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ABSTRACT. One of the domains of genetic enhancement that has extensively employed both simulation 

and authentic data is Biometrics. Selecting efficient models for the Genome-Wide Selection (GWS) process 

using molecular markers (SNPs) presents several challenges. Among these challenges is the effective 

identification of the optimal model for fitting a given dataset. To contribute to this endeavor, this paper's 

primary objective is to assess the predictive accuracy of nine (9) distinct models, each following different 

paradigms within the realm of Biometrics. The data employed in this study were generated through 

simulation, encompassing the primary issues encountered in this field of research, including high 

dimensionality, nonlinearity, and multicollinearity. As the primary findings, notable observations include 

the enhancement of predictive efficiency as data noise decreases, the predominance of the tree paradigm 

(for low noise levels, BOO), and the efficacy of the neural network paradigm (for high noise levels, RBF). 
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Introduction 

Data analysis plays a pivotal role in decision-making and knowledge extraction across diverse research 

domains. The quest for identifying regular patterns and frameworks to address challenges is a burgeoning 

demand in computer science and fields that extensively employ this discipline. One such field that has 

embraced this approach is Biometrics. 

Biometrics represents the forefront of genetic breeding, involving the analysis, processing, and 

interpretation of biological phenomena through data and theoretical concepts from Quantitative Genetics. It 

focuses on refining models (statistical procedures) and architectures (computational intelligence). An 

effective biometric analysis optimizes physical, financial, and human resources. 

Efficiency in Biometrics often hinges on determining the most suitable model for fitting a given dataset 

(Li et al., 2018). Specifically, this is accomplished through predictive models rooted in various paradigms for 

data processing. Biometricians typically employ prediction models that utilize molecular markers of the SNP 

type (Single Nucleotide Polymorphisms). These markers span the genome, enabling the incorporation of 

molecular information in predicting the genetic merit of individuals (Costa et al., 2022). 

Leveraging molecular markers in Genome-Wide Selection (GWS) via prediction models presents several 

statistical challenges, with three primary ones being data dimensionality, multicollinearity, and nonlinearity (gene 

interaction or epistasis). Additionally, the manifestation of an observable characteristic (Phenotype - F) results 

from the interplay of two factors (Genotype and environmental noise, G + E), further testing the prediction models' 

efficiency (i.e., how to effectively fit prediction models, even with high noise in the dataset)1. 

Beyond statistical issues and environmental noise, biometricians face other challenges. One such 

challenge is selecting prediction models that can reflect biological principles (e.g., the biosynthetic pathway) 

or principles of Quantitative Genetics (e.g., dominance and epistasis effects). 

Biometric models serve a vital purpose: selecting the most suitable individuals for breeding, thereby 

ensuring the efficiency of the selection process. Therefore, chosen prediction models must aptly classify the 

individuals under consideration, achieved through the selection of an appropriate metric. 

 
1 This relationship can be presented in terms of variance (VF = VG + EV) and heritability can be defined from this equation as: h2 = VG/VF (how much of the total variance is genetic 
variance). 
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Two measures to assess predictive techniques' effectiveness are selective accuracy (indicating the model's 

efficiency in ranking individuals correctly for selection) and predictive accuracy (estimated through mean 

square error, representing the model's efficiency in predicting values close to the true values). Both metrics 

can be used without compromising the analysis's inference or generalization, with the choice dependent on 

the study's primary objective. 

Prediction studies, or model fitting, hold significant importance across various scientific fields. They seek 

to establish functional relationships between a response variable Y and a set of predictor variables X, enabling 

the prediction of the response variable using new information from the explanatory variables or 

understanding the cause-and-effect relationships unveiled by the model. 

In genetic improvement, prediction has distinctive features that deserve mention. While it also aims to 

establish relationships between explanatory and response variables, it emphasizes the need not only for a 

robust predictor of Y (a directly observed and measured variable, termed phenotypic value, F) but also one 

that approximates the true genotypic value (G) upon which selection processes are based. 

This situation can be exemplified by considering the prediction of complex and economically valuable 

traits, such as grain or fruit production, based on auxiliary variables like plant height, flowering, thatch width, 

and others. In such cases, the goal is to identify predictors that not only exhibit a good statistical model fit 

but also result in more substantial gains through indirect selection. This involves considering information 

about genetic correlations and the heritability of traits when selecting the most suitable auxiliary variable. 

While various factors influence the choice of an effective explanatory trait, a general guideline favors traits 

with higher heritability and stronger correlations with the main variable. Such guidance can stem from 

theoretical foundations, empirical findings, or simulation studies. 

Currently, prediction studies contemplate the utilization of additional information beyond what is routinely 

measured in agronomic trials. Spectral data, including infrared and imaging data, and particularly molecular 

information, have gained prominence. Molecular information is particularly valuable as it directly relates to loci 

controlling quantitative traits (QTLs) and aligns with Mendelian and quantitative genetics principles. 

Molecular information, while still relatively costly for extensive use in many agricultural species, is of 

great interest because it provides genotypic values (referred to as genomic values in this case) that hold the 

potential for more substantial genetic gains. The availability of these markers, particularly SNP markers, 

sparks interest and encourages biometricians to employ more parameterized models. These models take into 

account allelic dose effects manifested in the markers, dominance effects that defy explanation through the 

recognition of homozygous and heterozygous forms, and especially the effects of epistatic interactions arising 

from the joint action of two or more markers influencing the expression of traits.  

Consequently, predicting quantitative traits based on molecular information poses challenges in both 

genetic and statistical contexts, highlighting issues related to dimensionality and multicollinearity in 

prediction. It is essential to bear in mind that several factors will influence the selection of the best model 

across various agricultural species. The pursuit of a general rule of thumb for modeling guidance becomes 

pivotal, aiming to streamline efforts and concentrate resources on models that align best with prediction 

objectives while capturing the genetic nuances of the phenomena under scrutiny.  

Azodi et al. (2019) also underscore the significance of comparing algorithms across a wide range of 

scenarios, considering the advancements in computing speeds, the evolution of graphics processing units 

(GPUs), and progress in backpropagation learning algorithms. To delve into some of the mentioned issues, 

our primary goal is to evaluate the selective accuracy of nine (9) predictive models, each grounded in various 

paradigms applied within the field of Biometrics. The data have been generated via simulation and reflect the 

principal challenges outlined in this brief introduction, encompassing dimensionality reduction, 

multicollinearity, and nonlinearity. Additionally, we present related considerations in model fitting, such as 

sample size and data representativeness. 

Material and methods 

Prediction and selected models2 

The prediction models chosen in this study adhere to the "algorithm modeling culture", with a primary focus 

on developing suitable algorithms for individual selection (Izbicki & Santos, 2020). To achieve this objective, 

 
2 This item provides a brief overview of the nine models used without delving into the specifics of mathematics, parameter setting, or algorithm tuning. Additionally, it presents some 
fundamental issues to be considered and suggestions for references for the deepening of each model. 
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nine (9) models were specifically selected: a) Ridge Regression Best Linear Unbiased Predictor (RR-Blup), b) 

Multi-Layer Perceptron (MLP), c) Radial Basis Function Network (RBF), d) Decision Tree (DT), e) Bootstrap 

Aggregating (BAG), f) Random Forest (RF), g) Boosting (BOO), and h) Multivariate Adaptive Spline (linear and 

interacting MARS, MARS1 and MARS2). 

These models can be classified into three primary paradigms: a) Statistical: This paradigm relies on 

fundamental information regarding means, variances, covariances, and distributions; b-c) Computational 

Intelligence / Neural Network: In this paradigm, models are developed by repeatedly presenting all available 

data and incorporating learning rules to achieve a final model with maximum accuracy; d-h) Machine 

Learning: This paradigm involves the partitioning of predictor spaces and their organization in a hierarchical 

tree diagram structure, typically for model fitting or classification purposes. The objective of employing 

models from diverse paradigms is to assess how each one addresses the challenges posed by the dataset 

(including issues like nonlinearity, multicollinearity, and dimensionality), accounts for the existing noise 

(which exhibits differentiated heritability), and accommodates the specific challenges associated with 

Genome-Wide Selection (GWS). 

The Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) is a model that employs a statistical 

approach to estimate genetic values in genetic improvement studies. RR-BLUP extends the linear regression 

model, making it a parametric method. It introduces a penalty term called "Ridge" to manage the impact of 

multicollinearity and enhance stability in the estimates, particularly in scenarios where the number of 

explanatory variables exceeds the number of observations (Endelman, 2011; Cruz, Salgado, & Bhering, 2013). 

The shrinkage parameter, denoted as λ (penalty parameter), is defined as follows: 

λ =  σe
2/(σg

2/nq) 

where: σe
2 is the error variance; σg

2 is the additive variance of the character; 𝑎𝑛𝑑 𝑛𝑞 is the number of QTLs. The 

RR-Blup model has the following formulation (Meuwissen, Hayes, & Goddard, 2001): 

y = Wb + Xm + e 

where: y is the vector of phenotypic observations (matrix of dimension 1000 x 1); b is the vector of fixed effects 

(general mean) with incidence matrix W; m is the vector of random effects of markers with incidence matrix 

X (X is the incidence matrix composed of the values 1, 0, and -1 according to the number of alleles of the 

marker of the genotypes AA, Aa, and aa, respectively) with m ~ N (0, I σg
2), and e refers to the vector of random 

errors with e ~ N (0, I σe
2)3.  

The prediction equations were formulated with the assumption that all loci contribute equally to the 

genetic variation, hence sharing a common σg
2. Consequently, the genetic variation attributed to each locus 

can be expressed as (σg
2/n), where σg

2 represents the total genetic variation, and n is the count of markers 

utilized. In this study, the RR-BLUP model employed the simplest version, considering only the additive 

effects of the predictor variables. 

The Multi-layer Perceptron (MLP) model comprises artificial neurons organized into layers, including an 

input layer, hidden layers, and an output layer. MLP relies on five (05) fundamental concepts (LeCun, Bengio, & 

Hinton, 2015; Montesinos López, Montesinos López, & Crossa, 2022): artificial neuron, layers, synaptic weight, 

activation function (which introduces nonlinearity into the model), backpropagation, and supervised learning.  

Each neuron conducts a linear combination of inputs, weighted by synaptic weights, adds a bias, and 

employs a nonlinear activation function. Backpropagation is used to fine-tune the synaptic weights through 

supervised learning, minimizing the discrepancy between predicted and expected outcomes.  

The equation that summarizes the MLP model, considering two hidden layers, can be defined as follows: 

y = f(W2 ∗ f(W1 ∗ X + b1) + b2) 

where: y represents the output of the MLP, which corresponds to the predicted genetic value for each F2 

individual included in the training or validation dataset; X is an incidence matrix containing attribute values 

associated with markers, with values of -1, 0, and 1 representing the AA, Aa, and aa forms, respectively; W1 is 

the weight matrix of the first hidden layer. Each element in this matrix corresponds to the weight associated 

with the connection between neurons in the input layer and the first hidden layer; b1 is a bias vector for the 

first hidden layer. Each element in this vector serves as an additional adjustment term that enables the model 

 
3 The effect of the λ penalty function is more easily noticeable in the matrix notation of the RR-Blup model. 
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to capture nonlinear behavior; f represents a nonlinear activation function applied to the input values of 

neurons in the network. In our study, we employed the hyperbolic tangent function; W2 is the weight matrix 

of the second hidden layer (or output layer, depending on the architecture). Each element in this matrix 

signifies the weight associated with the connection between neurons from the preceding layer and the current 

layer; b2 is the bias vector for the second hidden layer (or output layer). Each element in this vector functions 

as an additional adjustment term. 

The equation of the MLP model encapsulates the weighted combination of inputs, traversing hidden layers 

with nonlinear activation functions until it reaches the output layer, where the final prediction or 

classification is generated. During model training, the weights (W) and biases (b) are adjusted to optimize 

network performance and achieve the best fit with the training data. 

The Neural Network topology can capture complex relationships between input and output data, primarily 

due to the introduction of nonlinearity4 through the activation function5. The number of hidden layers and 

neurons (n) in each network can vary depending on the dataset presented to the model. Typically, the number 

of neurons is adjusted empirically, and fine-tuned until an optimal solution is achieved. However, it is 

important to exercise caution and avoid using an excessive number of neurons, as it may lead to overfitting 

(Cruz & Nascimento, 2018). The MLP model in this study utilized the backpropagation training algorithm, 

with the input layer consisting of the matrix of molecular markers and the output layer producing the 

predicted phenotypic value for each individual.  

The Radial Basis Function Neural Network (RBF) presents a hybrid network model with two stages (Park 

& Sandberg, 1991; Haykin, 2009): a) An unsupervised stage for clustering the explanatory variables, which 

also determines the number of neurons in the hidden layer; b) A supervised stage that closely resembles the 

MLP, with the exception that the activation function should exhibit symmetric spread and/or Gaussian 

characteristics. 

The term "radial" arises from the fact that the spreading function assigns greater weight to information 

within the cluster and lower weight to other data6. The architecture of the RBF consists of a feedforward 

design, encompassing a single input layer, an intermediate layer, and an output layer. 

Tree-based prediction methods fall under the category of Supervised Learning, and one of the most 

conventional approaches in Machine Learning is the Decision Tree (DT). DT employs a top-down (greedy) 

methodology, and for the tree to be predictive, it must adhere to a branching criterion. This criterion induces 

a form of partitioning within the selected variable, typically involving group means or variables y and RSS 

(Residual Sum of Squares). 

Each predictor, represented by a genetic marker, facilitates the creation of regions in the response variable. 

These regions are determined through sorting and partitioning, to minimize the RSS. The RSS is calculated 

using the following equation: 

RSS =  ∑ ∑ (yi − ŷRm
)2

iϵRm

M

m=1

 

where: R1, R2,…, RM are regions in the dependent variable (usually the division is binary), yi are the phenotypic 

values of the response variable, and ŷRm
 is the average of the response variable of the training observations 

belonging to the m-th region.  

Two particularly intriguing aspects of tree-based structures in the context of Biometrics are: a) the 

biosynthetic pathway, which elucidates the role of genes in a metabolic pathway leading to the creation of 

biochemical intermediates and end products. These substances govern diverse phenotypic patterns of a trait 

and can be represented in the form of a tree; and b) the tree's ability to rank the most significant variables, 

facilitating dimensionality reduction. Consequently, its various extensions, including Random Forest (RF), 

Boosting (BOO), and Bagging (BAG), find extensive application in Biometrics. There is a hypothesis that this 

paradigm represents the optimal choice for fitting prediction models. 

The Bagging (BAG) method refines the decision tree model by incorporating the Bootstrap technique. The 

core concept is to acknowledge that a portion of the output error in a single regression tree results from the 

 
4 Nonlinearity in Biometrics is associated with the term epistasis, which is a genetic term to designate the interaction between alleles of different loci that, besides the additive-dominant 
effects, determines the genotypic expression of a character. 

5 In this study, the activation function used was the hyperbolic tangent, defined by the following equation: tanh x =  
1−e−2x

1+e−2x
. 

6 Radial functions are a special class of functions whose value decreases or increases concerning the distance from a central point. 
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specific selection of the training dataset. To address this, multiple similar datasets are generated through 

resampling (bootstrapping). Each of these datasets is then used to create individual regression trees without 

pruning. The final result is an average of these trees, leading to the generation of multiple models (Breiman, 

1996; Prasad, Iverson, & Liaw, 2006). Therefore, a total of B models are obtained: 

f̂ 1(x), f̂ 2(x), … f̂ B(x) 

These generated models are used to obtain an average model, as follows: 

f̂mean(x) =
1

B
∑ f̂ b(x)

B

b=1
 

The generated models are employed to mitigate the variability observed in the decision trees and calculate 

the mean, which serves as the final model. The Bagging technique is utilized to construct robust models that 

are less susceptible to overfitting, accomplishing this by leveraging a series of trees to stabilize errors (James, 

Witten, Hastie, & Tibshirani, 2021). In this study, a fixed number of 500 trees were sampled for bagging. 

The Random Forest (RF) method employs Bootstrap samples to construct multiple trees, each of which 

uses a random subset of predictors and observations. RF operates on the same principle as Bagging but 

introduces a variation by randomly selecting the number of predictor variables (m < p) used in each partition, 

where m represents the number of predictors and p is the total number of predictors. RF aims to obtain 

independent predicted values by reducing the variability observed in the decision trees. It is recommended 

that the number of predictor variables used in each partition be set to (m = p / 3) for regression trees (Hastie, 

Tibshirani, & Friedman, 2009).  

This approach minimizes the correlation between tree predictions, ensuring that the same variable is not 

consistently at the top of every tree. The RF is configured with 500 trees, and they are grown to their maximum 

size without any pruning. The aggregation of results is achieved through the collection of these trees. 

In the Boosting (BOO) method, trees are constructed sequentially, incorporating information from 

previous trees (James et al., 2021). It is an iterative approach trained on the same sample, where at each 

iteration, a prediction error measure is computed for each SNP. In the subsequent iteration, SNPs that yielded 

higher errors are given greater weight in the model training. This method serves as a numerical optimization 

technique aimed at minimizing the loss function by iteratively adding new trees that best reduce the loss 

function (Ghafouri-Kesbi, Rahimi-Mianji, Honarvar, & Nejati-Javaremi, 2017). The prediction is conducted 

by weighting the results of all regression trees, and in this procedure, 500 trees were sampled. 

Multivariate Adaptive Regression Splines (MARS) is a forecasting methodology regarded as an extension 

of linear models. It automatically models phenomena characterized by nonlinearities and interactions 

between variables. In essence, MARS incorporates a set of basis functions (BFs), resulting in a flexible model 

capable of handling both linear and nonlinear behavior. 

The linear MARS model (MARS1) is described by the following equation: 

y = β0 + ∑ βmhm(X)

M

m=1

 

where: y is the value of the response variable, β0 is the regression constant, βm with m = 1, 2,..., M, are the 

regression coefficients, and hm(X) is a function or product of functions contained in C. The estimation of 

parameters β0 and βm (m = 1,2..., M) is based on minimizing the sum of squares of the residuals.  

When considering the set of observed points for the jth predictor variable (molecular marker) Xj, Ω =

{x1j, x2j, … , xrj}, collections of basis functions are derived from the set of points 𝒞 = {(x − t)+, (t − x)+} t∈Ω
j=1,2,…,p

, 

where p is the total number of predictors (or molecular markers). In the multiplicative model (MARS2), a 

predictor element is introduced, established as the product of the effects of two predictor variables. 

The RR-Blup, DT, BAG, RF, BOO, MARS1, and MARS2 methods were implemented using the GENES 

software integrated with R. On the other hand, the MLP and RBF methods based on neural networks were 

executed using the GENES software integrated with Matlab (Cruz, 2016). 

Datasets and empirical procedures 

The dataset was created through simulation using the Genes software (Cruz, 2016) and comprised a sample 

size of 1,000 individuals representative of an F2 population. The data-generating equation incorporated 



Page 6 of 10 Guimarães et al. 

Acta Scientiarum. Agronomy, v. 46, e68599, 2024 

epistasis by considering the multiplicative effects of pairs of loci (j and j+1), which is characteristic of biological 

systems where genes act sequentially in biosynthetic pathways. The equation employed was as follows: 

Yi = μ +  ∑ pjαj

nq

j=1
+ ∑ pjαjαj+1 + ei

nq

j=1
 

where: Yi represents the phenotypic value for observation i; μ is the general average; p𝑗  is the contribution of 

locus j to the expression of the trait, with each locus having an equal contribution established by a uniform 

distribution; αj, αj′ , and αj+1 take the values u + aj, u + dj and u − aj, respectively, for the genotypes associated 

with classes AA, Aa, and aa, respectively. Here, u denotes the average of the homozygotes, aj is half the 

difference in genotypic value between both homozygotes, and 𝑑𝑗  represents the difference between the 

genotypic value of the heterozygote and the average of the homozygotes. Prediction processes should thus 

be sensitive to these effects described in the ∑ pjαjαj+1
nq

j=1
 component of the model. 

Eight (08) response variables (Yᵢ with i = 1,..,8) with predetermined mean values and heritability were 

considered. The heritability values ranged from 20% to 80%. Additionally, 2010 predictor variables 

representing molecular information in the form of SNP (Single Nucleotide Polymorphism) markers were 

generated. Figure 1 illustrates the correlation matrix of these 2010 variables, revealing blocks of associations 

representing gene linkages established by groups of 201 markers distributed across ten linkage groups or basic 

chromosomes of the simulated species. 

Each marker was encoded with values of 2, 1, and 0, representing a discrete multicategory variable. These 

markers exhibited the expected Mendelian segregation in a 1:2:1 ratio. They were distributed across a genome 

consisting of 10 linkage groups, mirroring the genetic structure of a diploid species with 2n = 2x = 20 chromosomes. 

Each linkage group spanned a length of 100 centimorgans and contained 201 markers evenly spaced. 

The continuous response variables followed normal distributions and were influenced by environmental 

effects of varying magnitude. They were determined by the action of alleles from either 40 or 44 QTLs 

(Quantitative Trait Loci) selected from among the 2010 previously genotyped markers. These QTLs had 

differential additive effects and weights denoting their importance in the total genotypic variability of the 

trait. These weights were established based on a uniform distribution. 

 
Figure 1. Correlation matrix 2010x2010 of predictor variables (SNPs). 
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The dataset in this study was divided into two parts, namely the training and validation sets, using the K-

Fold Cross-Validation method. As suggested by James et al. (2021), this division entails: a) the first part of the 

dataset is allocated for training purposes, where predictors are generated; b) the second part of the dataset is 

reserved for validation, assessing the predictive capability of the model by employing the predictor generated 

in the first part to make predictions for Y using the data from this second part. This approach is commonly 

employed when the objective is to evaluate the efficiency of prediction models or validation techniques, which 

is the primary focus of this study. 

In the K-Fold Cross-Validation method, the sample of size n is divided into k parts or K-Folds, with the 

training sample obtained from the remaining k-1 parts. Consequently, after k iterations, all the data is used 

for both training and validation purposes (Burman, 1989). Each of the nine (9) techniques presented in this 

article was implemented with Cross-Validation, employing a value of k equal to 5 (k = 5). 

The predictive efficiency of the models was quantified using selective accuracy, or the coefficient of 

determination (R²), calculated as the simple mean of the estimates for each fold (k) in each fitted model. Cruz 

(2005) stated that selective accuracy can be defined in various ways. In Quantitative Genetics, this measure is 

described as the square of the correlation between the estimated values and the true values. It represents the 

degree to which the obtained estimate is related to the true value of the parameter, as shown in the equation:  

R2 = (cor(ŷ, y))2 

where: ŷ represents the predicted values generated by the model in both the training and validation sets and 

y represents the observed values. 

Results and discussion 

The results of the prediction models were obtained, considering various factors. Each model used eight 

response variables, subject to different noise levels (0.20, 0.40, 0.60, and 0.80), and the influence of two groups 

of markers (40 and 44). Additionally, a 5-fold Cross-Validation approach (k = 5) was employed, dividing the 

data into five sets (80% for training and 20% for validation). The selection metric used was the mean validation 

R2 value across these five datasets.  

The results of the fitted models are presented in Table 1. The top three prediction models were RBF, BAG, 

and BOO. When examining Figure 2, it becomes clear that predictive accuracy increases as noise decreases, 

which corresponds to higher heritability values. In simpler terms, response variables with higher noise levels 

tend to yield lower R2 values for all nine models considered. 

Further investigation of noise levels in response variables (Figure 2) reveals that, for high noise levels in 

the data (0 to 0.50 range), RBF (Y1, Y3, and Y4) and BAG (Y2) exhibited the highest predictive efficiency7. 

Conversely, for low noise levels in the data (0.50 to 0.80 range), RBF (Y5) and BOO (Y6, Y7, and Y8) 

demonstrated the highest predictive efficiency. 

Table 1. Prediction Models (mean validation R2 values and k = 5). 

Label / Model DT BAG RF BOO MLP RBF MARS1 MARS2 RRBlup 

Y1 (h²=0.20, ng=40) 0.0201 0.1376 0.1310 0.1023 0.0545 0.1471 0.0564 0.0300 0.0811 

Y2 (h²=0.20, ng=44) 0.0341 0.1948 0.1908 0.1519 0.0666 0.1851 0.0774 0.0650 0.1041 

Y3 (h²=0.40, ng=40) 0.0730 0.2463 0.2463 0.2174 0.1066 0.2781 0.1408 0.1072 0.1833 

Y4 (h²=0.40, ng=44) 0.1646 0.3260 0.3256 0.2960 0.1356 0.3328 0.2101 0.1665 0.2268 

Y5 (h²=0.60, ng=40) 0.1504 0.4545 0.4484 0.4355 0.2317 0.4568 0.2726 0.3148 0.3502 

Y6 (h²=0.60, ng=44) 0.2424 0.4776 0.4860 0.5370 0.2971 0.5024 0.3721 0.3855 0.3981 

Y7 (h²=0.80, ng=40) 0.2496 0.5647 0.5751 0.6523 0.3362 0.5893 0.3394 0.4560 0.4513 

Y8 (h²=0.80, ng=44) 0.3129 0.6035 0.6104 0.6966 0.3450 0.6096 0.3836 0.5306 0.4686 

Note: DT (Decision Tree), BAG (Bootstrap Aggregating), RF (Randon Forest), BOO (Boosting), MLP (Multi-Layer Perceptron), RBF (Radial Basis Function 

Network), MARS1 and MARS2 (Multivariate Adaptative Spline linear and interacting), and RRBlup (Ridge Regression Best Linear Unbiased Predictor). 

Additionally, a few general considerations about the model estimates (9) should be noted. The inclusion 

of 'major gene effect markers' (40 versus 44 markers) enhanced predictive efficiency. The choice of the Cross-

Validation parameter (k = 5) with a relatively small sample size (1,000) and a fixed k model warrants further 

reflection in future studies. Numerous studies advocate for a value of k = 10 as it strikes a balance between 

 
7 In the context of this article, predictive efficiency is indeed synonymous with selective accuracy. It is quantified by calculating the mean R2 value across five validation sets. 
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computationally intensive fitting procedures and the bias-variance trade-off (Kim, 2009; James et al., 2021). 

However, as k increases, the fraction of data allocated for validation decreases, potentially compromising 

representativeness and predictive efficiency. 

 
Figure 2. Prediction accuracy (R2) achieved by different techniques for variables with differences in gene control and environmental 

influence. DT (Decision Tree), BAG (Bootstrap Aggregating), RF (Randon Forest), BOO (Boosting), MLP (Multi-Layer Perceptron), RBF 

(Radial Basis Function Network), MARS1 and MARS2 (Multivariate Adaptative Spline linear and interacting), and RRBlup (Ridge 

Regression Best Linear Unbiased Predictor). 

It is worth noting that techniques grouped under the same paradigm exhibited significantly different 

performances (e.g., MLP versus RBF or DT versus refinements). A more in-depth understanding of the 

dataset's statistical issues (nonlinearity, multicollinearity, and dimensionality) on each model's performance 

can provide insights into these variations. 

In summary, when faced with the task of selecting an approach for analyzing SNP datasets, experienced 

biometricians may opt for tree-based models. These models are particularly well-suited for data that mirrors 

gene action in genetic mechanisms involving biosynthetic pathways characterized by step-by-step formation of 

trait-determining products. Furthermore, the binary partitions and splits inherent in tree-building procedures can 

effectively represent relationships between alleles within the same gene (dominance) or between different genes 

(epistasis). This underscores the importance of domain-specific knowledge in model selection.  

However, it is crucial to emphasize that choosing an appropriate model for predicting genetic data should 

not rely solely on domain-specific knowledge. While valuable, other factors such as problem complexity, 

dataset size and quality, algorithm characteristics, and data-handling capabilities must also be considered. 

Therefore, while tree-based models hold promise, it is advisable to explore various approaches and modeling 

techniques, including linear models, neural networks, or machine learning-based methods, to determine 

which model best fits the dataset and analysis objectives. Model selection should be based on experimentation 

and rigorous result evaluation. 

Conclusion 

In this study, the selective accuracy of nine prediction models was evaluated in the context of data 

presenting statistical challenges (nonlinearity, multicollinearity, and data dimensionality), varying noise 

levels (heritability values of 0.20, 0.40, 0.60, and 0.80), and specificities associated with Genome-Wide 

Selection (GWS). Among these models, two stood out as the best fits for the simulated dataset, exhibiting the 

highest selective accuracy for the response variables: RBF and BOO. RBF, associated with the computational 

intelligence paradigm or neural network, demonstrated the highest selective accuracy in the presence of high 

data noise (with an honorable mention of the BAG model in Y2). On the other hand, BOO, aligned with the 
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tree paradigm, excelled in low-noise data settings (or high heritability scenarios). A significant generalization 

was drawn as follows: as data noise decreases, predictive efficiency increases for all considered models, 

indicating a positive correlation between heritability and selective accuracy. Our study also identified a 

question worthy of future research: the impact of sample size versus the value of k in the K-Fold Cross-

Validation method on selective accuracy. Given the relatively small sample size in this study (1,000 individuals) 

and the use of k = 5, these factors may have introduced issues related to representativeness (statistical and genetic) 

in dataset partitioning, which should be further explored in future works concerning SNP analysis. 
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