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ABSTRACT. Imputation methods were developed to define estimates for missing data and hence solve 

possible problems generated by the loss of this information. This study aims to assess whether data 

variability influences the results obtained after applying an imputation method. Incomplete databases were 

generated from complete real databases of experiments of tomato plants conducted using the randomized 

block design with three replications and 12 treatments by removing different amounts of data. The 

evaluated variables consisted of fruit weight per plant, number of fruits per plant, and average fruit length 

and width, forming eight balanced databases. Subsequently, the distribution-free multiple imputation 

method was applied, generating complete databases from imputation. The number of missing information 

influenced the accuracy measures for the data in this study. Data imputation was inadequate when there 

was high variability but more precise and accurate in cases of low variability. It confirmed the importance 

of assessing data variability before choosing to apply the imputation method. 
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Introduction  

Loss of information is common during the data collection process, which can interfere with data analysis 

results or even prevent the application of statistical methods that require a complete database. Missing data 

is a common problem faced by researchers and can occur for many reasons (Eze & Chukwunenye, 2019). 

According to Austin, White, Lee, and Buuren (2021), some possible situations for missing data include non-

response of units, which occurs when the data collection procedure fails, and longitudinal studies in which 

participants may be present in some data collections and absent in others. The absence of certain data can 

lead to an incorrect analysis if it is not considered. 

The main advances in research involving missing data emerged in the 1970s with the maximum likelihood 

estimation and multiple imputations (Enders, 2010). Moreover, according to the author, Rubin was 

responsible for establishing a classification system for missing data problems. 

In order to find the conditions and support researchers in the decision to consider or not the process that 

causes the absence of data, Rubin (1976) presented examples of these processes and the conditional 

distribution that corresponds to the process that generated the data absence in each case. Little and Rubin 

(1987) presented the multiple imputation method. According to Pedersen et al. (2017), studies related to this 

topic have been carried out since then, and new methods have been developed and applied in various fields. 

According to Banzatto and Kronka (2013), there is the possibility of reaching the end of an experiment in 

Agrarian Sciences and facing the loss of value of one or more plots, called missing plots. Among the possible 

causes, the authors mentioned plant death or disease, failure of the experimenter in collecting the data, loss 

of notes about the plot, a value very discrepant from the others and must be discarded, and a plot presenting 

a very doubtful value. 

Caution is needed to define whether it actually is missing data. A study aiming at harvesting the fruits of 

each plot, for example, may present three situations: the plant died; the plant did not die but there is no fruit; 

and the plant did not die but the fruit is not ready to be harvested. These situations cannot be classified as 

missing data, given that the information in the empty cell is not unknown but null; there is true information, 

but it is simply not possible to identify it (Schafer & Graham, 2002). 
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Importantly, some statistical procedures were developed to work with complete data sets, such as the area 

of data mining and machine learning (Yu, Zhou, Chen, & Lai, 2020), which generate challenges for the 

researcher when empty cells are found. Initially, according to Enders (2010), the most common procedure was 

to address these situations considering ad hoc techniques, “manipulating” the data set even before 

performing the analysis. 

According to Salgado, Azevedo, Proença, and Vieira (2016), dealing with missing data is necessary, either 

by deleting incomplete observations or by replacing any missing values with an estimated value based on the 

other information available, a process called imputation. Both methods can significantly affect the 

conclusions that can be drawn from the data. One of the ad hoc techniques applied is known as listwise 

exclusion, in which the general removal of the cases with missing data is performed (Lall, 2016). Depending 

on the sample size and the number of variables, it may result in a significant reduction in the sample size 

available for the data analysis. According to Kang (2013), missing data can reduce the statistical power of a 

study and produce biased estimates, leading to invalid conclusions. 

Banzatto and Kronka (2013) mentioned possible situations in which missing plots occur, as previously 

commented, and indicated a way to work with these losses, i.e., the procedure that may be adopted to calculate 

an estimation for the missing plot. The analysis is straightforward with the complete database, and using 

complex methods in the presence of incomplete, unbalanced blocks is unnecessary. 

Other methods can be found in the literature, some simple and others complex, whose application is 

currently accessible due to computational advancement. Although the number of research efforts in this 

context has been growing, especially in health, there are not many studies considering imputation methods 

in Agrarian Sciences, in which statistical methods of analysis and experimental design are distinct, with the 

number of publications in this context directed at unbalanced experiments being even less significant. 

Deepening and disseminating the study and application of imputation methods, together with the concern to 

obtain accurate and quality results, is interesting and of utmost importance (Jinubala & Jeyakumar, 2021). In 

fact, data loss can also occur in agricultural experimentation due to erasures, failure in filling in, or even 

actual loss of experimental units. 

For instance, Peng, Lei, and Junyi (2022) and Boomgard-Zagrodnik and Brown (2022) evaluated specific 

imputation methods in the Agrarian Sciences within the context of missing data, that is, k-nearest neighbor 

algorithm and machine learning imputation, respectively. Peng et al. (2022) concluded that the k-nearest 

neighbor algorithm shows a good and stable performance when the missing data rate is lower than 10% and 

can meet the usage requirements. However, these studies do not have as their main focus the influence that 

the characteristics of the observed data may present on the results of the imputation methods, with the values 

of the database being used to determine the estimates for the missing data. 

Therefore, this study aimed to verify whether the variability of data stemming from one experiment with 

a randomized block design (RBD) influences the imputation quality of missing data. 

Material and methods 

A method proposed by Bergamo, Dias, and Krzanowski (2008), which has as a starting point the singular 

value decomposition (SVD) for simple imputation, developed by Krzanowski in 1988, was applied to 

determine the values to be imputed. SVD was applied without making any assumption regarding the data 

distribution or structure, serving as a basis to determine the dimensionality of a multivariate data set, where 

a matrix 𝑌𝑛𝑥𝑝 is factored as 𝑌 = 𝑈𝐷𝑉𝑇, U is the matrix formed by the eigenvectors, D is the diagonal matrix formed 

by the eigenvalues of 𝑌𝑇𝑌, and 𝑉𝑇 is the transposed matrix of the that formed by the eigenvectors of 𝑌𝑌𝑇. 

Matrices 𝑌𝑇𝑌 and 𝑌𝑌𝑇 have the same eigenvalues and the elements 𝑑𝑖  are the square roots of the 

eigenvalues. The i-th column 𝑣𝑖 = (𝑣𝑖1,⋅⋅⋅ , 𝑣𝑖𝑝 )𝑇   of the matrix is the eigenvector corresponding to the i-th 

largest eigenvalue 𝑑𝑖
2 of 𝑌𝑇𝑌. In the matrix 𝑈𝑛𝑥𝑝, the j-th column 𝑢𝑖 =  (𝑢𝑖1,⋅⋅⋅ , 𝑢𝑖𝑝 )𝑇 is the eigenvector 

corresponding to the j-th largest eigenvalue 𝑑𝑗
2 of 𝑌𝑌𝑇. Therefore, the decomposition of 𝑌 may be given as: 

 𝑦𝑖𝑗 = ∑ 𝑢𝑖ℎ𝑑ℎ𝑣𝑗ℎ
𝑝
ℎ=1   

Bergamo et al. (2008) proposed a generalization for the exponents of the largest eigenvalue for the 

distribution-free multiple imputation method. The following expression was used as a performance measure 

of the method at the position of the missing value (absent in the row and column), where 𝑣𝑜𝑙 is the original 

value randomly eliminated at this position and 𝑦̂𝑖𝑗(𝑚)
 is the m-th imputation at this position. 
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𝑎𝑐𝑐𝑙 =
∑ (𝑦̂𝑖𝑗(𝑚)

− 𝑣𝑜𝑙)
2𝑀

𝑚=1

𝑀 − 1
 

This expression is calculated for 𝑙 = 1,2,⋅⋅⋅ , 𝑛𝑎, where 𝑛𝑎 is the total number of missing values. The 

expression may be separated into two terms, where 𝑌𝑙 is the actual value imputed at position  𝑙, the first term 

represents a variance over the values 𝑀 at each position, and the second term represents a bias in the final 

imputation. Thus, the first term is a measure of precision that refers to the random errors and the second is a 

measure that refers to the systematic error at position 𝑙. 

𝑎𝑐𝑐𝑙 =
∑ (𝑦̂𝑖𝑗(𝑚)

− 𝑌𝑙)
2𝑀

𝑚=1

𝑀 − 1
+

𝑀(𝑌𝑙 − 𝑣𝑜𝑙)
2

𝑀 − 1
 

A general performance measure 𝑇𝑎𝑐𝑐 may be calculated through the mean of the measures 𝑎𝑐𝑐𝑙, where 𝑛𝑎 =

𝑔 × 𝑒 × 𝑝𝑜𝑟𝑐, with 𝑔 representing the total number of genotypes, 𝑒 representing the total number of 

environments, and 𝑝𝑜𝑟𝑐 representing the percentage of missing data. 

𝑇𝑎𝑐𝑐 =
∑ 𝑎𝑐𝑐𝑙

𝑛𝑎
𝑙=1

𝑛𝑎
 

𝑇𝑎𝑐𝑐 can be divided into two components: 

𝑇𝑎𝑐𝑐 = 𝑉𝐸 + 𝑉𝑄𝑀 

where: 

𝑉𝐸=
1

𝑛𝑎
∑ [

∑ (𝑦̂𝑖𝑗(𝑚)
−𝑌𝑙)2𝑀

𝑚=1

𝑀−1
]𝑛𝑎

𝑙=1  

and 

𝑉𝑄𝑀 =
1

𝑛𝑎
∑

𝑀(𝑌𝑙 − 𝑣𝑜𝑙)
2

𝑀 − 1

𝑛𝑎

𝑙=1
 

The first component 𝑉𝐸 represents the variation grouped among imputations within positions; therefore, 

the higher the value is, the lower the precision of the multiple imputation method. However, a small value for 

this component does not necessarily mean that the imputation method is good since the method may be 

polarized. The second component 𝑉𝑄𝑀 represents the mean squared bias between the values of 𝑌 and 𝑣𝑜; 

therefore, the smaller the bias is, the higher the number of imputations that are similar to the original values 

and the better the precision. Thus, the smaller the values of 𝑉𝐸 and 𝑉𝑄𝑀 are, the better the multiple 

imputation method. 

The distribution-free multiple imputation method was applied to the actual datasets of a balanced 

experiment belonging to the Sector of Plant Experimentation of the Federal University of Santa Maria. The 

databases have information on two experiments performed to verify the assumptions of the mathematical 

model and assess the effect of the application of a potato bioproduct on the productivity, fruit quality, and 

leaf color of tomato plants. One of the experiments was conducted in a plastic tunnel and the other in the 

field, using a random block design with three replicates and 12 treatments. 

Two experiments using the salad tomato, hybrid Grandeur, were conducted at the Department of Plant 

Science at the Federal University of Santa Maria (latitude 29°43′ S, longitude 53°43′ W, and 95 m altitude), in 

Santa Maria, Rio Grande do Sul State, Brazil. The regional climate, according to the Köppen classification 

(Moreno, 1961), is Cfa (humid subtropical with no defined dry season and hot summers), and the soil is 

classified as an arenic dystrophic Red Argisol (Santos et al., 2006). 

The experiments were conducted simultaneously during the spring-summer season (P-V), from August 16, 

2010, to January 27, 2011. One experiment was conducted in a plastic tunnel 3.5 m high in the central part, 

25 m long, and 4 m wide, with a useful area of 19.2 m long and 3.6 m wide, covered with a 100-micron low-

density polyethylene (LDPE) film, with anti-UV additive, and north-south orientation. The other experiment 

was conducted in the field. 

Seedlings were transplanted with four true leaves and arranged in three rows (beds without mulching) with 

0.15 m high and 0.40 m wide and drip irrigation. The spacing was 0.8 m between plants and 1.2 m between 

rows, with a total of 24 plants per row. 
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Fertilization at transplanting was performed with 65 kg N ha−1, 230 kg P2O5 ha−1, and 65 kg K2O ha−1. Top 

dressing fertilization was carried out 21 days after transplanting, applying 35 kg N ha−1 and 35 kg K2O ha−1. 

Subsequently, additional top dressing fertilization was applied at 15-day intervals, totaling seven applications 

during the crop cycle, each consisting of 30 kg N ha−1 and 30 kg K2O ha−1. All fertilizations, as well as liming, 

were performed according to the results of soil analysis per row (Sociedade Brasileira de Ciência do Solo, 

2004). The plants were grown on a single stem and all other cultural treatments were performed according to 

the crop recommendations (Filgueira, 2008). 

The plot consisted of two plants in the direction of the planting row. A randomized block design with three 

replications and 12 treatments was used. The treatments consisted of the combination of two application 

intervals of Acrescent Solus® (after all fruit harvests and in alternate harvests) with the recommended mineral 

top dressing fertilization plus the doses of 1, 2, 3, and 4 L ha−1 of Acrescent Solus® applied to the soil, and (T1) 

mineral top dressing fertilization (without Acrescent Solus®), (T2) mineral top dressing fertilization plus 50 L 

ha−1 of Acrescent Solus® applied at 30 and 60 days after transplanting, (T3) replacement of mineral top 

dressing fertilization with the 100 L ha−1 of Acrescent Solus® applied every 15 days, and (T4) mineral top 

dressing fertilization plus 0.5 L ha−1 of Acrescent Solus® applied after all harvests. 

Ten harvests were performed (from 11/11/2010 to 01/27/2011) and the following traits were evaluated at 

each harvest: fruit weight per plant, using a digital scale with a 1-g precision; number of fruits per plant; and 

average fruit length and width, measured with a caliper with a 1-mm precision. Among the ten harvests, the 

third met all the assumptions of the mathematical model, both in the field experiment and in the plastic 

tunnel. Thus, it was chosen for this approach. 

Only the complete databases obtained upon the third harvest conducted on the field and the third harvest 

in the plastic tunnel were considered in the present study. Fruit weight per plant (g), number of fruits per 

plant, and average fruit length and width (cm) were assessed at the harvests. Thus, eight balanced databases 

were formed with actual data, with the adopted notations to differentiate them shown in Table 1. 

Table 1. Variables assessed in each database and the notation adopted as a reference for each variable. 

Experiment with tomato Analyzed variables Notation 

In the field 

Fruit weight per plant (g) D1 

Number of fruits per plant (g) D2 

Fruit length (mm) D3 

Average fruit width (mm) D4 

In the tunnel 

Fruit weight per plant (g) D5 

Number of fruits per plant (g) D6 

Fruit length (mm) D7 

Average fruit width (mm) D8 

 

The positions of observations to be excluded from all balanced databases were randomly determined after 

organizing the databases with columns being blocks and rows being treatments. Thus, three new unbalanced 

databases were generated from each initial complete database, with the exclusion of 5, 15, and 30% of the 

observations, which are percentages adopted by Bergamo et al. (2008). After rounding, it resulted in the 

removal of one, five, and ten observations, respectively, in the present study. 

The positions of the observations taken were the same for all variables, and the values for the exponents 

were the same used in the study by Bergamo et al. (2008). Subsequently, the distribution-free multiple 

imputation method was applied, and the “new” database, now incomplete, allowed determining the estimates 

for each missing data, being compared with the respective actual values that were taken at the first point of 

this process, following the same steps used by Bergamo et al. (2008). 

The analysis of data variability and precision of the obtained results started with the initial complete 

databases, the unbalanced databases, and the databases completed with the imputation method. The 

variability was determined considering the coefficient of variation of the data and the mean of all observations 

of each database and each column (blocks), given that the mean of each column is the starting point to develop 

the imputation method. 

The experimental coefficient of variation, which relates to the standard deviation in terms of the 

percentage of the arithmetic mean, was also verified. At first, the coefficient of variation of the values present 

in the databases is shown, and then the experimental coefficient of variation. 
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According to Banzatto and Kronka (2013), this coefficient is used to compare the variability of one’s results 

with that obtained by researchers who work with similar materials, and it refers to an idea of the precision of 

the experiment: the lower the coefficient is, the better the precision. This coefficient is given as follows when 

a data set is assessed: 

𝐶𝑉 =  
𝑠

𝑚̂
 ∙ 100 

where 𝑠 = √𝑄. 𝑀. 𝑅𝑒𝑠. is the standard deviation, 𝑚̂ =
𝐺

𝐼𝐽
 is the estimate of the mean, 𝑄. 𝑀. 𝑅𝑒𝑠. is the mean 

square of residuals, 𝐺 =  ∑ ∑ 𝑥𝑖𝑗
𝐽
𝑗=1

𝐼
𝑖=1 , 𝑥𝑖𝑗 is the value observed in treatment i and block j, I is the number of 

treatments, and J is the number of blocks. 

The coefficient of variation may be classified according to Table 2. 

Table 2. Classification of the experimental coefficient of variation. 

CV Assessment Precision 

< 10% Low High 

10% to 20% Intermediate Intermediate 

20% to 30% High Low 

> 30% Very high Very low 

Source: Pimentel Gomes (1985). 

Lastly, the results were compared to verify whether there was a difference between the results from the 

data with more or less variability and whether the imputation quality was better in some of the databases than 

others. These procedures were carried out using the software R Core Team (2017) and RStudio (2009-2017).  

Results and discussion 

The means, standard deviations, and coefficients of variation of each column (blocks) of each experiment 

could be obtained by generating incomplete and complete databases with 5, 15, and 30% of missing data and 

organizing them. These results were considered important in the analysis process because the mean of the 

respective column is entered to initiate the process of generating the databases imputed into the empty cells. 

The results of the precision assessment measures 𝑉𝐸, 𝑉𝑄𝑀, and 𝑇𝑎𝑐𝑐 was obtained after the first steps. Table 

3 shows these measures and compares them with the result of the coefficient of variation of the set of 

observations of the initial databases. 

Table 3. Coefficients of variation of the set of observations of the initial database and performance measures of the imputed values. 

Database**** 

Coefficient of 

variation 

Precision measures 

VE* VQM** Tacc*** 

Database Initial Data 5% 15% 30% 5% 15% 30% 5% 15% 30% 

D1 51% 18 12 7 519930 170525 243185 519948 170538 243192 

D2 49% 0.00007 0.00004 0.00003 0.00001 2 6 0.00008 2 6 

D3 11% 0.00354 0.00003 0.00004 354 23 33 354 23 33 

D4 11% 0.01709 0.00056 0.00028 778 76 45 778 76 45 

D5 49% 15 6 3 16802 713611 496391 16617 713616 496395 

D6 43% 0.00055 0.00005 0.00002 50 6 3 50 6 3 

D7 15% 0.00342 0.00236 0.00135 65 23 60 65 23 60 

D8 16% 0.0004 0.00003 0.0001 1634 286 274 1634 286 274 

*VE: grouped variation among imputations within positions; **VQM: mean square bias between imputed and observed values; ***Tacc: sum of VE and 

VQM; ****Abbreviations of the database column are described in Box 1. 

Among the eight actual complete (balanced) databases, D3, D4, D7, and D8 presented low coefficients of 

variation, while D1, D2, D5, and D6 presented higher coefficients of variation. Databases D1 and D5 presented 

a higher grouped variation among imputations, indicated by the VE measure and, therefore, the method 

precision was low. Moreover, the more observations were removed, the lower the VE value, resulting in better 

precision. According to Little and Rubin (2002), loss of precision depends not only on the fraction of complete 

cases and pattern of missing data but also on the extent to which complete and incomplete cases differ and 

the parameters of interest. 
This measure has low values in D2, D3, D4, D6, D7, and D8, indicating that the variation among 

imputations is low and hence the precision is good. The results of the comparison of VE values with the 
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coefficients of variation show that the precision among imputations was good in all databases that presented 
low coefficients of variation. However, some databases had good precision among imputations and others 
showed low precision when the coefficient of variation was higher. 

We assessed the databases D1, which presented low precision and a high coefficient of variation, D2, which 

presented good precision and a high coefficient of variation, and D3, which presented good precision and a 

low coefficient of variation, when verifying the causes of these differences. We removed 5% of the 

observations from different positions, i.e., the same column from which the observation was removed in the 

first execution of the imputation. The results (Table 4) were assessed after the removal of different 

observations. The results by Bleidorn, Pinto, Schmidt, Mendonça, and Reis (2022) indicate that any 

imputation methodology can be considered for 5% missing data. 

Table 4. Precision values of results after removing different values from the same database. 

Database Position of the removed value Removed value Estimated value VE VQM Tacc 

D1 

(7;1) 1587 574.8 16.6204 1280678 1280694 

(8;1) 1216 917.76 5.1197 11186 111191 

(5;1) 600.5 1529.5 4.4209 1078938 1078942 

(2;1) 2054 1002 0.9085 1383265 1383266 

D2 

(7;1) 5.5 2.12 0.0008 14.2718 14.2726 

(8;1) 3.5 6.69 0.0006 12.7408 12.7415 

(5;1) 3 6.95 0.0007 19.5025 19.5033 

(2;1) 8 4.68 0.0001 13.0543 13.8055 

D3 

(7;1) 61 66.16 0.0005 33.2769 33.2774 

(8;1) 69.29 62.52 0.0001 57.3525 57.3527 

(5;1) 62 68.57 0.0022 487.1505 487.153 

(2;1) 58.88 75.4 0.0045 341.159 341.164 

*VE: grouped variation among imputations within positions; **VQM: mean square bias between imputed and observed values; ***Tacc: sum of VE and 

VQM; ****Abbreviations of the database column are described in Box 1. 

The data have a high variability because the coefficients of variation (Table 3) of D1 and D2 are higher than 

30% (Pimentel Gomes, 1985), showing some values with a considerable difference from the others. Therefore, 

we chose to remove higher and lower values to assess if they would influence the results. Table 4 shows that 

the lowest VQM values are for the data set D2, followed by D3, both with good accuracy in imputing the data, 

but one with a high and the other with a low coefficient of variation. According to Ni, Leonard, Guin, and Feng 

(2005), multiple imputations produce unbiased estimates for missing values and preserve the natural 

variability of the observed data. 

As mentioned before, the fact that 𝑉𝐸 is low does not guarantee that the method is good (Bergamo et al., 

2008). High values were found when considering the results referring to 𝑉𝑄𝑀, which represents the mean 

squared bias between the values of 𝑌 and 𝑣𝑜. Only three out of the 12 estimated values were similar to the 

original values (D3 at positions (7.1), (8.1), and (5.1), as shown in Table 4). It indicates that the number of 

imputations similar to the original values is small. 

The experimental coefficients of variation of the original databases, unbalanced databases, and databases 

balanced after entering the estimates of the removed values were estimated to verify if it would influence the 

results of the experimental analysis (Table 5). 

Table 5. Experimental coefficient of variation for the complete database, the incomplete database, and the database completed with 

imputation for the study data. 

Database Data* Coefficient of variation Database 

Complete 
Incomplete With imputation 

5% 15% 30% 5% 15% 30% 

D1 49.86% 50.24% 52.17% 47.98% 49.60% 47.20% 42.65% 

D2 49.99% 51.03% 52.03% 45.10% 49.99% 47.44% 39.00% 

D3 10.78% 10.71% 11.61% 13.50% 10.70% 10.45% 10.55% 

D4 11.62% 11.33% 11.85% 12.06% 11.20% 11.22% 11.90% 

D5 48.08% 47.45% 50.00% 51.94% 47.69% 46.61% 40.46% 

D6 39.63% 39.60% 42.02% 47.07% 43.76% 39.28% 36.34% 

D7 15.29% 12.67% 12.78% 10.93% 14.19% 14.44% 12.82% 

D8 15.35% 12.65% 12.88% 10.87% 12.42% 12.67% 10.55% 

*Abbreviations of the database column are described in Box 1. 
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Based on the classification of the experimental coefficient of variation shown in Box 2, we have that D1, 

D2, D5, and D6 had higher coefficients of variation, indicating low precision. These coefficients underwent 

an increase in the unbalanced data and remained close to the values referring to the initial data when the 

estimates for the empty cells were imputed (Table 5). This difference may be caused by the sample size of the 

database with incomplete data being smaller than the database with complete and imputed data. According 

to Santos and Dias (2021), the upper limit of the coefficient of variation depends on the sample size. 

In turn, the experimental coefficients found were low for D3, D4, D7, and D8, thus showing a high 

precision. The analysis of D3 and D4 shows that results remained very close to the original ones in the 

unbalanced data and the databases completed with the imputation. 

The results show that good approximations are not always obtained for the actual values of the data that 

were removed using the applied method. Stochero, Jacobi, and Lúcio (2020) applied the imputation method 

and observed no better results compared to the analysis with the unbalanced database. In this case, the 

observed value and the imputed value were closer for the data with considerably low variability (CV lower 

than 20%). However, the results regarding precision were not always so satisfactory when considering the 

data with higher variability (CV higher than or equal to 20%). 

The value to be imputed tended to be lower than the actual value when averaging the column at the initial 

starting point when a higher value was removed. In turn, the value to be imputed increased when the one 

removed was smaller. Thus, different results for the precision measures can be obtained depending on the 

value removed. 

In the present study, initial, actual, and complete data were available, which allowed for comparison and 

verification that data variability influences the outcome of imputation. The application of a certain data 

imputation method must be carefully analyzed to verify if it will bring results with less bias or if it is more 

reliable to work with an unbalanced dataset when the analysis can be performed even under these conditions. 

We suggest that future studies verify if other imputation methods and experimental designs are influenced 

by data variability. 

Conclusion 

Data variability negatively influenced the results by applying the imputation method. Considering the 

variability of the assessed data is of utmost importance. Databases with low variability ensure imputed results 

closest to the actual ones. Resorting to imputation does not always provide appropriate precision when the 

number of pieces of missing information is relatively low. 
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