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ABSTRACT. Zero-inflated data from field experiments can be problematic, as these data require the use 
of specific statistical models during the analysis process. This study utilized the zero-inflated negative 
binomial (ZINB) model with the log- and logistic-link functions to describe the incidence of plants with 
Huanglongbing (HLB, caused by Candidatus liberibacter spp.) in commercial citrus orchards in the 
Northwestern Parana State, Brazil. Each orchard was evaluated at different times. The ZINB model with 
random effects in both link functions provided the best fit, as the inclusion of these effects accounted for 
variations between orchards and the numbers of diseased plants. The results of this model show that older 
plants exhibit a lower probability of acquiring HLB. The application of insecticides on a calendar basis or 
during new foliage flushes resulted in a three times larger probability of developing HLB compared with 
applying insecticides only when the vector was detected. 
Keywords: mixed model, random effect, BLUP method, EM algorithm. 

Modelagem de dados huanglongbing citricos usando um modelo binomial negativo 
inflacionado de zero 

RESUMO. Em diversas áreas do conhecimento, dados com excesso de zeros são encontrados com 
frequência. Para a análise de tais dados, é recomendado utilizar modelos que permitam uma contagem deste 
excesso de zero de forma adequada. Neste artigo, o modelo binomial negativo inflacionado de zero (ZINB) 
foi utilizado para descrever o número de plantas doentes, acometidas por Huanglongbing, em pomares 
comercias de laranjeiras na região noroeste do Estado do Paraná. Entretanto, deve-se levar em consideração 
que cada pomar foi avaliado ao longo do tempo, sendo assim, neste contexto, o modelo ZINB com efeito 
aleatório em ambas as funções de ligação, logarítmica e logística, apresentou melhor ajuste aos dados, pois a 
introdução destes efeitos consideraram as variações entre os pomares e a dependência entre número de 
plantas doentes. A partir deste modelo é possível perceber que as plantas mais velhas tendem a apresentar 
menor probabilidade de adquirir a doença. Todavia, a aplicação de inseticidas e o manejo por calendário 
apresentam três vezes mais chance de apresentar a doença do que o manejo somente pela presença do vetor. 
Palavras-chave: modelo misto, efeito aleatório, método BLUP, algoritmo EM. 

Introduction 

Orange (Citrus sinensis) production encompasses 
the largest acreage of any Citrus species in Brazil. 
Citrus sinensis was introduced in Brazil during the 
colonial period, but did not become the largest 
orange production acreage in the world until the 
mid-1980s (Couto & Canniatti-Brazaca, 2010). 
Frozen orange juice, which is largely exported, is 
one of the most important agricultural commodities 
in Brazil. International trade could further improve 
if the current phyto-sanitary issues did not inhibit 
orchard productivity in Brazil (Paulillo, 2006). The 
crop is affected by numerous diseases, but only a few 
are of agricultural importance. The  most  destructive 

citrus disease in Brazil is Huanglongbing (HLB, 
caused by the bacteria Candidatus liberibacter spp.). 
The disease poses threat to citrus crops around the 
world. The first cases were detected in southern 
China in 1919. The disease has since spread to 40 
countries in Asia, Africa, Oceania, South America and 
North America (Bové, 2006). In 2004, HLB was first 
detected in the Americas, in Araraquara County, 
Central São Paulo State, Brazil (Teixeira et al., 2005). 

HLB does not immediately kill the tree, but 
decreases the tree health and productivity over a 
period of years. These health issues eventually 
compromise the economic viability of entire 
orchards over periods of seven to ten years, 
particularly when disease control decisions are not 
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expediently made (Gottwald, da Graça, & Bassanezi, 
2007). In healthy orchards, the bacterium is 
transmitted by the vector Diaphorina citri Kuwayama 
(Hemiptera: Psyllidae). In some cases, orchards can 
contain large D. citri populations, but be completely 
HLB free. Thus, a data set encompassing the 
variable of incidence of diseased plants may contain 
many zeros. 

Data sets with an excess number of zeros are 
commonly analyzed using zero-inflated models. 
Famoye and Singh (2006) fit a zero-inflated Poisson 
model (ZIP) to investigate domestic violence. Xie, 
Wei, and Lin (2008) investigated pharmaceutical data 
using a ZIP model with a random effect. Hall (2000) 
used the same model to investigate repeated 
measures in agriculture experiments. However, data 
are over dispersed, with or without random effects, 
these models are not appropriate. Thus, the use of a 
zero-inflated negative binomial (ZINB) model is 
more appropriate for analyzing these types of data 
sets. Garay, Hashimoto, Ortega, and Lachos (2011) 
effectively used a ZINB model for over dispersed 
data. Yau, Wang, and Lee (2003) used a ZINB model 
with random effects to analyze the hospitalized 
times of pancreatic patients in different healthcare 
facilities. 

The HLB incidence data collected from multiple 
orchards over multiple time periods requires a 
similar approach. Thus, we investigated the 
applicability of the ZINB mixed regression model to 
analyze the HLB incidence in Brazilian orchards. 
The excessive zero count is included in the ZINB 
model, along with over dispersion in the negative 
binomial distribution. Furthermore, the response 
variable dependence on repeated prevention 
measures over time is accommodated by a random 
effect that is incorporated into the linear predictive 
model. 

Material and methods 

HLB incidence 

Sweet orange orchards were analyzed in this 
study. The orchards are located in the Northwestern 
Parana State, an area where HLB has been 
monitored due to the prevalence of D. citri. The 
scale of citrus production in this area ranges from 
small to large orchards. However, various size 
orchards are managed using similar methods, 
including application of pest and disease control 
measures. The HLB incidence data were collected 
on four occasions at intervals of 90 days in 2011. 

The orchards were planted with the “Pera”, 
“Valência” and “Folha Murcha” sweet orange (Citrus 
sinensis) varieties. Three methods were used to make 

management decisions related to controlling the 
vector. First, insecticide was applied only after 
detecting the presence of the vector. Second, 
insecticide was applied based on the timing of new 
foliage flushes. Finally, a calendar-based application 
was used based on three different tree ages – 
orchards with trees from 0 to five, six to ten and 
greater than eleven years old. These data were 
collected by projects supported by the Núcleo de 
Biotecnologia Aplicada from the Centro de Ciências 
Agrárias in the Universidade Estadual de Maringá, 
Maringá County, Parana State, Brazil. 

Zero-inflated negative binomial model 

Suppose that 1( , , )mY Y Y ′= …
 is a discrete 

random variable, where 1, , mY Y…  are independent 

variables following the zero-inflated negative 
binomial distribution given by: 
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where p is the probability of observing at least one 

diseased plant, λ  is the mean number of diseased 
plants and k  is the dispersion parameter. 
When k → ∞ , 1/ k  approaches 0 as the negative 
binomial approaches the Poisson distribution. Thus, 
the ZIP and ZINB are closely related distributions, 
and the ZINB distribution can be seen as a flexible 
extension of the ZIP (Minami, Lennert-Cody, Gao, 
& Román-Verdesoto, 2007). The expected estimate 
and variance of the ZINB distribution are, 
respectively given by: 
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Maintaining generality, when ijY ( 1, ,i m= … ; 

1, , ij n= …  and
1

m
ii
n n

=
= ) is the response 

variable, the number of diseased plants in the i-th 
orchard during the j-th evaluation, which considers 
that ijY  follows the ZINB distribution with the 

inclusion of the ZIP model covariables, is based on 
Lambert (1992). We investigated the logarithmic-
link function (log-link) of the parameter λ , which 
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was used to linearize the mean from the negative 
binomial. In addition, the logistic link function 
(logit-link) of the parameter p , which represents the 
proportion of zeros, was also analyzed. Furthermore, 
the observations can be treated independently 
among the orchards, but correlations may exist 
among records from the same orchards that were 
recorded at different times. These instances were 
explicitly modeled by incorporating a random effect 
into the linear predictors. Thus, the functions that 
connect the model parameters and covariates (the 
link functions) are described by:  

 
logit( )ij ij ip G uξ γ= = +

 (2)
 
and 

 
log( ) ,ij ij iX vλ η β= = +

 (3)
 

where X  and G  are the covariate matrices (m × 
n) considered in the models, which included 
management2 (1 = insecticides applied to trees 
when producing new foliage flushes, 0 = 
otherwise), management3 (1 = calendar application, 
0 = otherwise), Pera (1 = Pera, 0 = otherwise), 
Valência (1 = Valência, 0 = otherwise), age2 (1 = 
from 6 to 10 years old, 0 = otherwise), age3 (1 = 
greater than 11 years old, 0 = otherwise), 
Evaluation2 (1 = May, 0 = otherwise), Evaluation3 (1 
= August, 0 = otherwise) and Evaluation4 (1 = 
December, 0 = otherwise). The management1 

(insecticide application only when a vector is 
present), Folha Murcha, age1 (age from 0 to 5 years 
old) and Evaluation1 (January) scenarios were 
adopted as references. β  and γ  represent the 

regression coefficients vectors, while 

1( , , )mu u u ′= …  and 1( , , )mv v v ′= …  represent 

the unknown parameters with random effect 
vectors, respectively. We assumed that u  and v  

were independent and distributed as 2(0, )u nN Iσ  

and 2(0, )v nN Iσ , respectively. Based on Lambert 

(1992), the covariables affecting the mean in the ZIP 
model (the non-inflated component) may or may 
not be the same factors affecting the probability ( p ; 

the inflated component). Therefore, two data 
modeling approaches were developed, including the 
λ  vector with a non-related p , or p  as a function 

of λ . The same relationships were considered for 
the ZINB model. In addition, the odds ratio (OR) 

and relative risk (RR) of the link functions (logit and 
log with random effects) can be calculated. 

Jiang (2007) applied BLUP (the best linear 
unbiased prediction, McGilchrist, 1994) procedures 
from the generalized linear mixed model (GLMM) 
method to maximize the sum of the components of 
the log-likelihood function 1 2l l l= + . Through (1), 

1l  is the log-likelihood function of ijy  given 

conditionally fixed u  and v  vectors based on the 

respective link functions (2 and 3), and 2l  is the log-

likelihood for u and v . Thus, 1l  and 2l  are given by: 
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where 
ijij

kt
k eη=

+
. The maximization of the log-

likelihood function was achieved using the EM 
algorithm due to its stabilization ability (Dempster, 
Laird, & Rubin, 1977; McLachlan & Krishnan, 
2007). Thus, we assumed a latent variable ijZ  

following the Bernoulli distribution with the 
parameter ijp , for which 1ijz =  if the variable ijy  

is derived from a class in the zeroes and 0ijz =  

otherwise. Hence, the log-likelihood function 1l  of 

Y  and Z  is:  
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Writing ( , ; , , )l y z kβ γ  as cl l lξ η= + , the log-

likelihood function for the complete data set with 

ijξ  and ijη  separated to facilitate the parameter 

estimates is given by: 
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The EM algorithm replaces ijz  based on the 

conditional expected value ( )l
ijz  under the current 

estimates of ( )ˆ lγ , ( )ˆ lβ , ( )ˆ lu  and ( )ˆ lv . Yau, Wang, 
and Lee (2003) reported that the expected value of 

ijz  is given by: 
 

( ) ( ) ( )ˆ ˆ ˆ( ) 1
( ) (1 ) , 0;

0,
i

if
f

y 1.

l l lk G u
l ij ij
ij

ij

t e y
Z

γ− + − + == 
=  

 

The ( ( 1)ˆ lγ + , 
( 1)ˆ lu +
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) 

estimates can be separated by setting the ijz  values 

in ( )l
ijz . The maximization of cl l lξ η= +  is 

achieved using two sets of Newton-Raphson 
algorithms, as given by: 
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where 0γ
, 0u , 0β

 and 0v  represent the initial 
values of γ , u , β  and v , respectively. ,uIγ is the 

second negative derivative of lξ , which accounts for 

β  and u . ,vIβ  
is the second negative derivative of 

lη , which accounts for β  and v . 

The maximization of the log-likelihood function 

cl l lξ η= +
 
assumes a dispersion parameter k  and 

variance components 2
uσ  and 2

vσ . However, these 

parameters are generally unknown and must be 
estimated. 

Based on the current estimates of ( )ˆ lβ , ( )ˆ lv  and 
( 1)l
ijz

− , lη  is maximized to estimate ( )ˆ lk  from the 

dispersion parameter. Similarly, the Newton-
Raphson algorithm estimates the elements of the 

linear predictor based on the initial 2
uσ  and 2

vσ  

values. The components 2
uσ  and 2

vσ  are 

determined by the most recent values of û  and v̂  
and the corresponding elements of the information 
matrix upon convergence. The residual maximum 
likelihood (REML) corrects the bias from the 
maximum likelihood by estimating the variance 
components (Yau & Lee, 2001; McGilchrist, 1994; 
Wood, 2011). 

The method used in this article was developed 
using the R version 3.0.2. statistical software 
package, in which regression models with and 
without random effects were adjusted based on the 
program created by Andy Lee and Kelvin Yau in 
SPlus and adapted for R by Dave Atkins. 

Results and discussion 

The incidence of HLB diseased trees in orchards 
was frequently low, resulting in data sets with large 
numbers of zeros, justifying the use of zero-inflated 
models (Figure 1). 

 

 
Figure 1. Incidence of HLB-diseased sweet orange trees (%). 
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When the ZINB model was fit to these data, the 
variables had no influence on the proportion of 
zeros (healthy trees) (Table 1).  

The non-inflated component, negative binomial, 
management method (methods 2 and 3), the Pera 
variety and evaluation time (times 3 and 4) were 
significant factors affecting the incidence of diseased 
plants. The application of insecticides to trees when 
producing new foliage flushes (management2) and 
the calendar-based approach (management3) 
exhibited a higher incidence of HLB-diseased trees 
compared with orchards receiving insecticides only 
when the (D. citri) vector was observed in the 
orchard (management1), where RR = 4.059 and CI 
(95%) = (3.025; 5.447), and RR = 3.158 and CI 
(95%) = (2.193; 4.547), respectively. The Pera 
variety also exhibited a higher incidence of HLB-
diseased trees compared with “Folha Murcha”, with 
RR = 1.459 and CI (95%) = (1.120; 1.901). 
Evaluation times 3 and 4 were displayed significantly 
higher incidences of HLB-diseased trees compared 
with evaluation time 1, with RR = 2.219 and CI 
(95%) = (1.615; 3.048), and RR = 1.872 and CI 
(95%) = (1.349; 2.597), respectively. 

The estimate of 1/ k̂  (1.977) indicates 
overdispersion in these data, providing compelling 
evidence to fit the ZINB model. 

Table 1. Estimates, standard errors and confidence intervals (CI 
95%) for the odds ratio and relative risk associated with the fitted 
ZINB model. 

Variable Estimate (SE)   
Inflated  OR (CI 95%)
Intercept -5.479 (2.703) 0.004 (0.000; 0.834) 
Management2 1.634 (1.222) 5.124 (0.467; 56.211) 
Management3 0.649 (1.369) 1.914 (0.131; 28.001) 
Pera 0.403 (0.487) 1.496 (0.576; 3.887) 
Valência 0.100 (0.588) 1.105 (0.349; 3.499) 
Age2 -3.521 (5.697) 0.030 (0.000; 2090.419) 
Age3 3.519 (2.323) 33.751 (0.356; 3203.759) 
Evaluation2 -3.316 (2.917) 0.036 (0.000; 11.038) 
Evaluation3 -0.029 (0.534) 0.971 (0.341; 2.767) 
Evaluation4 0.483 (0.552) 1.621 (0.549; 4.782) 
   
Non-Inflated  RR (CI 95%) 
Intercept -1.129 (0.224) 0.323 (0.208; 0.502) 
Management2 1.401 (0.150)* 4.059 (3.025; 5.447) 
Management3 1.150 (0.186)* 3.158 (2.193; 4.547) 
Pera 0.378 (0.135)* 1.459 (1.120; 1.901) 
Valência -0.094 (0.145) 0.910 (0.685; 1.209) 
Age2 0.414 (0.141)* 1.513 (1.148; 1.994) 
Age3 0.183 (0.149) 1.201 (0.897; 1.608) 
Evaluation2 0.069 (0.163) 1.071 (0.778; 1.475) 
Evaluation3 0.797 (0.162)* 2.219 (1.615; 3.048) 
Evaluation4 0.627 (0.167)* 1.872 (1.349; 2.597) 

1/ k̂  1.977 (0.148)* 
Log-likelihood -129.548 
Deviance 169.116 
Pearson residual 1185.451 

*P-value > 0.05 

This ZINB model (Table 1) assumes the 
independence of the response variable (incidence of 
HLB-diseased trees). However, the origin of the 
response variable is the incidence of HLB-diseased 
plants in every orchard, but at different times 
(repeated measures). Thus, the assumed correlation 
between the number of diseased plants and the lack 
of data independence is typical in this sort of 
analysis. Therefore, the ZINB model with random 
effects represents the preferable model for analyzing 
these repeat measurement data sets. 

The ZINB with random effects estimates for 
both link functions (logistic and logarithm) are 
shown in Table 2. Both the magnitudes of the 
estimates and the standard errors decreased 
compared with the model described in Table 1. 
Furthermore, the relatively high variance 

component estimates ( 2ˆuσ  = 0.903) and odds ratio 

(OR) confidence intervals reinforce the need to 
incorporate the random effects. Plants older than 
eleven years (age3) and at later assessment dates 
(evaluations 2, 3 and 4) yielded significantly 
different results. Thus, orchards with trees greater 
than eleven years old exhibited a lower HLB-disease 
incidence compared to orchards with 0 to 5 year old 
(age1) trees (OR = 2.314 with CI (95%) = (1.426; 
3.755)). Significant reductions in the number of 
zeros in the data set were observed during the later 
assessments dates (evaluations 2, 3 and 4), indicating 
an increase in the number of HLB-diseased plants 
over time. 

In the non-inflated component of the model, the 
estimates and their standard errors displayed 
acceptable differences when compared with the 
ZINB model (Table 1). The variance component 

estimate ( 2ˆvσ  = 0.434) is relatively small compared 

with that observed in the zero-inflated component. 
Both the application of insecticides to trees 
producing new foliage flushes (management2) and 
the calendar based approach (management3) 
exhibited a significantly higher relative risks (RR = 
3.304 and RR = 3.187) than orchards receiving 
insecticide only when the (D. citri) vector was 
observed in the orchard (management1). Thus, the 
application of insecticides to trees with new foliage 
flushes and via the calendar based method correlated 
with a higher number of diseased plants than in 
orchards where insecticide is only applied when the 
vector is detected, with RR = 3.304 and CI (95%) = 
(2.281; 4.785), and RR = 3.187 and CI (95%) = 
(2.046; 4.963), respectively.  
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The highest D. citri vector populations generally 
occurred during the vegetative flush of young foliage. 
Increased infection rates are related to the highest 
populations of the vector, with outbreaks during the 
spring and summer periods (Yamamoto, Paiva, & 
Gravena, 2001; Bassanezi et al., 2010). The expected 
ratio of symptomatic to infected plants displayed high 
variability throughout the year, but was lower in the 
autumn and winter and higher in the spring and 
summer. Based on the current model (Table 2), a 
similar pattern was observed in the Northwestern 
Parana State, as the number of HLB-diseased plants 
increased during the year. The values calculated during 
evaluations 3 (August) and 4 (December) include RR 
= 1.471 and CI (95%) = (1.183; 1.829), and RR = 
1.317, CI (95%) = (1.045; 1.659), respectively.  

Table 2. Estimates, standard errors and confidence intervals (CI 
95%) for the odds ratio and relative risk associated with the fitted 
ZINB model with random effects. 

Variable Estimate (SE)   
Inflated  OR (CI 95%) 
Intercept 0.257 (0.438) 1.293 (0.548; 3.051) 
Management2 -0.256 (0.332) 0.774 (0.404; 1.484) 
Management3 0.215 (0.389) 1.240 (0.578; 2.658) 
Pera -0.071 (0.250) 0.931 (0.571; 1.520) 
Valência 0.088 (0.276) 1.092 (0.636; 1.876) 
Age2 -0.411 (0.289) 0.663 (0.376; 1.168) 
Age3 0.839 (0.247)* 2.314 (1.426; 3.755) 
Evaluation2 -0.836 (0.257)* 0.433 (0.262; 0.717) 
Evaluation3 -0.738 (0.222)* 0.478 (0.309; 0.739) 
Evaluation4 -0.636 (0.224)* 0.529 (0.341; 0.821) 

2ˆuσ  0.903 

   
Non-Inflated  RR (CI 95%) 
Intercept -0.289 (0.252) 0.749 (0.457; 1.227) 
Management2 1.195 (0.189)* 3.304 (2.281; 4.785) 
Management3 1.159 (0.226)* 3.187 (2.046; 4.963) 
Pera 0.109 (0.149) 1.115 (0.833; 1.493) 
Valência -0.145 (0.166) 0.865 (0.625; 1.198) 
Age2 0.230 (0.157) 1.259 (0.925; 1.712) 
Age3 0.067 (0.156) 1.069 (0.788; 1.452) 
Evaluation2 -0.143 (0.121) 0.867 (0.684; 1.099) 
Evaluation3 0.386 (0.111)* 1.471 (1.183; 1.829) 
Evaluation4 0.275 (0.118)* 1.317 (1.045; 1.659) 

2ˆvσ  0.434 

1/ k̂  0.232 (0.035)* 

Log-likelihood -1578.754 
Deviance 140.016 
Pearson residual 813.033 

*P-value > 0.05. 

The inclusion of random effects in the model 
reduces the estimate of the dispersion parameter 
from 1.997 to 0.232. However, these numbers are 
still significant, suggesting substantial 
overdispersion. The random effects model 
estimates exhibit greater precision, as illustrated 
by the OR values from ages 2 and 3 in the zero-
inflated component (Table 1). 
 

The log-likelihood, deviance and Pearson 
residual results verify that the zero-inflated 
negative binomial model with random effects in 
both link functions provides a better fit for the 
sampled data. 

The quantile-quantile plots of the random 
effects u  and v  illustrate that the estimates 
possess a near-normal distribution, which can be 
partially used to validate the ZINB model with 
random effects (Figure 2). 

 

 

 
Figure 2. Quantile-quantile plots of the random effects u and v 
based on the ZINB model with random effects. 

Furthermore, the half-normal plot, in which 
the residuals lie within the simulation envelope, 
suggests that the model provides a good fit, 
despite the overdispersion effect (Figure 3). 
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Figure 3. Half-normal plot for the ZINB model with random 
effects. 

Conclusion 

The ZINB model with the random effects 
provides a more appropriate fit for the HLB-
diseased tree incidence over time compared to 
models that do not incorporate these random effects. 
Furthermore, we increased the parameter estimate 
precision by considering intercepts on an orchard by 
orchard basis. 

We were able to detect that age3 exhibited lower 
probabilities for contracting HLB-disease compared 
with trees less than five years old. In addition, the 
orchards exhibited a higher probability for 
possessing HLB-diseased trees as the season 
progressed. The application of management2 and 
management3 led to three times more diseased 
plants than the insecticide application method based 
on the presence of the vector. 
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