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ABSTRACT. It is common to observe conventional methods for estimating soybean crop yields, making the 

process slow and susceptible to human error. Therefore, the objective was to develop a model based on deep 

learning to estimate soybean yield using digital images obtained through a smartphone. To do this, the 

ability of the proposed model to correctly classify pods that have different numbers of grains, count the 

number of pods and grains, and then estimate the soybean crop yield was analyzed. As part of the study, 

two types of image acquisition were performed for the same plant. Image acquisition 1 (IA1) included 

capturing the images of the entire plant, pods, leaves, and branches. Image acquisition 2 (IA2) included 

capturing the images of the pods removed from the plant and deposited in a white container. In both 

acquisition methods, two soybean cultivars, TMG 7063 Ipro and TMG 7363 RR, were used. In total, 

combining samples from both cultivars, 495 images were captured, with each image corresponding to a 

sample (plant) obtained through methods AI1 and AI2. With these images, the total number of pods in the 

entire dataset was 46,385 pods. For the training and validation of the model, the data was divided into 

subsets of training, validation, and testing, representing, respectively, 80, 10, and 10% of the total dataset. 

In general, when using the data from IA2, the model presented errors of 7.50 and 5.32% for pods and grains, 

respectively. These values are considerably lower than when the model used the IA1 data, where it 

presented errors of 34.69 and 35.25% for pod and grain counts, respectively. Therefore, the data used from 

IA2 provide better results to the model. 
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Introduction 

Commodity productivity estimation, such as the soybean crop, has become a strategic issue for agro-

industrial companies, farmers, and the government, as it directly impact the country's economy (Ramos, 

Prieto, Montoya, & Oliveros, 2017). Productivity estimation is important due to its role in food management 

(Terliksiz & Altylar, 2019), establishing definitions of future prices for agricultural productions. 

It is natural to use conventional methods to estimate soybean yield. One of these methods is based on the 

manual counting of pods and grains, which can be performed after pod-filling. Another method is based on 

the weight of grains collected from a harvested area. However, the yield estimate should be made at the R8 

reproductive stage in this case. This stage corresponds to the end of the soybean's growth cycle, which is close 

to the harvest season. Consequently, weighing the grains at this phase allows for a more accurate estimation 

of the expected yield. These methods have limitations such as human error and may also create difficulties as 

the process is carried out close to the harvest.  

In recent years, unconventional methods for performing yield estimation have emerged, using artificial 

neural networks and convolutional neural networks. These approaches apply all deep learning technology in 

the process of yield estimation in agricultural crops (Alves, Teixeira, Melo, Souza, & Silva, 2018; Chan, Wei, 

& Molin, 2020; Miller et al., 2018; Sun, Di, Sun, Shen, & Lai, 2019; Terliksiz & Altylar, 2019). Despite being 

efficient solutions, these methods have some limitations, such as increased costs for the producer when 

compared to the conventional methods and the need to have data from the previous crops. 

https://orcid.org/0000-0002-7183-5705


Page 2 of 12 Bandeira et al. 

Acta Scientiarum. Agronomy, v. 46, e67040, 2024 

As mentioned, the newer methods for soybean yield estimation use deep learning models, which can 

extract several inherent features of the object of interest, thus enabling object recognition and classification. 

This process is based on convolutional neural networks (CNNs) present in deep learning models. CNNs have 

emerged as promising tools for pattern recognition in images since they can produce filters that help predict 

classes associated with the training images (Maxwell, Pourmohammadi, & Poyner, 2020). The efficiency of 

this technique made it popular for applications in the agricultural sector (Apolo-Apolo, Martínez-Guanter, 

Egea, Raja, & Pérez-Ruiz, 2020; Arsenovic, Karanovic, Sladojevic, Anderla, & Stefanovic, 2019; Durmus, 

Gunes, & Kirci, 2017; Ganesh, Volle, Burks, & Mehta, 2019). 

The Mask R-CNN model has been highlighted among various deep learning models. This model shows high 

efficiency in instance segmentation (He, Gkioxari, Dollár, & Girshick, 2020). The Mask R-CNN algorithm is an 

extension of the Faster R-CNN model (Ren, He, Girshick, & Sun, 2015). However, Mask R-CNN has a mask 

prediction branch. This branch is a fully convolutional network that is applied in each region of interest, and 

thus, the segmentation mask is generated to execute the object classification. Thus, the Mask R-CNN model 

has shown its potential for use in agricultural processes (Carvalho et al., 2021; Lee, Nazki, Baek, Hong, & Lee, 

2020; Mekhalfi, Nicolò, Bazi, Al Rahhal, & Al Maghayreh, 2021).  

Deep learning models use digital images as essential data. One source of obtaining this type of data is the 

smartphone, which can be easily used as it is owned by the general population. In the agricultural field, 

smartphones are already being extensively used in various processes as a tool to collect data to estimate 

cotton yields, as described by Tedesco-Oliveira, Pereira, Maldonado Jr., and Zerbato (2020), or as a resource 

to help identify tomato leaf diseases, as mentioned by Ngugi, Abelwahab, and Abo-Zahhad (2020). Thus, this 

work aimed to develop a model based on deep learning, to estimate the soybean yield in the field using digital 

images obtained by a smartphone. 

Material and methods 

Two soybean cultivars were used in this work, TMG 7063 IPRO (cultivar 1) and TMG 7363 RR (cultivar 2). 

The cultivars were sown on 12/02/2020 in the experimental area of the Universidade Federal de Viçosa (UFV) 

in Viçosa, Minas Gerais State, Brazil. For both cultivars, the inter-row spacing was 0.5 m, with an average of 

13 and 15 plants per linear meter for cultivar 1 and cultivar 2, respectively. 

To develop a model to estimate the soybean crop productivity from digital images obtained by a 

smartphone, the following steps were necessary: i) Construction of the database, ii) Pre-processing of the 

obtained images, iii) Training of the deep learning model, iv) Estimate calculation of soybean yield estimation, 

and v) Model evaluation. 

Database construction 

Digital images for the database were acquired 77 days after sowing, between February 18 and March 04, 

2021, with the soybean plants in the phenological stages between R6 and R8. The images were taken in the 

field from 8:00 am to 12:00 pm. Thus, we ensured that the images had different levels of brightness.  

The same smartphone was used throughout the image acquisition process, which had a dual camera of 48 

and 5 megapixels with a 1/2" sensor and lens opening of 1.8. All other camera settings were kept on automatic 

during the database construction. According to the features of the smartphone used, the generated images 

had a size of 3000 × 4000 pixels, and their output was in JPG format.  

Two image acquisition methods were used for acquiring images of the plant with leaves, branches, and 

pods (method IA1) and images of the pods isolated from the plant (method IA2). For IA1, the soybean plants 

were removed from the experimental area and placed in a structure with a monochromatic background 

(Figure 1a). The plants were chosen in such a way as to include plants of large, medium, and small sizes, 

ensuring the training of the model plants of various sizes. The structure (Figure 1b) had a place to position 

the smartphone and the plant, ensuring a fixed distance of one meter between the plant and the smartphone 

during image acquisition. 

For the IA2 method, the pods were removed from the plant and placed on a white tray (Figure 2) to capture 

the images. Thus, the pods of a single plant were placed on the tray at a time. During the images acquisitions 

for IA2, there was no standardization of the distance between the smartphone camera and the tray. For the 

same plant, the images were first captured as per IA1 and, then, according to IA2, created a database for each 

acquisition method. 
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Figure 1. Image captured from pods of a single plant with image acquisition method 1 (IA1) (a). The frame used for sample positioning 

with image acquisition method 1 (IA1) (b). 

 
Figure 2. Image captured from single plant pods with image acquisition method 2 (IA2). 

For each cultivar, 495 plants from the experimental area were used. Each plant generated an image for IA1 

and IA2. From the total number of images, considering the two cultivars and the two forms of image 

acquisition, the databases had a total of 46,385 pods.  

Pre-processing 

Each database was randomly subdivided into sets of training images (80%), tests (10%), and validation 

(10%). After dividing the sets, the data was amplified, improving the algorithm performance since it 

artificially generates more images for training (Gonzalez, 2007). The processing steps performed to generate 

artificial images involved random rotations of the images at angles of 0°, 90°, 180°, and 270°, thereby altering 

the position of the objects of interest. Additionally, an enhancement process was applied to sharpen the 

edges, providing a more detailed perception. However, this method also introduces some noise, creating a 

challenging environment for the model. Moreover, a Gaussian filter, acting as a low-pass filter, was also used 

to attenuate higher frequencies in the images, resulting in a smoothing effect. Other modifications included 

vertical and horizontal mirroring of the images, as well as adjustments to their contrast. Each process was 

conducted by randomly selecting images from the training dataset. As a result, each image underwent only 

one of the mentioned processes, ensuring diversity in the artificially generated images. 

Before performing the model training, the regions of interest (pods) were manually drawn on all subset 

images using the VGG Image Annotator online software (Dutta & Zisserman, 2019). For each region of interest, 

a class was given and named according to the number of grains the pod had. Thus, we had the classes "one", 

"two", "three" and "four", representing the pods that had up to four grains. Figure 3 and Figure 4 shows an 

example of the masks generated from the labeled data for IA1 and IA2, respectively. 
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Figure 3. Example of the generated mask (right) after labeling the original image (left) obtained through IA1. 

 
Figure 4. Example of the generated mask (right) after labeling the original image (left) obtained through IA2. 

Model training 

The model's training was based on Mask R-CNN and was executed separately for the IA1 and IA2 databases. 

Two categories of input data, the training dataset (training and validation images) and the training data labels 

(training and validation labels) were required to train the model. Residual backbone network Resnet-101 was 

used for model training in both acquisition methods using a Feature Pyramid Network (FPN) type of deep 

neural network. Resnet-101 has an architecture with 101 layers of depth and can classify over 1,000 classes 

(Ghosal et al., 2019). The entire process was carried out using the Python programming language. 

Yield estimation 

To estimate soybean yield, information from the two cultivars studied in this work was necessary, such as 

the average number of pods per plant, average number of grains per pod, number of soybean plants per 

hectare, and the 100-grain mass. The average number of pods per plant and the average number of grains per 

pod were obtained from the model developed in this work, which was used for counting. In order to validate 

the model, manual counting of the number of grains and pods was performed.  

The number of plants per hectare was calculated by counting the plants in a known area and then 

calculating for one hectare. The weighing of the 100-grain mass occurred after measuring their humidity. 

Then the weight was corrected (Equation 1) for the humidity of 13%. The 100-grain mass and the number of 

plants per hectare were determined for both cultivars. The estimation of soybean productivity for each 

cultivar was performed according to Equation 2.  
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𝑀𝐶 (𝑔) = 𝑀𝑈 ×  
100−𝑈𝐴 (%)

100−𝑈𝐷 (%)
          (1) 

where MC is the mass corrected for desired humidity, MU is the grain mass for the current humidity, and both 

MC and MU are in grams. The variables UA and UD refer to the current and desired humidity, respectively, in 

percentage. 

𝑝𝑟𝑜𝑑 (𝑠𝑐 ℎ𝑎−1) =

𝑝𝑙𝑡

ℎ𝑎
×

𝑝𝑜𝑑

𝑝𝑙𝑡
×

𝑔𝑟𝑎𝑖𝑛𝑠

𝑝𝑜𝑑
∗𝑀𝐶 (𝑔)

6000
         (2) 

where prod refers to the crop productivity, plt ha-1 is the number of plants per hectare, pod plt-1 is the average 

number of pods per plant, and grains pod-1 is the average number of grains per pod. 

Model evaluation 

Classification 

It is worth noting that the data utilized in this analysis, due to their authentic nature and their origin from 

field surveys, exhibit an unbalanced distribution. Methods are currently available to address the class 

imbalance. Nevertheless, owing to the substantial scale of the dataset (comprising 46,385 pods), 

implementing these techniques presents an additional challenge. As an alternative, precision, recall, and F1-

Score metrics were adopted. These metrics prove to be more suitable for evaluating model performance within 

an unbalanced class context, as they offer a more comprehensive understanding of how the model manages 

distinct classes, enabling a meticulous analysis of outcomes in terms of false positives, false negatives, and 

accurately classified examples. 

From the relationship between the real classification, based on manual labeling, and that predicted by the 

model, it was possible to calculate the metrics of accuracy (Equation 3), recall (Equation 4), and F1 score 

(Equation 5) to evaluate the algorithm's classification performance. Precision measures the proportion of 

predicted values that are real values. Recall measures the proportion of real values that the model could 

correctly classify. The F1 score is the harmonic mean between the two values, accuracy and recall, i.e., a single 

value to evaluate the classification. 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (3) 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (4) 

𝐹1 =  2 ×
𝑃×𝑅

𝑃+𝑅
            (5) 

where P refers to precision, R refers to recall, F1 refers to F1 score, TP are True Positive values, FP are False 

Positive values, and FN are False Negative values. 

True Positive (TP) refers to the model prediction coinciding positively with the accurate prediction. False 

Positive (FP) occurs when the object is not of interest but is predicted as an object of interest. False Negative 

(FN) occurs when there is an object of interest in the image, but it is not detected or is incorrectly classified. 

Counting the number of pods and grains and estimating yield 

To evaluate the difference between the manually counted values and those predicted by the model, we used the 

mean absolute percentage error (MAPE) metric, calculated according to Equation 6. This metric is commonly used 

to evaluate productivity estimation (Nevavuori, Narra, & Lipping, 2019; Tedesco-Oliveira et al., 2020).  

𝑀𝐴𝑃𝐸 =
100

𝑛
× ∑ |

𝐶𝑟𝑒𝑎𝑙−𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐶𝑟𝑒𝑎𝑙
|𝑛

𝑡=1          (6) 

where n is the total number of samples, Creal and Cpredicted are the real and predicted values for yield estimation 

and grain and pod count, respectively.  

Results 

Object classification and detection 

The pods that were classified by the model in the test set, for methods IA1 and IA2, were distributed in a 

heat map (Figure 5). Thus, it is possible to identify how many objects were correctly classified, how many were 
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wrongly classified, and how many could not be detected by the model. The points in red denote greater 

intensity, it is noted that the data classified by the IA1 method presented a higher value of undetected objects 

when compared with the data from IA2. In addition, it is observed that correct classifications were more for 

data from IA2 when compared to IA1.  

 
Figure 5. Heat map for pods classified by the model in the test set of IA1 (a) and IA2 (b) methods. 

The evaluation for IA1 and IA2 from the accuracy, recall, and F1 score metrics are presented in Figure 6a, 

b, and c, respectively. The model presented better results for IA2 than IA1. This may be because the objects 

were covered in IA1, thus hindering the correct identification. Furthermore, among the four classes analyzed, 

it is observed that in classes "two" and "three," the model presented a better performance for both methods 

of image acquisition.  

 
Figure 6. Model classification performance based on the accuracy (a), recall (b), and F1 score (c) metrics for both image acquisition 

methods: image acquisition 1 (IA1) and image acquisition 2 (IA2). 

Different situations were observed in the data classification performed by the model by using the IA1 

method. Figure 7a shows a difficulty imposed by the data, the obstruction of the pod by the branch, however, 

the model overcame this difficulty and correctly classified the pod in the image. This result was not repeated 

in Figure 7b, where the model failed to classify, the presence of noise (leaves and branches) in the IA1 data 

probably caused this type of failure, which led to incorrect identification. 
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Figure 7. Different situations for model detection using IA1 data: pod obstruction caused by noise (leaves and branches) (a) and 

erroneous detection caused by noise (leaves and branches) (b). 

Evaluation of pod and grain count 

Figure 8 shows, for the test set of both acquisition methods, the manually counted values and those 

predicted by the model referring to the number of pods and grains. The MAPE for the set referring to the IA1 

method was found to be 34.69 and 35.25% for pods and grains, respectively. In contrast, the model using the 

IA2 data had a MAPE of 7.50 and 5.32% for pods and grains across the test set, respectively.  

 
Figure 8. Manual and model predicted counts for the number of pods and grains with both image acquisition methods: image 

acquisition 1 (IA1) and image acquisition 2 (IA2). 

According to the data generated by the IA1 method, it was observed that some images presented a large 

difference between the manual count and that predicted by the model for the number of pods and grains, 

while other images presented a small difference. Figure 9a shows a plant in the reproductive stage R6, which 

has a large number of leaves and branches and also showed a more significant error. Figure 9b shows a plant 

in the R8 stage with fewer leaves and branches and presents a smaller error. This confirms the negative impact 

of leaves and branches in classifying pods based on the number of grains they have. 
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Figure 9. Calculation of the ASM is influenced by the plant's reproductive stage: plant in R6 with the greatest number of leaves and 

branches (a). Plant in R8 with fewer leaves and branches (b). 

It is observed that the number of pods inside the tray in the IA2 data contributed to the increase or decrease 

in the error for pod and grain counting. Figure10a shows that a greater quantity of pods inside the tray led to 

a high error, while in Figure 10b, as the quantity of pods is reduced, the error between the real and predicted 

values is also reduced. 

 
Figure 10. Tray with the largest number of pods causing a greater error in the model classification (a) and with a smaller number of 

pods generating a smaller error in the model classification (b). 

Productivity estimation 

Table 1 shows the error generated and the difference between the estimate calculations performed using 

the conventional method and the methods discussed in this article for both cultivars. Contrasting values were 
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observed when the model used IA1 and IA2. In the case of IA2, the estimated productivity by the model was 

close to the estimate calculated by the conventional method. In contrast, in the case of IA1, a large difference 

was observed between the prediction of the model and that of the conventional method for estimating 

soybean productivity.  

Table 1. Mean absolute percentage error (MAPE) between yield estimates with the conventional method and predicted by the model 

for the two soybean cultivars. 

Soybean cultivars MAPE IA1 (%) MAPE IA2 (%) 

Cultivar 1 44.76 6.29 

Cultivar 2 32.73 5.50 

 

Discussion 

In this study, a model that is capable of classifying soybean pods with a different number of grains was 

developed. Based on the pod classification, the model was used to count the number of pods and grains, and, 

from this, the soybean crop yield was estimated. The algorithm was developed for use in the field, so during 

the database construction, the images captured were subject to changing environmental conditions.  

The classification of the pods using the Mask R-CNN model has been presented in the heat maps (Figure 5). 

The values refer to the pods present in the images of the test subset for IA1 and IA2, and the model was used 

for classification. Based on the heat maps, a large number of undetected objects is noticeable when the model 

uses IA1. In contrast, when IA2 data was used, the model presented a superior performance in detection, 

besides showing a greater accuracy of classification. This caused the model to perform better on the 

classification metrics using the IA2 data (Figure 6), in which the metrics presented the highest values. 

In general, it was observed that, regardless of the procedure used to obtain the images, the model 

performed better in the classification of classes "two" and "three" than that of classes "one" and "four". This 

result is possibly due to the dominance of classes "two" and "three" in the entire database, which reached 

96.06% compared to classes "one" and "four". There were more samples for classes "two" and "three" and fewer 

samples for classes "one" and "four" at the time of model training. This probably caused the disparity in the 

performances between the classes, as presented in Figure 6. 

It is worth mentioning that obtaining data in the way described in the work and that are balanced is 

something complex and difficult to achieve. Therefore, the metrics used allow us to identify and better 

understand the results obtained. In future work, it is suggested to explore data pre-processing techniques to 

deal with imbalance, such as oversampling or undersampling, in order to improve the representation of 

minority classes and thus contribute to even more robust and reliable results. 

It was observed that the accuracy for class "one" achieved by the model using the IA2 data reached a value 

of 100% (Figure 6a). This metric indicates the percentage of predictions that correspond to the real value. 

Thus, even though not all objects of this class were correctly predicted, the model could classify class "one" 

correctly. However, the opposite occurs when analyzing recall, with a value of 18.75% (Figure 6b). This metric 

indicates the percentage of real values that were correctly predicted. Furthermore, as observed, the model 

failed in some cases, classifying incorrectly or not detecting all the pods of class "one". 

Despite the low performance of the model in the classification using IA1 data compared to the performance 

using the IA2 images, it was observed that the IA1 images presented a higher number of objects that are not 

of interest, such as leaves and branches. Even so, in certain instances, the model overcame these difficulties 

imposed by the IA1 data and located the pods that had an obstruction and classified them correctly based on 

the number of grains they had (Figure 7a). However, when using the IA1 data, the model sometimes 

misclassified the pods by detecting background objects as pods (Figure 7b). As already mentioned, the IA1 

images had a greater number of objects in the background when compared with the IA2 images, causing this 

difficulty and confusion for the model, leading to a greater propensity for error.  

The Mask R-CNN model has presented promising results in recent works, for object detection and counting 

in images. For example, Xu et al. (2020) used Mask R-CNN to count cattle in the pastures, with error values 

between 6 and 10%. In another study, Davis et al. (2020) used the Mask R-CNN model, identified and counted 

several species of herbs from phenological data of shoots, flowers, and fruits, reaching coefficient of 

determination (R²) values of 0.71, considering all the species used.  
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Specifically for soybean, researchers have developed methods to perform pod and grain number counting 

using recent technologies. However, these solutions have some limitations. In the case of Uzal et al. (2018) e 

Li et al. (2019), in which both used CNNs, an accuracy of 86.20% and a mean absolute error of 13.2 were 

achieved. When compared with the results presented in this paper, both articles achieved good performances 

with their respective models. However, the experiments were performed in an environment with controlled 

light, making it impossible to use them in the field.  

In the present study, the developed model achieved for the IA1 method, a MAPE of 34.64 and 35.25% for 

pods and grains, respectively. These values show the low performance of the model when using the IA1 data 

to perform the pod and grain counts. In contrast, the results obtained with IA2 were significantly better; the 

MAPE value was 7.50 and 5.32% for pods and grains, respectively. These values presented by the model when 

using the data obtained by IA2 prove the model's efficiency to count soybean pods and grains.  

In Figure 8a, we can observe images of the test subset of the IA1 data that showed a high disparity between 

the values of the manual count and those predicted by the model, both for pods and grains. The difference 

between the images that have contrasting errors is because the plants were in the reproductive stages. The 

data that presented the greatest disparities between the real and predicted values for counting the pods and 

grains number are images of plants in the reproductive stage R6 when the soybean plant has abundant leaves 

and branches (Figure 9a). Those that presented a smaller disparity were plants in the R8 reproductive stage, 

thus presenting few leaves and branches (Figure 9b).  

The difference between the real and predicted count depends on the reproductive stages; this 

reinforces how the branches and leaves can interfere negatively in the detection and counting of the pods 

and grains number that the model can perform on the IA1 data. However, it is necessary to conduct a 

better analysis, generating a model individually for each reproductive stage and determining the 

progression of the model performance in the reproductive stages with a greater number of leaves and 

branches than those with fewer.  

Despite the model's good performance when using IA2 to count pods and grains, it was observed that the 

trays with the greatest number of pods caused errors (Figure 10). This may have occurred due to the presence 

of overlapping pods, making it difficult for the model to identify and classify the pods below other pods. In 

contrast, this was observed to a lesser extent in trays that had fewer pods as there was more space between 

the pods (Figure 10b). Thus, at the time of image acquisition, the model's performance can be improved by 

positioning the pods in a container with larger dimensions, providing more space between pods.  

Finally, it was possible to estimate the yield of the two soybean cultivars using the data obtained by the 

model. Again, IA2 presented a better result when compared to IA1 for the estimation of soybean yields (Table 

1). The average absolute percentage errors were, 6.29 and 5.50% for IA2 for cultivars 1 and 2, respectively, 

while IA1 had errors of 76 and 32.73% for cultivars 1 and 2, respectively. 

The results presented by the model when using the data obtained by IA2 open up a possibility for future 

work. For example, an application can be developed for mobile devices as they are inexpensive and 

straightforward tools. With the creation of an application for mobile devices, the estimation of soybean 

productivity would become an accessible process that can be done by researchers and farmers. 

Conclusion 

A model based on Mask R-CNN was developed to perform soybean yield estimation using smartphone 

images, through two image acquisition methods, which were named AI1 (image acquisition 1) and AI2 (image 

acquisition 2). The model classified the pods based on the number of grains they presented and was able to 

count the number of pods and grains and finally estimate soybean yield. For the two image acquisition 

methods used, the model achieved the best performance in the pod classification, pod and grain number 

counting, and yield estimation tasks when using the data obtained by the IA2 method. The error concerning 

yield estimation when the model used the IA2 data reached 6.29 and 5.50% for the cultivars analyzed, while 

for the IA1 data an error of 44.76 and 32.73% was presented. Therefore, using the data from the IA2 method, 

the developed model becomes a viable and efficient tool to estimate soybean yield in the field. The system 

developed in this work can be useful for the development of a commercial application for mobile devices, 

making it easy and fast to estimate soybean yields in the field. 
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