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ABSTRACT. The study of insect feeding behavior using electropenetrography (EPG) typically involves 

analyzing complex data. EPG data comprises a temporal sequence of behaviors summarized using a 

collection of counts, durations, and sequential variables. These variables can be counts, means, 

percentages, or linear combinations of behaviors. This results in numerous variables being correlated to a 

certain degree. Consequently, statistical analysis is rendered complex, particularly in terms of model fitting 

and selection. This study proposed a statistical approach to simulate overdispersed correlated count data 

based on a previous comparative experiment to monitor the feeding behavior of untreated Euschistus heros 

versus E. heros treated with an entomopathogen. The waveforms included non-feeding (Z), pathway (Eh1), 

laceration/maceration of endosperm tissue (Eh3a), short ingestion events of lacerated/macerated 

endosperm tissue (Eh3b), xylem sap ingestion (Eh2), and ingestion from an unknown location (Eh4). 

Simulated scenarios involved the creation of differences between groups of insects based on the total 

number of events or the proportion of events of Z. Several statistical models were then fitted to the 

simulated data and evaluated based on goodness-of-fit, type-I error rate, and power analysis. The 

multinomial model exhibited the lowest type-I error rate and was more sensitive in detecting higher (>1.35x) 

differences between groups. Only the multinomial model achieved a power greater than 0.8. Conversely, models 

such as the Poisson and normal models exhibited limitations such as inflated type-I error rates in the presence 

of overdispersion. Among the univariate models, the mixed model exhibited the best fit. 
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Introduction 

Several pests affect soybeans, among which the neotropical brown stink bug (Euschistus heros (Fabricius), 

Hemiptera: Pentatomidae) has garnered attention because of its high losses (Sosa-Gómez et al., 2020). The 

feeding damage caused by sucking insects on pods can result in losses exceeding 30% (Antúnez et al., 2022). 

There are numerous challenges to understanding the biology of sucking insects, and elucidating this 

information will enable the development of more efficient management tools. 

In sucking insects, the observance of feeding activities with the naked eye is challenging because they 

occur inside the opaque host tissue. This renders the identification of initial symptoms difficult. Through a 

technology called electropenetrography (EPG) (Mclean & Kinsey, 1964), detailed insights into the feeding 

behavior of this group of insects can be obtained by analyzing voltage pattern data from an electrical circuit 

that includes both insects and plants (Backus et al., 2019). 

In experiments with E. heros using EPG, we can monitor and characterize EPG waveforms, determine 

specific feeding sites, and ascertain the biological significance of waveforms based on their electrical 

characteristics and histological correlations (Lucini & Panizzi, 2018). However, although these feeding events 

are intrinsically related, they are generally treated separately. This facilitates the exploitation or 

underutilization of data. 

The EPG generates a large amount of data with various types of variables of duration and number of 

waveform events. It is common for these data to have excess zeros, which renders statistical analysis complex, 
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particularly in terms of model fitting and the selection of the most important variables (Ying et al., 2021; Hu 

et al., 2020; Lucini & Panizzi, 2017). Several programs are used to read the data generated by EPG, such as 

Backus 1.0 (Backus et al., 2007) EPG-Calc (Giordanengo, 2014), Sarria Workbook (Sarria et al., 2009), Ebert 1.0 

(Ebert et al., 2015), and INFEST (Silva et al., 2022). The data read by these programs can be used to build 

statistical models to elucidate issues related to pest biology (Ying et al., 2021; Hu et al., 2020; Lucini & 

Panizzi, 2017).  

There are numerous approaches to evaluating this large volume of data, ranging from simpler analyses, 

such as linear models and their transformations, to complex models, such as generalized linear models (GLM), 

generalized additive models for location, scale, and shape (GAMLSS), and even multinomial models (Freitas & 

Duarte, 2023; Schmidt et al., 2022; Rigby & Stasinopoulos, 2005). To assess the accuracy of these models, the 

Akaike Information Criterion (AIC), power analysis, and type-I error rate must be examined (Sakamoto et al., 1986). 

One method to evaluate the model performance and importance of variables involves data simulation 

based on sets of rules or probabilistic distributions observed in previous experiments (Tyralis & 

Papacharalampous, 2024). However, studies involving simulations of EPG data are scarce. This may be 

because of the nature of the raw data generated by the equipment, which comprises recordings with voltage 

information (Backus & Shih, 2020). Consequently, the identification and classification of voltage patterns in 

specific types of waves are time-consuming, and the process requires a highly trained and skilled user. 

Moreover, variables generated by EPG generally exhibit a correlation, which must be considered in the 

simulation process. 

Thus, this study aimed to simulate and model discrete feeding EPG data for Euschistus heros and compare 

these models based on goodness-of-fit, type-I error rate, and power analysis. 

Material and methods 

Simulation strategy and scenarios 

The simulation scenarios were based on an EPG study (Rodrigues, 2023) to monitor the behavior of 

Euschistus heros (Fabricius) (Hemiptera: Heteroptera) feeding on soybean pods in two groups of 16 insects 

each (control and treatment: application of the entomopathogenic fungus Metarhizium anisopliae). The 

recordings were completed after 72h. The following waveform events were recorded: Z (non-feeding), Eh1 

(pathway), Eh3a (laceration/maceration of the endosperm), Eh3b (short ingestion event of 

lacerated/macerated endosperm tissue), Eh2 (xylem sap ingestion), and Eh4 (ingestion from an unknown 

location). From the experimental data on the number of waveform events by insects, 10,000 data simulations 

were performed. 

Let y = [y1  y2  … yk ] represent the k-dimensional vector of the number of events per waveform by an insect 

(NWEi), which is mutually exclusive. Let N = ∑ 𝑦𝑘
𝐾
𝑘=1  be the total number of insect events during the entire 

recording period. As previously reported (Terza & Wilson, 1990; Schmidt et al., 2022), we considered the 

conditional probability distribution of y given N as  

y|N~Multinomial(N,π) 

where: yk = 0, 1, 2,…,∞; and is π = [π1 π2 … πk] the k-dimensional vector of parameters representing the 

multinomial probabilities, with ∑ 𝜋𝑘
𝐾
𝑘=1  = 1. 

Because N is not expected to be homogeneous across insects, we considered it a random variable that could 

be modelled by a discrete probability model, say, h(.),  

N~h(μ,σ) 

where: μ represents the mean and σ the dispersion parameter; N = 0, 1, 2,…,∞. Here, a natural choice for h(.) 

is Poisson(μ,σ=1). Because N can be affected by factors that may vary among insects, such as recording time 

and treatment, it may be overdispersed. Thus, its observed variability is greater than that captured by 

parametric models such as Poisson. Alternatively, examples of models that can accommodate overdispersion are 

Double-Poisson(μ,σ) and Gamma-Poisson(μ,σ), because both have σ > 0. We computed the estimates of the maximum 

likelihood (EMV) of μ and σ and used Akaike’s information criterion (AIC) to select the best-fitting model. 

From the joint distribution of y and N, we obtain 

Pr(y,N│μ,σ,π) =Pr(y│N,π) Pr(N |μ,σ) 
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We simulated 10,000 data matrices Y with dimensions 32 x 16 (n insects × K waveforms) under the null 

hypothesis of no difference between experimental groups, that is, H0: θ1= θ2; where θ: {μ,σ,π}. This was done 

to evaluate the type-I error rate of statistical tests as one criterion to evaluate and select regression models. 

The next section describes this calculation and that of the power analyses. 

Regression models, type-I error rate and power analysis 

After simulating Y, the univariate regression models were fitted to the selected response variable y1, 

corresponding to waveform Z (no feeding activity), as presented in Table 1. 

Table 1. Regression models.  

Model Type* Mean/Linear Predictor** Dispersion*** 

Normal Linear μi=β0+τi σ 

Normal with sqrt transformation Linear √μi =β0+τi σ 

Normal with log transformation Linear log(μi)=β0+τi σ 

Poisson GLM log(μi)=β0+τi -- 

Negative Binomial type II GLM log(μi)=β0+τi σ 

Gamma GLM μi
-1=β0+τi σ 

Gamma-Poisson GAMLSS log(μi)=β0+τi log(σi) = α0 

Poisson-inverse Gaussian GAMLSS log(μi)=β0+τi log(σi) = α0 

Mixed effects Linear μi=β0+τi στ + σ 

Mixed effects with heteroscedasticity Linear μi=β0+τi σ1,σ2,σ 

*GLM: generalized linear model; GAMLSS: generalized additive model for location, scale, and shape. **μi: expected mean of Group i (i = 1, 2) for the 

response y1, β0: intercept; τi: effect of Group i. ***α0: intercept for the dispersion parameter σ. 

After fitting the regression models, type-I error rate was calculated as the proportion of the p-values of 

the F-test or likelihood ratio test (LRT) (depending on the regression model) for the group factor that was 

lower than the nominal significance level, α = 0.05. 

A power analysis was performed by simulating the data matrices Y under the alternative hypothesis Ha:θ 

≠ θ2, employing 2 methods. 

1) A multiplicative effect size δ was applied to the mean of Group 2, μ2 = δμ ̂, where μ ̂ is the maximum 

likelihood estimate (MLE) of the general mean of the total number of events by insect; y1 (waveform Z) was 

selected as response variable. The following values of effect size were used: δ = {0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 1.1, 

1.2, 1.3, 1.5, and 1.8}. The proportion of p-values of the F-test or LRT lower than α=0.05 was considered as the 

power. 

2) A multiplicative effect size δ was applied to the probability of y1 (waveform Z) of Group 2, that is, π12 = 

δπ ̂1; where π ̂1 is the MLE of the general probability of y1. To maintain the constraint ∑ 𝜋𝑘
𝐾
𝑘=1  = 1 of the 

multinomial model, we subtracted the value (π12 -π ̂1)/(K-1) from all the other probabilities (k≠1) uniformly. 

The following values of effect size were used: δ = {1.1, 1.25, 1.5, 1.75, and 2.0}. The proportion of p-values of 

the F-test or LRT lower than α = 0.05 was considered as the power. 

In addition to the regression models described in Table 1, the multinomial regression model was also used. 

Consequently, the type-I error rate and power analysis (multiplicative effect size δ to the probability of 

(waveform Z) of Group 2) were calculated. The multinomial regression model is a generalization of the logistic 

y1 regression model wherein the mean is modelled by the linear predictor using the following equation: 

logit(μi)=β0+τi 

where: μi represents the vector of proportions of waveform events for the Group i. 

Computing 

EPG recording files were processed using INFEST® (Silva et al., 2022). Statistical analysis and computing 

were performed in R (R Core Team, 2023), using the packages MASS, nnet (Venables & Ripley, 2002), gamlss 

(Rigby & Stasinopoulos, 2005), nlme (Pinheiro et al., 2021), and extraDistr (Wolodzko, 2020). 

Results 

Table 2 lists the total number of events and waveform proportions from the experimental data used in the 

simulations. The experimental groups showed large numerical differences in the number of waveform events, 

such as Eh3b (74 vs. 218) and Eh2 (16 vs. 95). Moreover, a low frequency was observed in Eh4 for Group 1, 
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which corresponded to one or fewer events per insect. This resulted in the occurrence of zeros in the data to 

be subjected to statistical analysis. In contrast, waveforms such as Eh3a exhibited a considerably higher 

number of events.  

Table 2. Total number of waveform events (N) and proportions from the data used for simulations. 

   Waveforms 

Group #Insects  Z Eh1 Eh3a Eh3b Eh2 Eh4 

1 16 
N 201 206 239 74 16 15 

Proportion 0.2676 0.2743 0.3182 0.0985 0.0213 0.0200 

2 16 
N 255 306 424 218 95 44 

Proportion 0.1900 0.2280 0.3159 0.1624 0.0708 0.0328 

Z = non-feeding, Eh1 = stylet penetration, Eh3a = seed disruption, Eh3b = ingestion from seeds, Eh2 = xylem sap ingestion, and Eh4 = ingestion from 

unknown location. 

The total number of activities per insect (N) was overdispersed, and distribution models with a 

dispersion parameter greater than one presented a better fit (Figure 1). The three models correctly 

estimated a general mean of approximately 65.5 events, however, the Poisson model underestimated the 

dispersion of the data. The double-Poisson estimate for the dispersion parameter was 29.67, with a 

slightly better fit (lower AIC) than that of the Gamma–Poisson, whose dispersion estimate was 47.31. 

Thus, a double-Poisson model was used to simulate the data using the proposed approach based on a 

multinomial distribution.  

 

Figure 1. Goodness-of-fit of the probability distribution models to the total number of activities per insect (N). 

To check whether the simulation strategy could maintain the correlation structure among the waveforms, 

we calculated a coincidence index between each resulting correlation matrix from the simulated data and that 

from the original dataset. The index is based on the average of the absolute differences between the 

correlation values. We obtained index values ranging as 0.65–0.81, with a mean coincidence of 0.73. 

The type-I error rate for 10,000 simulations is shown in the level plot (Figure 2). It was calculated for all 

fitted regression models, including the multinomial model, which considered all waveform events 

simultaneously.  

The type-I error rate must be measured because it is undesirable for a test to reject a true hypothesis. The 

multinomial model had the lowest type-I error rate. In general, the other models identified non-existent 

differences that did not exist, primarily for the waveforms Eh1, Eh3a, and Eh2. The Poisson model exhibited 

the highest type-I error rate for all waveforms (above 0.4). Except for waveform Z, the Normal model exhibited 

a type-I error exceeding 0.2. 

The power of tests and the root-mean-squared-error (RMSE) are shown in Figure 3, which is based on the 

effects size of µ and the mean number of total activities by insect. Figure 4 shows the power based on the 

effect sizes of the probability of the waveform Z. 
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Figure 2. Type-I error rate of likelihood ratio tests (α = 0.05) performed on regression models fitted to simulated data on the number of 

events per waveform by insect. NO = normal, sqtr = normal with sqrt transformation, log = normal with log transformation, PO = 

Poisson, NB = negative binomial type II, GA = Gamma, GP = Gamma–Poisson, PIG = Poisson-inverse gaussian, MIX = mixed and MIX2 = 

Mixed with heteroscedasticity. Z = non-feeding, Eh1 = stylet penetration, Eh3a = seed disruption, Eh3b = ingestion from seeds, Eh2 = 

xylem sap ingestion, and Eh4 = ingestion from unknown location. 

 
Figure 3. Power analysis (left side) and RMSE (right) based on the effect size of µ and the general mean of the total number of events 

by insect. NO = normal, sqtr = normal with sqrt transformation, log = normal with log transformation, PO = Poisson, NB = negative 

binomial type II, GA = Gamma, GP = Gamma–Poisson, PIG = Poisson-inverse gaussian, MIX = mixed, MIX2 = Mixed with 

heteroscedasticity, and RMSE = root mean-square error. 

Power analysis can quantify the extent to which the model can detect statistical differences, and RMSE 

measures the accuracy of the model. Through the application of a multiplicative effect size δ to the mean of 

Group 2, the Poisson model could detect differences between treatments with the highest power. The 

Gamma–Poisson and Poisson-inverse Gaussian models exhibited higher power for small differences (30 and 

20%, respectively). In general, the models identified differences with at least 80% power from a 70% difference 

or greater. Between the two transformations, the log transformation performed slightly better. 

The mixed (MIX) model was the most accurate, with RMSE below 1.5, regardless of the effect size of μ. This 

was followed by the mixed model with heteroscedasticity (MIX2). The other models exhibited similar values. 
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Figure 4. Power analysis (left side) and RMSE (right) based on the effect size δ of the probability of the waveform Z. NO = normal, sqtr 

= normal with sqrt transformation, log = normal with log transformation, PO = Poisson, NB = negative binomial type II, GA = Gamma, 

GP = Gamma–Poisson, PIG = Poisson-inverse gaussian, MIX = mixed, MIX2 = Mixed with heteroscedasticity and MULT = multinomial, 

and RMSE = root mean-square error. 

Through the application of a multiplicative effect size δ to the probability of waveform Z for Group 2 in 

simulations, the Poisson model was observed to be the most sensitive in terms of detecting small differences 

between Groups. In contrast, the multinomial model was more sensitive in detecting higher (>1.35 ×) 

differences between the groups. Only the multinomial model achieved 80% power. The multinomial and the 

mixed models (MIX) exhibited the lowest RMSE regardless of the difference in effect size δ applied to the 

probability of waveform Z. 

Discussion 

Overdispersion, as observed in Figure 1, is common in count data, such as EPG experiments (Coly et al., 

2016). This is attributable to several factors, such as excess of zeros (Avci et al., 2015). Excess zeros may be 

caused by a treatment effect, such as pesticide application, or may be a result of insufficient recording time. 

In the E. heros data, Group 1 presented only 15 events of waveform Eh4 throughout the recording (Table 3), 

which indicated the presence of zeros; although how they were distributed in the data was not indicated.  

There are many specific models for overdispersion that can be divided into two classes: (i) models that 

assume more general forms for the variance function, possibly including additional parameters, such as the 

binomial model, and (ii) models wherein the response model parameter itself has certain distribution, such 

as the negative binomial model (Hinde & Demétrio, 1998). 

Several statistical models were fitted and evaluated based on goodness-of-fit, type-I error rate, and power 

analysis. Models used for continuous data were also applied, such as normal data, because there may be 

asymptotic normal approximations from the count data. Moreover, transformations were evaluated. This is 

because data not satisfying the assumption of normality is common and prevents the use of classical 

regression models (Silva et al., 2019). 

The multinomial model exhibits the lowest type-I error rate. Furthermore, it facilitates the analysis of 

complex and interrelated relationships between waveforms (El-habil, 2012; Schmidt et al., 2022). For the 

power analysis based on the effect size δ of the probability of the waveform Z, the model was the best for 

detecting differences between groups greater than 1.35x. Nonetheless, no published studies were found in the 

literature involving the use of the multinomial model to analyze EPG data. 

Poisson regression is commonly used to count data from the EPG, as performed by Almeida et al. (2025), 

to analyze the feeding behavior of Euschistus heros treated with Metarhizium anisopliae. However, in our study, 

the Poisson model presented high type-I error rates (above 0.5) for most response variables. This is probably 
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owing to the model’s assumption of equidispersion when the variance is equal to the mean, which is a strong 

limitation (Freitas & Duarte, 2023) to EPG data. In modeling, inappropriate assumptions may result in invalid 

hypothesis tests (Gourieroux et al., 1984). Thus, the higher power observed with Poisson’s law was likely 

associated with a higher type-I error rate. For data that present overdispersion, models such as negative 

binomial or Gamma–Poisson are typically a better choice (Hausman et al., 1984). 

The Gamma–Poisson model presented type-I error rates of approximately 0.2 for most variables, which is 

smaller than the Poisson model. The combination of Gamma and Poisson distributions facilitated greater 

flexibility as it did not assume equidispersion, resulting in a lower type-I error rate for overdispersed data 

(Freitas & Duarte, 2023). Greenwood and Yule (1920) considered that the number of events of the response 

variable followed a Poisson distribution, with parameter λ that varied according to a Gamma distribution with 

parameters α and β. Thus, it is considered that the conditional Y | λ ~ Poisson(λ), and the parameter λ itself 

followed a Gamma distribution λ ~ Gamma (α, β). 

The PIG model is also a derivative of the Poisson distribution proposed by Holla (1967) as an alternative 

to the Poisson distribution for cases with overdispersion; therefore, lower type-I error rates compared to the 

Poisson model were expected. Furthermore, the PIG distribution has been considered a better alternative than 

the Gamma–Poisson distribution to model data with long-tail overdispersion (Putri et al., 2020). In terms of 

general performance, that is, considering the type-I error, power of tests, and goodness-of-fit, PIG and 

Gamma–Poisson exhibited similar results, representing good alternatives to model the EPG count data. 

The classical normal model is most commonly used to analyze EPG data. However, in our study, the model 

exhibited high type-I error rates (approximately 0.2). This type of distribution is often used in works involving 

continuous data and counts (Krithikadatta, 2014), including EPG data (Wayadande et al., 2020; Guedes et al., 

2018). For EPG data, particularly from experiments with pesticides, in case of early stops in insect feeding 

activities, or in cases of different recording times, certain response variables are likely to be heteroscedastic 

in terms of the experimental factor levels. Thus, the assumption of homoscedasticity is strong and the unique 

estimate of variance used to test for significant differences may be underestimated, thereby increasing the 

type-I error rate. In certain situations, the insecticide effect of a treatment can prevent the insects from 

performing certain feeding activities that the untreated insects usually do. This causes certain response 

variables to be zero-inflated or, more generically, overdispersed. The classical normal model cannot 

incorporate this, thereby capturing only part of the observed variability. This renders the related statistical 

tests more susceptible to type-I error. 

In certain studies the count data was assumed to follow a normal distribution, and the t-test was applied to 

compare treatments (Ebert et al., 2018; Tariq et al., 2017). In our study, data transformation, particularly the 

logarithm, reduced the type-I error rate close to the nominal level (0.05) for the variables Eh3a, Eh3b, and Eh4. 

Thus, probably because of their flexibility in capturing different data structures (Harrison, 2014; Dixon, 

2016; Giesselmann & Schmidt-Catran, 2020), mixed models exhibited the lowest RMSE values and relatively 

low type-I error rates. 

Conclusion 

This study proposed a comprehensive approach for simulating correlated overdispersed count EPG data and 

conducted a comparative examination of statistical models. The multinomial model emerged as a robust choice, 

presenting low values of root-mean-square error, excelling in controlling the type-I error rate, and exhibiting the 

highest power for the detection of simulated differences between the means. Conversely, the Poisson model and 

classical normal distribution exhibited inflated type-I error rates in the presence of overdispersion, leading to 

erroneous conclusions. Among univariate models, the mixed model exhibited the best fit. 
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