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ABSTRACT. Artificial neural networks (ANNs) are powerful nonparametric tools for estimating genomic 

breeding values (GEBVs) in genetic breeding. One significant advantage of ANNs is their ability to make 

predictions without requiring prior assumptions about data distribution or the relationship between 

genotype and phenotype. However, ANNs come with a high computational cost, and their predictions may 

be underestimated when including all molecular markers. This study proposes a two-step genomic 

prediction procedure using ANNs to address these challenges. Initially, molecular markers were selected 

either directly through Multivariate Adaptive Regression Splines (MARS) or indirectly based on their 

importance, identified through Boosting, considering the top 5, 20, and 50% of markers with the highest 

significance. Subsequently, the selected markers were employed for genomic prediction using ANNs. This 

approach was applied to two simulated traits: one with ten trait-controlling loci and heritability of 0.4 

(Scenario SC1) and the other with 100 trait-controlling loci and a heritability of 0.2 (Scenario SC2). 

Comparisons were made between ANN predictions using marker selection and those without any marker 

selection. Reducing the number of markers proved to be an efficient strategy, resulting in improved 

accuracy, reduced mean squared error (MSE), and shorter adjustment times. The best ANN predictions were 

obtained with ten markers selected by MARS in SC1, and the top 5% most relevant markers selected using 

Boosting in SC2. As a result, in SC1, predictions using MARS achieved over a 31% increase in accuracy and 

a 90% reduction in MSE. In SC2, predictions using Boosting resulted in more than a 15% increase in accuracy 

and an 83% reduction in MSE. For both scenarios, computational time was up to ten times shorter with 

marker selection. Overall, the two-step prediction procedure emerged as an effective strategy for enhancing 

the computational and predictive performance of ANN models. 
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Introduction 

Advancements in sequencing and genotyping techniques have enabled the direct use of DNA information 

for the selection of genetically superior individuals. Within this context, Genome-Wide Selection (GWS), as 

initially proposed by Meuwissen, Hayes, and Goddard (2001), has demonstrated exceptional efficiency in 

predicting genomic breeding values (GEBVs). This methodology facilitates early individual selection, 

ultimately enhancing genetic gain per unit of time (Crossa et al., 2017; Voss-Fels, Cooper, & Hayes, 2019). 

GWS methods can analyze and estimate the effects of thousands of Single Nucleotide Polymorphism (SNP) 

markers on phenotypes. However, only markers in linkage disequilibrium (LD) with quantitative trait loci 

(QTLs) are relevant for predicting GEBVs and explaining genetic variations in traits of interest. 

The primary statistical methods employed in GWS typically assume distributions for marker effects in the 

models or rely on implicit regressions or dimensionality reduction techniques (Resende, Silva, & Azevedo, 

2014). Nonetheless, there is a growing interest in nonparametric methods, including Artificial Neural 

Networks (ANNs), for handling GWS data. Specifically, the Multilayer Perceptron Networks (MLP) class of 
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ANNs has shown promising results in genetic breeding studies conducted by researchers (Crossa et al., 2017; 

Cruz & Nascimento, 2018; Rosado et al., 2020; Sousa et al., 2022). ANNs operate akin to biological neurons, 

acquiring knowledge through experiences and capable of capturing all available information, including complex 

feature architectures, to generate decision-making criteria (Long et al., 2010; Howard, Carriquiry, & Beavis, 2014; 

Cruz & Nascimento, 2018; Montesinos López, Montesinos López, & Crossa, 2022; Xu et al., 2022). 

Despite the potential of ANN procedures in genomic analysis, numerous markers can limit their 

applicability. High-dimensional scenarios often result in substantial computational costs and challenges 

in the learning process since many resources (markers) represent unnecessary aspects of the ANN search 

space (Long, Gianola, Rosa, & Weigel, 2011; Ehret, Hochstuhl, Gianola, & Thaller, 2015). In other words, 

molecular markers not in LD with the QTLs related to the trait of interest can introduce unnecessary 

complexity when applying ANNs. However, selecting a subset of markers potentially associated with the 

traits of interest can mitigate the high-dimensionality problem, leading to improved learning and 

enhanced predictive power of ANN models (Long et al., 2010; Crossa et al., 2017; Sant’Anna et al., 2020a; 

Silva et al., 2022; Aono et al., 2022). 

Among the proposed methods for dimensionality reduction, those based on principal components and 

independent components merit mention (Azevedo, Resende, Silva, Lopes, & Guimarães, 2013; James, Witten, Hatie, 

& Tibshirani, 2013; Long et al., 2010; Resende et al., 2014; Costa et al., 2020; Paixão et al., 2022; Fialho et al., 2023). 

Additionally, methods for direct selection of variables, such as Bayes B, Bayes Cπ, and Multivariate 

Adaptive Regression Splines (MARS) (Friedman, 1991; Huang et al., 2020; Costa et al., 2022), and indirect 

selection through variable importance, such as Boosting and Random Forest (Ho, Schierding, Wake, Saffery, 

& O’Sullivan, 2019; Sousa et al., 2022), have been proposed. Marker selection has already demonstrated its 

effectiveness in genomic prediction, as demonstrated by Sant’Anna et al. (2020a), who employed stepwise 

regression, and Sousa et al. (2022), who used indirect selection via Bagging. 

Based on the considerations outlined above, this study aims to assess the accuracy, mean squared error 

(MSE), and computational effort of a two-step procedure for genomic prediction. Initially, this approach 

involves either the direct selection of a group of SNPs using Multivariate Adaptive Regression Splines (MARS) 

or the indirect selection of different sets of the most relevant SNPs identified by Boosting. Subsequently, 

these selected markers are used for genomic prediction using ANNs. Predictions are made using simulated 

data, considering two distinct scenarios (SC1 and SC2). In SC1, ten loci control the trait with a heritability of 

0.4, while in SC2, 100 loci control the trait with a heritability of 0.2. 

Material and methods 

Data simulation 

The data set was simulated using the GENES software, as described by Cruz (2013). The genome comprised 

ten linkage groups, each spanning 20 cM and containing 200 SPNs. Thus, approximately 2000 SNPs were 

distributed equidistantly across the genome to ensure comprehensive coverage. For genetic linkage analysis, 

an F1 generation was simulated, consisting of one homozygous dominant parent and one homozygous 

recessive parent. The genotypes of the F1 population were used to generate an F2 mapping population 

comprising 1,000 individuals. Two traits were simulated, both with a zero degree of dominance (d/a = 0), 

where "a" and "d" represent the genotypic values of homozygotes and heterozygotes, respectively, and a mean 

value of 100. However, different narrow-sense heritabilities (ℎ𝑎
2) and genetic architectures were combined to 

create scenarios SC1 and SC2 (Table 1). In SC1, the trait was simulated with a moderate heritability (ℎ𝑎
2  = 0.40) 

and controlled by ten loci, with each chromosome containing a single QTL. In SC2, the trait had a lower 

heritability (ℎ𝑎
2  = 0.20), with each chromosome harboring 10 QTLs. Thus, two genetic architectures, explaining 

equal parts of the genetic variance, were created, with the QTLs distributed within the regions covered by 

SPNs. Additionally, the proportion of genetic variation associated with the QTLs explained by the markers 

(𝑟𝑚𝑞
2 ) was calculated according to Goddard, Hayes, and Meuwissen (2011), as follows: 

𝑟𝑚𝑞
2 =

𝑛

𝑛 + 𝑛𝑄𝑇𝐿

 

where 𝑛 is the number of SNPs and 𝑛𝑄𝑇𝐿 is the number of 𝑄𝑇𝐿. 
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Table 1. Description of the scenarios with respective genetic architectures, number of QTLs, and narrow-sense heritabilities. 

Scenarios 𝑟𝑚𝑞
2  Genetic architecture QTLs Heritability (ℎ𝑎

2) 

SC1 0.99 1 QTL on each of the ten chromosomes 10 0.4 

SC2 0.95 10 QTL on each of the ten chromosomes 100 0.2 

 

Marker selection using multivariate adaptive regression splines 

Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression method used for modeling 

the relationship between predictive and dependent variables via basis functions, primarily in high-

dimensional problems (Friedman, 1991; Huang et al., 2020). 

The model proposed by Friedman (1991) is: 

𝑓(𝑋) =  𝑐0  +  ∑ 𝑐𝑖𝐵𝑖(𝑋)
𝑀

𝑖=1
+  𝜀,  

where 𝑐0 is the intercept, 𝐵𝑖(𝑋) is a basis function, 𝑐𝑖 is the coefficient of 𝐵𝑖  and 𝑀 is the number of basis 

functions automatically defined by the MARS algorithm (Abdulelah Al-Sudani et al., 2019), and 𝜀 is the 

random error. The coefficients 𝑐𝑖 (𝑖 =  0, 1, . . . , 𝑀) are estimated via minimization of the residual sum of 

squares (RSS) (Hastie, Tibshirani, & Friedman, 2009). 

MARS involves two phases: forward and backward. In the forward phase, the model incorporates pairs of 

basic functions that minimize the Residual Sum of Squares (RSS) (Hastie et al., 2009; Park & Kim, 2018). In 

the backward phase, certain basis functions are excluded to create a more parsimonious model that avoids 

overfitting. The MARS algorithm can select variables during model building, and this approach was employed 

to select SPNs, which were then used as inputs for ANN training. 

Marker selection using boosting 

As described by James et al. (2013), the Boosting method is a statistical learning approach that employs 

regression trees to adjust the residuals of an initial model. The residuals are updated in each tree, grown 

sequentially from the previous tree, and the response variable involves a combination of many trees, such 

that 𝑓(𝑥) = ∑ 𝜆𝑓𝑏(𝑥)𝐵
𝑏=1 . The function 𝑓(. ) refers to the final tree resulting from the sequential combination 

of the previously adjusted trees. The parameter λ is the shrinkage that controls the learning rate of the 

method. This method also needs to be adjusted with several splits in each tree. This parameter controls the 

complexity of the boosting and is known as depth. 

In this method, the importance of variables, as described by Friedman (2001), can be used to indirectly 

select sets of the most relevant SPNs. The sets of markers comprised 5, 20, and 50% of the markers, equating 

to 100, 400, and 1,000 markers used, respectively. 

Artificial neural network (ANN) 

In this study, the Multilayer Perceptron Network (MLP), initially proposed by Rosenblatt (1958), was 

employed as the ANN class. The error backpropagation learning algorithm was chosen for adjusting weights 

during ANN training. The network topology varied, featuring a single hidden layer with one to 30 neurons. 

The logistic function served as the activation function, and the identity function was used as the output 

function. The training phase encompassed 1,000 iterations.  

The output of the hidden layer is computed by taking a linear combination of the I input variables and 

then applying the logistic activation function, φ(.). Specifically, the output of the kth neuron in the layer is 

determined as follows: 

𝑊1𝑘 = 𝜑 (𝑤0𝑘𝑏1 + ∑ 𝑤𝑖𝑘𝑀𝑖

𝐼

𝑖=1

) , 𝑘 = 1, ⋯ , 𝐾, 

where K is the number of neurons in the hidden layer, wik is the synaptic weight between the ith marker and 

the kth neuron, and w0k is the synaptic weight of the bias b1 for the kth neuron. 

The ANN output is given as follows: 

𝑌𝑁 = 𝑤0
′′𝑏2 + ∑ 𝑊1𝑖𝑤𝑖

′′

𝐽

𝑖=1

, 
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where 𝑤𝑖
′′ is the synaptic weight between the ith neuron of the hidden layer and the network output layer, 

and 𝑤0
′′ is the synaptic weight of the bias b2. 

Cross-validation 

The performance of ANN models was evaluated through a k-fold cross-validation process, dividing the 

population (1000 observations) into five groups, each comprising 200 observations. In each iteration, one group 

served as the validation population, while the remaining four constituted the training population. This process was 

repeated five times, ensuring all individuals participated in the validation population exactly once. 

Two-step genomic prediction and comparison of marker selection approaches 

Initially, the training sets (800 observations) underwent direct marker selection via MARS and indirect 

marker selection via Boosting in each fold. Subsequently, the selected markers were used as input variables 

for ANN. Accuracy and mean square error (MSE) were measured using the validation set (200 observations), 

except for time, which was recorded during the training phase. Accuracy was determined using the Pearson 

correlation between observed GEBVs and predicted GEBVs, while MSE was calculated based on the mean 

squared difference between observed and predicted GEBVs (Figure 1). 

 

Figure 1. Two-step genomic prediction scheme. 

The analyses were conducted using the R software (R Core Team, 2022).  

For MARS adjustment, the "earth" function from the "earth" package was employed. For Boosting, the 

"gbm" function from the "gbm" package was used. Finally, the ANN analysis was performed using the "mlp" 

function from the "RSNNS."  

Comparison of GWS methodologies 

Following the k-fold process and obtaining performance metrics, the network topology with the highest 

accuracy value (i.e., a network model with the number of neurons ranging from 1 to 30 in the hidden layer) 

was selected to represent the network with the best predictive capacity within each k-fold iteration. Accuracy, 

MSE, and time values were summarized by calculating their mean and standard error (SE) to compare the 

performance of different two-step genomic prediction methods to ANNs used without prior marker selection. 

Results 

Figures 2, 3, and 4 illustrate the accuracy, MSE, and time required for accessing the results for both 

scenarios, SC1 and SC2. During the MARS fitting, a fixed number of ten markers was consistently selected, 

irrespective of the scenario or the training set used in the k-fold process. Consequently, only ten markers out 

of the total 2,000 were used for the subsequent training and validation of the ANN models. 

In SC1, a reduction in accuracy was observed as the number of selected markers increased. In this scenario, 

the highest accuracy (0.96 ± 0.00) was achieved with markers directly selected via MARS (10 markers), 

representing a substantial 30% increase compared to the accuracy (0.73 ± 0.01) obtained with no marker 

selection (Figure 2). 

Similarly, in SC2, a pattern analogous to SC1 was observed. However, the highest accuracy (0.98 ± 0.00) was 

attained when the top 5% most important markers (100 markers) were selected by Boosting, leading to a notable 

15% increase in accuracy relative to the accuracy (0.85 ± 0.01) obtained with no marker selection (Figure 2). 
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In both scenarios, marker selection resulted in a sparse set of markers covering a significant portion of the 

genome. Supplementary Figures S1 and S2 present the positions of markers selected by the best methodology 

for SC1 and SC2, along with the corresponding QTLs. The supplementary material is available for download 

at https://www.licae.ufv.br/pesquisa/.  

 

Figure 2. Accuracy (± SE) obtained in the validation by the ANN models adjusted with different sets of markers, either directly selected 

via MARS or indirectly via Boosting using the top 5, 20, and 50% most important markers. An ANN model adjusted with all 2,000 

markers (no marker selection) is included for comparison. SC1: 1 QTL on each of the ten chromosomes; SC2: 10 QTL on each of the ten 

chromosomes. 

As expected, predictions obtained with no marker selection exhibited the highest MSE values in both 

scenarios (Figure 3). However, in SC1, the ANN predictions achieved the lowest MSE when MARS selected the 

markers (5.33 ± 0.34), representing a substantial 90% reduction in MSE compared to no marker selection. In 

SC2, the top 5% most important markers identified by Boosting yielded the lowest MSE (11.65 ± 1.29), 

resulting in an approximately 83% decrease in MSE compared to no marker selection (Figure 3). 

 

Figure 3. Mean square error (± SE) obtained in the validation phase by the ANN models adjusted with different sets of markers, either 

directly selected via MARS or indirectly via Boosting using the top 5, 20, and 50% most important markers. An ANN model adjusted 

with all 2,000 markers (no marker selection) is included for comparison. SC1: 1 QTL on each of the ten chromosomes; SC2: 10 QTL on 

each of the ten chromosomes. 

In SC1, the computational time for training the ANN varied from 2.38s (with MARS-selected markers) to 

27.54s (with no marker selection). In SC2, the range was 3.55s (with the top 5% most important markers 

selected via Boosting) to 38.59s (with no marker selection). As expected, computational time was longer 

without marker selection and was generally slightly higher in SC2 compared to SC1 (Figure 4). 
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Figure 4. Mean square error (± SE) obtained in the training phase of the ANN models adjusted with different sets of markers, either directly selected 

via MARS or indirectly via Boosting using the top 5, 20, and 50% most important markers. An ANN model adjusted with all 2,000 markers (no 

marker selection) is included for comparison. SC1: 1 QTL on each of the ten chromosomes; SC2: 10 QTL on each of the ten chromosomes. 

Discussion 

This study proposed a two-step genomic prediction procedure that combines either MARS or Boosting 

with an ANN to enhance computational efficiency and predictive capacity. Initially, MARS and Boosting were 

employed for marker selection in two scenarios (SC1 and SC2). Scenario SC1 involved a trait with ℎ𝑎
2 = 0.4 and 

ten trait-controlling loci, while scenario SC2 involved a trait with ℎ𝑎
2 = 0.2 and 100 trait-controlling loci. 

Subsequently, the selected markers were used as input for the ANN to establish the genomic prediction model. 

While ANNs are favored in genetic breeding for their flexibility and lack of a priori assumptions about the 

genotype-phenotype relationship (Glória et al., 2016), they are disadvantaged by their high computational 

cost compared to traditional genomic prediction methods. For instance, ANNs can be up to nine times slower 

than GBLASSO (Sousa et al., 2020). 

A potential solution to overcome this limitation is to employ the proposed two-step genomic prediction 

approach, as ANNs alone do not perform marker selection. Marker selection is crucial to reduce the impact of 

non-informative markers and improve the accuracy of genomic prediction. Additionally, marker selection 

supports the assumption that not all markers in the genome are in linkage disequilibrium (LD) with the QTLs. 

MARS was selected for marker selection in this study due to its nonparametric regression capabilities, 

which have not been extensively utilized in genetic breeding studies. Nevertheless, MARS offers several 

advantages, including flexibility in model adjustment and the ability to detect important variables in high-

dimensional scenarios (Zabihi, Pourghasemi, Motevalli, & Zakeri, 2019; Nayana, Kumar, & Chesneau, 2022). 

This potential has also made MARS highly promising for predicting and selecting genomic markers, 

outperforming conventional statistical models such as GBLUP (Costa et al., 2022). Furthermore, Boosting, an 

ensemble learning method, has demonstrated success in genetic breeding studies (Silveira, Lima, Nascimento, 

Nascimento, & Silva, 2020; Sousa et al., 2020; Westhues et al., 2021). It is particularly indicated for regression 

problems due to its high predictive capabilities, surpassing methods like Random Forest and Support Vector Machine. 

Additionally, it incorporates automatic indirect marker selection (Ogutu, Piepho, & Schulz-Streeck, 2011). 

This study demonstrates the efficiency of marker selection for genomic prediction in both evaluated 

scenarios (SC1 and SC2). Compared to using ANN without marker selection, a significant improvement of 

over 30% in predictive capacity was observed when using markers selected with MARS in SC1. Similarly, in 

SC2, approximately a 15% improvement in predictive capacity was achieved when the top 5% most important 

markers were indirectly selected via Boosting. It is noteworthy that MARS and Boosting (5%) selected ten 

markers in SC1 and 100 markers in SC2, which align with the QTL numbers in these scenarios. These results 

suggest that MARS is an intriguing method for selecting markers in oligogenic genetic architectures. 

Conversely, the Boosting approach performs better in the SC2 scenario, which comprises 100 QTLs.  

The markers selected by MARS and Boosting, as displayed in Supplementary Figures S1 and S2, underscore 

the effectiveness of using only a few markers to predict GEBVs. Markers with high LD among themselves 

represent redundant information and may be discarded. Therefore, incorporating information into the model 
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requires only one marker from those with high LD. This implies that high-density panels may not necessarily 

improve predictive capacity (Song & Hu, 2022). 

Sousa et al. (2022) found consistent results with this study when assessing the effect of marker selection 

on genomic prediction in Coffea canephora. Li et al. (2018) employed machine learning methods to select 3000 

markers, achieving a predictive capacity of 0.41 using Random Forest for marker selection and 0.46 using 

Gradient Boosting Machine (GBM), compared to 0.43 using the entire available panel of SPN markers (38,082). 

These researchers observed that the predictive capacity increased as the number of markers decreased, 

reaching optimal values with the use of 3.4% to 6.9% of the total number of available markers. 

Sant’Anna et al. (2020a) demonstrated that by using simulated data and selecting markers via stepwise 

regression, the radial basis function network had improved reliability in predicting and reduced the ANN 

fitting time by up to 20 times. Additionally, the efficiency of MARS for selecting variables to serve as input in 

ANNs has been demonstrated by Kao and Chiu (2020). These researchers found that a network adjusted with 

prior selected variables can be up to three times faster than a network without variable selection while 

producing more accurate results. 

Additionally, it was shown that marker selection significantly reduced the computational time required 

for fitting the ANN. The time to adjust the ANN for prediction was 11.57 times smaller for the two-step 

prediction using marker selection by MARS in SC1. While in SC2, the time was up to 10.87 times faster for 

ANN with the selection of the top 5% most important markers using Boosting. Moreover, an increased time 

required to fit the ANN model was observed as more markers were included as input variables. For instance, 

with the top 50% most important markers via Boosting, the time spent to fit the ANN model was only 1.03 

times faster than the ANN fitting without marker selection in SC1 and 1.79 times faster than the ANN fitting 

without marker selection in SC2. 

This study supports the hypothesis that marker selection efficiently reduces computational costs while 

increasing predictive accuracy. The explanation lies in the reduction of the marker pool, which, in turn, 

reduces the search space for the ANN, contributing to the improved predictive power of the model (Sant’Anna, 

Silva, Nascimento, & Cruz, 2020b). 

Conclusion 

Boosting and MARS proved to be efficient methodologies for marker selection. The proposed two-step 

prediction model emerged as an effective strategy for mitigating computational costs while enhancing the 

prediction accuracy of an ANN. 
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