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ABSTRACT. Excessive changes in factor levels can lead to a high cost in practice and hinder the conduction 

of experiments, in addition to adding a higher computational cost and loss of the orthogonality property, 

resulting in numerical problems in estimating the parameters of a model. The sequential specification of 

experimental points, seen as treatments in a 2k factorial design, results in a high-order bias in some factors, 

which is caused by the accumulation of −1 or +1 signals. This study aimed to propose new designs generated 

by the simulated annealing technique, respecting the main A-optimal and D-optimal optimality criteria as 

random execution orders that minimize the order bias. This approach allowed the generation of 24 and 25 

factorials, which were compared to the designs in standard order. The simulated annealing technique is a 

viable method to generate optimal designs with the same efficiency as the usual designs to obtain A-optimal 

and D-optimal designs with new execution orders, which minimize the effect of order bias relative to 

standard order designs. Regarding efficiency, the generated designs were precise in the variance of model 

parameter estimates, similar to the original designs. 

Keywords: bias; efficiency; designs; precision; simulation. 

Received on March 30, 2023. 

Accepted on September 12, 2023. 

Introduction 

The planning of factorial designs is based on a proposal of experimental point arrangements, which satisfy 

two objectives: obtaining greater statistical precision in the response associated with a statistical model and 

a lower possible cost of operation. In this context, an application of these experiments is the performance 

evaluation of computational systems, which can be applied in industrial automation. 

For this purpose, Oprime, Pureza, and Oliveira (2017) proposed a simulation study of a manufacturing 

process for glass containers used in the food industry with five considerations, as follows: i) parameters of the 

melting process, ii) lubrication of the fusion molds, iii) characteristics of the raw materials used in the fusion, 

iv) parameters of the forming process, and v) life cycle of the equipment used in the forming step. In that 

experiment, the authors performed extensive computational studies to examine execution orders that would 

optimize statistical criteria regarding the robustness and specification of linear trends. 

According to Adams, Cintas, and Llabres (2005) and Correa, Grima, and Tort-Martoreli (2012), any factor 

executed at the same level repeatedly in the execution order of a 2k experiment and, therefore, presents a 

grouping of signals, may generate wrong estimates when there is a change in the order of execution of the 

experimental points in the case in which the factors have two levels, represented symbolically by +1 and −1. 

However, excessive changes in the factor levels can lead to a high cost in practice and hinder the execution 

of the experiment, in addition to adding a higher computational cost and loss of the orthogonality property, 

resulting in numerical problems in the estimation of the parameters of a model. 

In this context, random search procedures are viable alternatives, but the algorithms may require 

considerable computational effort depending on the number of factors. The Dickinson algorithm (Dickinson, 

1974) is an example in which the possible successors of each row of the design, understood as an experimental 

point or treatment to be performed, are introduced from the bottom up, causing a high-order bias. 
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The issue occurs in designs with a number of treatments higher than 64, i.e., 26 designs. The exchanges 

that occur during the execution of the algorithm cannot produce the best sequences if the design in the 

standard order starts with a high bias. 

Therefore, the use of heuristic methods (Elliot, Eccleston, & Martin, 1999) in factorial experimental 

problems is in line with computational resources. In this sense, a genetic algorithm was used in the 

sequencing of production and planning of industrial experiments (Abreu & Prata, 2018) to solve the 

production sequencing problem in an environment of parallel machines unrelated to sequence-dependent 

preparation times. The proposed hybrid genetic algorithm was tested in randomly generated instances and 

the solving of a real problem in the granite industry. 

Other procedures used in the search for designs that provide a new order of experimental points consisted 

of the optimality criteria, obtained by Kiefer (1959), which assist in the search for designs that maximize 

information from the optimization of characteristics of the estimators of the parameters of a model. 

The D-optimal criterion is the most common optimality criterion for the generation of a design (Goos & Jones, 

2011), in which the determinant of the covariance matrix of the estimators of the model parameters is minimized. 

Atkinson, Donev, and Tobias (2007) reported that this criterion only aims to minimize the variances, regardless of 

the effect on covariances. Thus, the information matrix trace is considered as the measure XtX−1. 

The exchange algorithm, proposed by Fedorov (1972), consisting of a heuristic method that starts from an initial 

design and, from it, performs exchanges replacing its experimental points with new candidates, is one of the most 

well-known computational methods in the literature used to construct optimal designs in both criteria. This 

procedure is repeated through an iterative process until some statistical criterion of interest is met. 

Optimizing an experiment is important because the execution of a factorial experiment does not always 

neutralize the effect of undesirable factors. These factors vary according to the nature of the experiment and 

may influence the response variable depending on how the experimental process is conducted when they are 

not neutralized. 

Adams et al. (2005) and Correa et al. (2012) mentioned that any factor executed at the same level 

repeatedly in the order of execution of a 2k experiment presents a grouping of signals and may generate 

erroneous estimates. However, excessive changes in the levels of factors can lead to a high cost in practice 

and hinder the execution of the experiment. 

Thus, orders of execution that offer a minimum number of changes in the factor levels and minimize the 

influence of undesirable factors have been widely sought, as treatments in industrial experiments are usually 

performed sequentially. 

In this context, this study aims to propose a new order of execution of experimental points in 2k factorial 

experiments using the simulated annealing technique to preserve the properties of D-optimal (Goos & Jones, 

2011) and A-optimal designs (Atkinson et al., 2007; Ryan, 2007), in which the order bias is minimized 

compared to factorial experiments in the standard order. 

Material and methods 

Absolute bias of maximum order bias 

The main method used in this study is a validation of the new designs by the Maximum Bias Absolute 

Value (MBAV), as suggested by Adams et al. (2005). For a better understanding of the calculation of this bias, 

consider a 23 design, in which the treatments, represented in the rows of Table 1, are executed sequentially in 

the standard order (Z). 

Table 1. 23 design in the standard order, including interactions. 

Standard order (Z) 
Factors and interactions 

A B C AB AC BC ABC 

1 -1 -1 -1 1 1 1 -1 

2 1 -1 -1 -1 -1 1 1 

3 -1 1 -1 -1 1 -1 1 

4 1 1 -1 1 -1 -1 -1 

5 -1 -1 1 1 -1 -1 1 

6 1 -1 1 -1 1 -1 -1 

7 -1 1 1 -1 -1 1 -1 

8 1 1 1 1 1 1 1 
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MBAV is calculated for each factor and interaction considering the count of +1 and −1 signs. Thus, the 

experiment classification by the signs of the highest ABC interaction (Table 2) shows that the highest MBAV 

to be committed is estimated at 4 units, as we have 4+ and 4− signs for this interaction. 

Table 2. 23 design in the standard order classified by the ABC interaction signals. 

Standard order (Z) 
Factors and interactions 

A B C AB AC BC ABC 

1 -1 -1 -1 1 1 1 -1 

4 1 1 -1 1 -1 -1 -1 

6 1 -1 1 -1 1 -1 -1 

7 -1 1 1 -1 -1 1 -1 

2 1 -1 -1 -1 -1 1 1 

3 -1 1 -1 -1 1 -1 1 

5 -1 -1 1 1 -1 -1 1 

8 1 1 1 1 1 1 1 

 

Simply ordering of the ABC interaction effect signals resulted in new execution orders compared to the 

order originally described in Table 1. Thus, MBAV was calculated for each main effect and interaction. The 

sum of the row numbers associated with the positive signs is subtracted from the sum of the rows associated 

with the negative signs and divided by the maximum bias. The calculation of the order biases for factors A, B, 

and C and interaction AB is shown as follows, and the other interactions follow the same procedure. 

𝑀𝐵𝐴𝑉𝐴 = [
1

4
(2 + 4 + 6 + 8) −

1

4
(1 + 3 + 5 + 7)] = 1 

𝑀𝐵𝐴𝑉𝐴 = [
1

4
(2 + 4 + 6 + 8) −

1

4
(1 + 3 + 5 + 7)] = 1 

𝑀𝐵𝐴𝑉𝐵 = [
1

4
(3 + 4 + 7 + 8) −

1

4
(1 + 2 + 5 + 6)] = 2  

𝑀𝐵𝐴𝑉𝐶 = [
1

4
(5 + 6 + 7 + 8) −

1

4
(1 + 2 + 3 + 4)] = 4  

𝑀𝐵𝐴𝑉𝐴𝐵 = [
1

4
(1 + 4 + 5 + 8) −

1

4
(2 + 3 + 6 + 7)] = 0  

Procedure for simulation 

In line with the proposed objectives, the implementation of the simulated annealing technique in the 

generation of D-optimal and A-optimal designs provides less MVAB relative to the sequence of the 2k factorial 

experiments for k = 4 and 5. The design in the standard order was defined as the initial design, represented by (IR), 

and the new design was represented by (RP). The description of the operations involved in this process is as follows: 

(a) Initial design input (IR), set in the standard order. 

(b) A design is generated in the neighborhood of (IR), called a posteriori design (RP). 

(c) The criteria used to generate the A-optimal and D-optimal designs were calculated according to 

expressions (1)–(2) and (3)–(4) for the (IR) and (RP) designs. 

AIR=Trace[(XIRZIR)’(XIRZIR)]-1          (1) 

DIR=Det[(XIRZIR)’(XIRZIR)]-1          (2) 

ARP=Trace[(XRPZRP)’(XRPZRP)]-1         (3) 

DRP=Det[(XRPZRP)’(XRPZRP)]-1         (4) 

In all criteria, XIR and XRP correspond, respectively, to the matrices of the initial design (IR) given in the 

standard order and the design generated in the neighborhood of (RP). ZIR and ZRP indicate the vectors with the 

order of execution of the experimental points of the aforementioned designs. 

(d) The decision rule applies: 

For the A-optimal design, the design proposed by the algorithm is accepted if ARP < AIR. Otherwise, the 

Boltzmann factor, defined by (5), is calculated when ARP > AIR. 

𝐹𝐴 = 𝑒𝑥𝑝 {− (
(𝑇𝑟𝑎𝑐𝑒(𝑅𝑃)−𝑇𝑟𝑎𝑐𝑒( 𝐼𝑅))

𝑇
)}         (5) 
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T indicates the temperature function given by T = (1-step)c, where c is the cooling constant and step is the 

step size for cooling, fixed at 0.5. 

The same applies to the D-optimal design, in which the design proposed by the algorithm (RP) is accepted 

in comparison to the determinants if Det (RP) < Det (IR). The Boltzmann factor (6) is used otherwise. 

𝐹𝐷 = 𝑒𝑥𝑝 {− (
(𝐷𝑒𝑡(𝑅𝑃)−𝐷𝑒𝑡(𝐼𝑅))

𝑇
)}          (6) 

The Boltzmann factors (5) and (6) allowed the acceptance of the new design proposed by the simulated annealing 

algorithm, conditioned to a random value, generated by the uniform distribution (0.1), represented by U. 

The condition U < FA is imposed so that the new network (RP) is accepted as the initial network (IR) when 

considering the A-optimal design as a reference, and again the process begins until reaching convergence and 

fixing the number of iterations, n = 10,000. 

Similarly, assuming the D-optimal design as a reference, the imposed condition is that U < FD. The 

execution of this algorithm was performed under these conditions, and MVAB, as well as the efficiencies 

specified in (7) for the D-optimal design and (8) for the A-optimal design, was calculated with the generated 

designs (Rady, Abd El-Monsef, & Seyam, 2009). 

𝐸𝑓𝐷 = (
𝑑𝑒𝑡(IR)

𝑑𝑒𝑡(RP)
)

1

𝑝
            (7) 

𝐸𝑓𝐴 = (
𝑇𝑟𝑎𝑐𝑒(IR)−1

𝑇𝑟𝑎𝑐𝑒(RP)−1
)           (8) 

Results and discussion 

Introducing the designs in the initial standard order, i.e., RI, is necessary to identify the new execution orders 

of the 24 and 25 factorial experiments. Table 3 shows the description of the experimental points, in which the first 

block is limited by the experimental points Z = 1-16, which refer to the 24 design, and the continuity of the other 

points, with the specification of Z = 1–32, including the 5th factor E, complement the 25 design. 

Table 3. 24 and 25 factorial designs with the Z standard order. 

Z A B C D E 

1 -1 -1 -1 -1 -1 
2 1 -1 -1 -1 -1 
3 -1 1 -1 -1 -1 

4 1 1 -1 -1 -1 
5 -1 -1 1 -1 -1 
6 1 -1 1 -1 -1 

7 -1 1 1 -1 -1 
8 1 1 1 -1 -1 
9 -1 -1 -1 1 -1 

10 1 -1 -1 1 -1 
11 -1 1 -1 1 -1 
12 1 1 -1 1 -1 

13 -1 -1 1 1 -1 
14 1 -1 1 1 -1 
15 -1 1 1 1 -1 

16 1 1 1 1 -1 
17 -1 -1 -1 -1 1 
18 1 -1 -1 -1 1 

19 -1 1 -1 -1 1 
20 1 1 -1 -1 1 
21 -1 -1 1 -1 1 

22 1 -1 1 -1 1 
23 -1 1 1 -1 1 
24 1 1 1 -1 1 

25 -1 -1 -1 1 1 
26 1 -1 -1 1 1 
27 -1 1 -1 1 1 

28 1 1 -1 1 1 
29 -1 -1 1 1 1 
30 1 -1 1 1 1 

31 -1 1 1 1 1 
32 1 1 1 1 1 
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Given the input of these designs, the results in Figures 1 and 2 show that the simulated annealing 

technique had a convergence, resulting in the A-optimal and D-optimal designs, following the specifications 

regarding the step size and the number of interactions. This convergence indicated that the energy variation 

was minimal, reaching a stable configuration to generate more “balanced” designs that mitigated the 

agglomeration of +1 or −1 signals. 

 
Figure 1. Convergence of the simulated annealing algorithm for the designs generated by the D-optimal criterion from the Standard Order. 

 

Figure 2. Convergence of the simulated annealing algorithm for the designs generated by the A-optimal criterion from the Standard Order.  

Table 4 shows the MBAV estimates using as a reference the comparison of the MBAV obtained in the 

standard order designs, as shown in Table 3. 

Table 4. Maximum bias absolute value (MBAV) for the designs obtained by the simulated annealing algorithm (SA). 

Design 
Factors 

A B C D E 

25 OP 1 2 4 8 16 

25 ASA 0.188 2.031 4 2.070 3.556 

25 DAS 0.062 8 3.174 3.556 1.568 

24 OP 1 2 4 8 - 

24 ASA 2.158 2.158 3.174 1.396 - 

24 DAS 0 1 0 0,5 - 

 

Table 4 shows that the A-optimal and D-optimal designs generated for 25 had MBAV estimates for all 

factors compared to the standard order design. The order biases were considered relatively low with a 

reduction in the number of factors, i.e., 24, the A-optimal (ASA) design, except for factor A. This fact did not 

occur in the comparison of biases related to the design generated with the D-optimal criterion. Therefore, we 

proceeded with the recommendation of the factorial experiments A-optimal and D-optimal, 24 and 25, 

generated by the simulated annealing technique, with the execution orders described in Tables 5 and 6. 

Importantly, some experimental points were repeated in both the A-optimal and D-optimal criteria in the 

execution orders (Tables 5 and 6). The occurrence of this result is advantageous in situations in which the 

repetition of all experimental points becomes unfeasible either by time or cost of operation. Thus, the necessary 

information is available with the repetition of some experimental points to estimate the pure error as an alternative 

to the experimental error, allowing us to make a statistical inference regarding the study of the significance of 

model parameters. Table 7 shows the results regarding the efficiency of the generated designs. 



Page 6 of 7 Fernandes et al. 

Acta Scientiarum. Agronomy, v. 46, e67726, 2024 

Table 5. New order of execution for the A-optimal and D-optimal designs obtained by the simulated annealing algorithm for the 24 

design from the design given in the standard order Z (Table 3). 

A-optimal D-optimal 

4(1) 11(9) 14(1) 4(9) 

2(2) 16(10) 9(2) 6(10) 

14(3) 13(11) 8(3) 15(11) 

9(4) 5(12) 4(4) 12(12) 

1(5) 11(13) 15(5) 10(13) 

16(6) 7(14) 11(6) 7(14) 

10(7) 4(15) 1(7) 1(15) 

10(8) 6(16) 5(8) 14(16) 

() sequence of the experimental point to be executed. 

Table 6. New order of execution for the A-optimal design obtained by the simulated annealing algorithm for the 25 design from the 

design given in the standard order Z (Table 3). 

A-optimal D-optimal 

8(1) 3(9) 8(17) 17(25) 24(1) 3(9) 8(17) 3(25) 

32(2) 12(10) 2(18) 21(26) 32(2) 21(10) 24(18) 17(26) 

13(3) 7(11) 30(19) 20(27) 31(3) 28(11) 5(19) 17(27) 

14(4) 23(12) 9(20) 5(28) 20(4) 12(12) 19(20) 26(28) 

9(5) 8(13) 31(21) 16(29) 13(5) 14(13) 32(21) 30(29) 

27(6) 11(14) 25(22) 27(30) 15(6) 12(14) 23(22) 6(30) 

18(7) 5(15) 30(23) 20(31) 15(7) 31(15) 29(23) 8(31) 

31(8) 12(16) 3(24) 10(32) 27(8) 10(16) 11(24) 9(32) 

() sequence of the experimental point to be executed. 

Regarding the efficiency of the optimal designs generated by the simulated annealing method compared 

to standard designs, the results showed that the designs had efficiencies similar to the standard design for 

both criteria (Table 7). 

According to Khinkis, Laurence, Faessel, and Greco (2003), the interpretation of the efficiency of a design, 

for example, D-optimal, is given as a factor, whereby a given design must be replicated to obtain precision of 

the parameter estimates equal to that of the obtained D-optimal design. 

In this context, Khinkis et al. (2003) exemplifies a D-optimal design with an efficiency equal to 0.5, which 

means that the initial design, from which the D-optimal design was obtained, needs to be replicated twice to 

achieve the same precision of the D-optimal. Similarly, it follows the interpretation given the specification of 

the A-optimal criterion. 

Table 7 shows the specification of the expression (8), used to calculate the efficiency, referring to the A-optimal 

criterion, in which the numerator corresponds to the matrix trace (RP), that is, generated by the simulated 

annealing technique, and the denominator corresponds to the matrix trace with the standard order, i.e. (IR). 

An efficiency estimation close to 1 indicates proximity in the variances of the estimates of both designs. 

This statement is also valid for the D-optimal criterion. Therefore, there is statistical evidence that, in both 

criteria, the designs with the new orders do not differ in efficiency compared to the original designs regarding 

the precision of the variances of estimates in the presence or absence of covariance. 

Table 7. Efficiency of the main A-optimal and D-optimal designs obtained by the simulated annealing (SA) algorithm. 

Design 

Criterion 

ASA DAS 

24 0.9320 0.9504 

25 0.9532 0.9602 

 

Conclusion 

The simulated annealing technique is a promising alternative method for the generation of A-optimal and D-

optimal designs with new orders of execution that minimize the effect of order bias relative to standard order 

designs. Regarding efficiency, the generated designs were precise in the variance of the estimates of model 

parameters, similar to the original designs. Both the new order matrices and the A-optimal and D-optimal matrices 

obtained from the new order matrices reasonably stabilized the variance of the estimates of factor effects. 
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