (F2), where
(F1)
λ(0) ≥ λ(x), 

(F2)
λ(x) ≥ λ(x ( y) ˄ λ(y), ( x, y ( X.
Definition 2.8. [17] Let X be a BCK-algebra. A fuzzy set λ in X is said to be a fuzzy subalgebra of X if it satisfies

                                       λ(x ( y) ≥ λ(x) ˄ λ(y), ( x, y ( X.                           (1)

Theorem 2.9. [9] Let λ be a fuzzy set in X. Then λ is a fuzzy subalgebra of X if and only if λt = {x( X | λ(x) ≥ t} is a subalgebra of X for all t( (0, 1], for our convenience, the empty set ϕ is regarded as a subalgebra of X.

3. Fuzzy positive implicative ideals in BCK-algebras

                              In this section we obtain some characterizations of fuzzy positive implicative ideals in BCK-algebras and investigate their properties.
Definition 3.1. [11] A nonempty subset I of a BCK-algebra X is called a positive implicative ideal if it satisfies (I1) and (I3), where

(I1)
 0( I
(I3)
 (x ( y) ( z ( I and y ( z ( I imply x ( z ( I, ( x, y, z( X.
                              If we put z = 0, then it follows that I is an ideal. Thus, every positive implicative ideal is an ideal.
Definition 3.2. [11] A fuzzy set λ of a BCK-algebra X is called a fuzzy positive implicative ideal of X if it satisfies (F1) and (F3), where

(F1)
λ(0) ≥ λ(x),
(F3)
λ(x ( z) ≥ λ((x ( y) ( z) ˄ λ(y ( z), ( x, y, z ( X.
                    Clearly z = 0 gives λ is a fuzzy ideal of X.
Example 3.3. Let X = {0, a, b, c} in which 
[image: image7.wmf]*

 is given by the table 
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	0
	a
	b
	c

	0
	0
	0
	0
	0

	a
	a
	0
	0
	a

	b
	b
	a
	0
	b

	c
	c
	c
	c
	0


Then X is a BCK-algebra [12]. Let s0, s1, s2 
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 [0, 1] be such that s0 > s1> s2. We define a map λ : X → [0, 1] by λ(0) = s0, λ(a) = λ(b) = s1 and λ(c) = s2. Simple calculations show that λ is a fuzzy ideal of X. But it is not a fuzzy positive implicative ideal of X, because

                 Put x = b, y = a, z = a in (F3) we get 

                                     λ(x 
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                                     λ(b 
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 a)
                                            λ(a) 
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 λ(a 
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 λ(0)
                                               s1 
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 λ(0) 
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 λ(0)
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 s0
                                                                        s1 ≠ s0
Theorem 3.4. A fuzzy set λ in BCK-algebras X is a fuzzy positive implicative ideal of X if and only if for every t ( (0, 1], λt = {x ( X | λ(x) ≥ t} is a positive implicative ideal of X, where λt ≠ ϕ.
Proof. Straightforward.

Theorem 3.5. A fuzzy set λ of a BCK-algebra X is a fuzzy positive implicative ideal if and only if for any x0( X,
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= {x( X | λ(x) ≥ λ(x0)}
is a positive implicative ideal of X.

Proof. Let a fuzzy set λ of a BCK-algebra X be a fuzzy positive implicative ideal. Then for any x0( X,
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= {x( X | λ(x) ≥ λ(x0)}
is a positive implicative ideal of X with putting t = λ(x0) by Theorem 3.4.

                                      Conversely, assume that λ be a fuzzy set of a BCK-algebra X and for any x0( X,
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= {x( X | λ(x) ≥ λ(x0)}
is a positive implicative ideal of X. It is clear that 
                                               λ(x) ≥ λ(x0) , ( x( X by (I1),
i.e. The condition (Fl) is satisfied. For all x, y, z ( X, setting

                                            λ((x ( y) ( z) ˄ λ(y ( z) = λ(x0)
We have 
                                λ((x ( y) ( z) ≥ λ(x0)    and     λ(y ( z) ≥ λ(x0) ,

So

                              (x ( y) ( z ( 
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[image: image35.wmf]0

x

P

, by (I3) since 
[image: image36.wmf]0

x

P

 is a positive implicative ideal. Namely

                               λ(x ( z) ≥  λ(x0) = λ((x ( y) ( z) ˄ λ(y ( z)

and thus condition (F3) is satisfied. Hence λ is a fuzzy positive implicative ideal of X.
Theorem 3.6. If λ is a fuzzy positive implicative ideal of a BCK-algebra X, then

                                         P = {x( X | λ(x) = λ(0)}
is a positive implicative ideal of X.

Proof. Since λ(x) ≤ λ(0) , ( x( X by (Fl), so
                                              P = {x( X | λ(x) = λ(0)}
                                                 = {x( X | λ(x) ≥ λ(0)}
                                                 = P0
Therefore, P is a positive implicative ideal of X by Theorem 3.5. 
4. (α, β)-fuzzy positive implicative ideals in BCK-algebras
                               In what follows let α and β denote any one of (, q, ( ˅ q, ( ˄ q unless otherwise specified. To say that xt
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Proposition 4.1. [9] For any fuzzy set λ in X, the condition (1) is equivalent to the following condition
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for all x, y
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 X and t1, t2
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                              A fuzzy set λ in a BCK-algebra X is said to be an (α, β)-fuzzy subalgebra of X, where α 
[image: image46.wmf]¹

 
[image: image47.wmf]Î

 
[image: image48.wmf]Ù

q, if it satisfies the following condition [9]:
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for all t1, t2
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Theorem 4.2. Let λ be a fuzzy set of a BCK-algebra X. Then λt is a positive implicative ideal of X for all t
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 (0.5, 1] if and only if it satisfies

(a)       
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 x
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 X,  λ(0) ˅ 0.5 
[image: image57.wmf]³

 λ(x)

(b)      
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 x, y, z
[image: image59.wmf]Î

 X,  λ(x ( z) ˅ 0.5 ≥ λ((x ( y) ( z) ˄ λ(y ( z). 
Proof. Suppose that λt is a positive implicative ideal of X for all t
[image: image60.wmf]Î

 (0.5, 1]. If there is a
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 X such that the condition (a) is not valid, that is, there exist a
[image: image62.wmf]Î

 X such that

                                               λ(0) ˅ 0.5 ˂ λ(a)
then λ(a)
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 (0.5, 1] and a
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 λλ(a). But λ(0) ˂ λ(a) implies 0
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 λλ(a), a contradiction. Hence (a) is valid. Suppose that
                                   λ(a ( c) ˅ 0.5 ˂ λ((a 
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 c) ˄ λ(b 
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 c) = v
for some a, b, c
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 X. Then v
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 λv, b 
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 c) ˂ v. This is a contradiction, and therefore (b) is valid. Conversely, suppose that λ satisfies conditions (a) and (b). Let t
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 λt, we have

                                       λ(0) ˅ 0.5 
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 λ(x)
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and so

                                                λ(0) 
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Thus 0
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 λt. Let x, y, z
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Then

                                      λ(x ( z) ˅ 0.5 
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 λ((x ( y) ( z) ˄ λ(y 
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and thus
                                        λ(x ( z) ≥ t, 
that is, 
                                              x ( z 
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 λt. 
Hence is λt is a positive implicative ideal of X.
Definition 4.3. A fuzzy set λ of a BCK-algebra X is called an (α, β)-fuzzy positive implicative ideal of X, where α 
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Example 4.4. Let X = {0, a, b, c, d} be a BCK-algebra with the following Cayley table [12]:
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	0
	a
	b

	0
	0
	0
	0

	a
	a
	0
	0

	b
	b
	b
	0


We define a fuzzy set λ in X given by λ(0) = 0.9, λ(a) = 0.6 and λ(b) = 0.2 is an 
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-fuzzy positive implicative ideal as well as a fuzzy positive implicative ideal of X.
Theorem 4.5. For any fuzzy set λ in BCK-algebra X, the condition (F1) and (F3) are equivalent to the conditions 
(e)
xt( λ 
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              respectively.
Proof. Suppose that (F1) is valid and let x( X and t
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 (0, 1] be such that xt( λ. Then λ(0) 
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 λt. Assume that (e) is true. Since 
                                                               xλ(x) ( λ, 
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it follows from (e) that 0λ(x)( λ so that 
                                                    λ(0) 
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Suppose that the condition (F3) holds. Let x, y, z
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Then 

                         λ((x ( y) ( z) 
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 t1 and λ(y ( z) 
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It follows from (F3) that

                                                λ(x ( z) 
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 λ. Finally suppose that (f) is valid. Note that for every x, y, z( X, 
                               ((x ( y) ( z)λ((x ( y) ( z)
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 Hence
                                    (x ( z)λ((x ( y) ( z) ˄ λ(y ( z)
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and thus

                                           λ(x ( z) 
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Theorem 4.6. Every (( ˅ q, ( ˅ q)-fuzzy positive implicative ideal is an ((, ( ˅ q)-fuzzy positive implicative ideal.

Proof. Let λ be an (( ˅ q, ( ˅ q)-fuzzy positive implicative ideal of X. Let x
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Therefore λ is an ((, ( ˅ q)-fuzzy positive implicative ideal of X.

Theorem 4.7. A fuzzy set λ in a BCK-algebra X is an 
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(g)
λ(0) 
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(h)
λ(x ( z) 
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 λ((x ( y) ( z) ˄ λ(y ( z) ˄ 0.5, 
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Proof. Assume that λ is an ((, ( ˅ q)-fuzzy positive implicative ideal of X. Let x
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 X and suppose that λ(x) ˂ 0.5. If λ(0) ˂ λ(x), then λ(0) ˂ t ˂ λ(x) for some t
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Now if λ(0) 
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 0.5, then x0.5( λ and thus 00.5 ( ˅ q λ. Thus λ(0) 
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 0.5. Otherwise

                                                    λ(0) + 0.5 ˂ 0.5 + 0.5 = 1,
a contradiction. Consequently,
                                                    λ(0) 
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Let x, y, z
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 X and suppose that 
                                          λ((x ( y) ( z) ˄ λ(y ( z) ˂ 0.5. 
Then 

                                      λ(x ( z) 
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If not, then λ(x ( z) ˂ t ˂ λ((x ( y) ( z) ˄ λ(y ( z) for some t
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a contradiction. Hence 
                                    λ(x ( z) 
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Whenever 
                                    λ((x ( y) ( z) ˄ λ(y ( z) ˂ 0.5. 
If 
                                    λ((x ( y) ( z) ˄ λ(y ( z) 
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 0.5, 
then 
                                    ((x ( y) ( z)0.5( λ and  (y ( z)0.5( λ, 
This implies that 
                                   (x ( z)0.5 = (x ( z)0.5 ˄  0.5 ( ˅ q λ. 
Therefore λ(0) 
[image: image174.wmf]³

 0.5 because if λ(x) ˂ 0.5, then 
                                            λ(x) + 0.5 ˂ 0.5 + 0.5 
                                                               = 1, 
a contradiction. Hence

                                 λ(x ( z) 
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Hence λ is an ((, ( ˅ q)-fuzzy positive implicative ideal of X.
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This is a contradiction. Hence
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It follows from Theorem 4.7 that λ is an ((, ( ˅ q)-fuzzy positive implicative ideal of X.

Theorem 4.10. Let P be an positive implicative ideal of X and let λ be a fuzzy set in BCK-algebra X such that
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