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ABSTRACT. Soybean is an oilseed of great relevance to Brazil because it is one of the main crops produced 

in the country. The success of this crop depends on several factors, the main one being seed quality. The 

tetrazolium test has been used for quality control because in addition to evaluating the viability of 

germination and the vigor of the seed lots, it facilitates classification of the types of damage. Thus, the use 

of sequential sampling, which takes into account the immediate evaluation of each seed, may facilitate an 

earlier decision on viability and vigor without the need to evaluate all seeds as in the classic test as a 

formality of the method. In addition, the estimates obtained through Bayesian techniques can be improved 

by including prior information. The objective of this study was to study the application of Bayesian 

sequential tests to estimate the proportion of vigor in lots (binomial modeling) and the proportion of 

damage per category in soybean seeds (multinomial modeling) through the tetrazolium test. In each case, 

conjugate priors were used, and the parameters were elicited. It can be concluded that the four approaches, 

frequentist, Bayesian, sequential, and Bayesian sequential, were efficient for estimation of and decision-

making about the parameters, with a reduction in the sample size. Moisture damage was present in 20.17% 

of the soybean seeds evaluated, damage by stink bugs in 3.50%, and mechanical damage, in the case of 

manual harvesting, in only 1.92%. In addition, 1.00% of seeds presented more than two types of damage. 
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Introduction 

Soybeans (Glycine max (L.) Merrill) are the main agricultural product in Brazilian exports and the main product 

responsible for the increase in the domestic grain harvest. The success of the crop depends on several factors, but 

undoubtedly, the most important of these is the use of high-quality seeds that generate high-vigor plants and, 

therefore, superior performance in the field (Toloi et al., 2021). To ensure this requirement, it is necessary to 

employ an agile, versatile, and reliable quality control system, offering fast and accurate results (Lopes et al., 2020). 

Among the main factors compromising seed quality are those that reduce the physiological quality of 

soybean seeds, causing their deterioration, such as moisture damage, stink bugs, and mechanical damage. 

Excessive moisture results in wrinkles on the seed coat, while pests like stink bugs cause tissue necrosis. 

Mechanical damage significantly impacts seed quality, affecting germination and seedling emergence. 

Additionally, seeds can be simultaneously affected by two or more types of damage. Furthermore, recent 

climate changes are also a factor that can alter seed quality (Abati et al., 2021). 

It is important to ensure the physical integrity of seeds, as it plays a significant role in achieving high 

productivity levels. Thus, it is essential for seeds to undergo rigorous quality control before reaching the 

farmer (Jesus et al., 2021). 

To evaluate the viability of germination and the vigor of the seed lots and to identify the different types of 

damage in the seeds, the tetrazolium test has been used in the seed industry in Brazil for quality control, 

mainly for soybean crops (Marcos-Filho, 2015). In the tetrazolium test, seeds are classified according to 

different vigor classes (vigorous or nonvigorous) and the types of damage they present (moisture, stink bug, 

and/or mechanical) (França-Neto & Krzyzanowski, 2022). 
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Thus, each evaluated seed can be classified as vigorous or nonvigorous, characterizing a Bernoulli experiment, 

in which p corresponds to the proportion of vigor and there is, in a lot with sample size n, a binomial distribution. 

In the case of grain damage assessment, in which there are more than two categories, the modeling follows a 

multinomial distribution, in which each type of damage corresponds to a category. However, multinomial 

modeling has rarely been used for seed analysis. However, it can be a useful tool for analyzing the problems that 

affect seed quality and for categorizing them, contributing to the advancement of decision-making tests of soybean 

seed lots, as well as any other product with more than two categories (Lima et al., 2024a). 

Obtaining representative samples of a lot, with possible cost reduction, was always the objective of the 

sampling process. One of the ways to reduce these costs is to replace classic sampling, with a fixed number of 

evaluated seeds, by sequential sampling that allows the use of a variable number of sampling units as a 

function of the quality of the lot. Sequential sampling has been shown to be faster than classical sampling 

and is recommended by the International Seed Testing Association (ISTA) (Mulgan, 2021). However, 

sequential sampling is still rarely used due to the regular need for computational support to assist in the 

calculations during the decision-making process. Regional and seasonal aspects can also be included in the 

sampling plan, incorporating information related to these aspects through Bayesian techniques, using a prior 

distribution (Schnuerch & Erdfelder, 2020). 

Thus, the main objective of this work is to study the application of Bayesian sequential tests to evaluate 

the vigor and damage proportions per category in soybean seeds using the tetrazolium test. This proposal 

opens the possibility of incorporating information for the discrimination of seed quality. 

Material and methods 

The data from the tetrazolium test were obtained from the Central Seed Laboratory of the Department of 

Agriculture of the Federal University of Lavras from the evaluation of soybean seeds from producers in the 

southern region of Minas Gerais State located in the municipality of Lavras, Minas Gerais State, Brazil, at 

21°14'43" south and 44°59'59" west with an altitude of 919 meters above sea level. 

To validate the procedure proposed in this study, the traditional analysis of the test was performed in 

twelve lots analyzed with two replicates of 50 seeds, totaling 100 seeds per lot, according to the standards 

established in the Seed Analysis Rules (Brasil, 2009). 

The seeds were preprimed on moistened paper towels, remaining for 16h in the germinator at 25°C. After 

this period, the seeds were immersed in a salt solution of 2,3,5 triphenyltetrazolium chloride and placed in 

incubators at 40°C for 3h. In this evaluation, the seed coats were removed, and then the seeds were sectioned 

longitudinally through the center of the embryonic axis. Then, the cotyledons were separated, leaving the 

vascular region exposed for evaluation of all types of damage. 

From the recorded data, the percentage of vigorous seeds was evaluated under three approaches: 

i) percentage of vigorous (p) and nonvigorous seeds, following a binomial model; 

ii) classification of the seeds into three categories, considering only the nonvigorous seeds and evaluation 

of the percentages of the three types of damage, moisture, stink bug, and mechanical; the seeds that showed 

two or more types of damage were included in the damage category that led to the death of the embryo; 

iii) classification into five classes, considering vigorous seeds, seeds with one of the three types of damage: 

moisture, stink bug or mechanical and seeds with two or more type of damage. 

The traditional analysis of the tetrazolium test was performed to estimate, considering the binomial 

distribution, the proportion of vigorous (p) and nonvigorous seeds, in which S ~ Binomial (n, p) is written as 

(Hamura, 2023): 

  𝑓(𝑆|𝑝) = 𝑓𝑆(𝑆) = (𝑛
𝑆
)𝑝𝑆(1 − 𝑝)𝑛−𝑆         (1) 

Where 0 ≤ p ≤ 1 and S corresponds to the sum of the vigorous seeds. 

The estimated proportions of damaged seeds follow a multinomial distribution consisting of n attempts, 

and each attempt can result in any of the k possible outcomes: d1, d2, ..., dk. Suppose, in addition, that each 

possible result can occur with probabilities p1, p2, ..., pk. Therefore, the probability p1 that d1 occurs n1 times, 

d2 occurs n2 times..., and dk occurs nk times is (Najar & Bouguila, 2022): 

𝑃(𝑛𝑘|𝑝𝑘) = [
𝑛!

𝑛1!𝑛2!…𝑛𝑘!
] (𝑝1

𝑛1 . 𝑝2
𝑛2 . … . 𝑝𝑘

𝑛𝑘)         (2) 

where n = n₁ + n₂ + ⋯ + nₖ 
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For the Bayesian analysis, in the case of random variables with a domain between 0 and 1, such as 

proportions, the beta distribution is often used as a conjugate prior distribution of binomial probabilities 

(Avci, 2021). The probability density function of the beta prior distribution with hyperparameters α and β is 

given by: 

𝑃(𝑝|𝛼, 𝛽) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑝𝛼−1(1 − 𝑝)𝛽−1         (3) 

where 0 ≤ p ≤ 1, α > 0 and β > 0. 

In Bayesian analysis, the difficulty of obtaining and quantifying a prior is a recurrent issue, and elicitation 

is a very useful process for prior construction (Stefan et al., 2022). The procedure for constructing the priors 

begins with the supply of elicited mean and variance values given by: 

𝜇𝑝𝑟𝑖𝑜𝑟 = 𝜇𝑏𝑒𝑡𝑎 =
𝛼

(𝛼 + 𝛽)
, 𝑣𝑎𝑟𝑝𝑟𝑖𝑜𝑟 =

(𝛼𝛽)

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
 

Knowing the mean and variance for the proportion, the estimates of α and β through the method of 

moments are given by: 

𝛼 = 𝜇 (
𝜇(1−𝜇)

𝜎2 − 1)   𝛽 =  (1 − 𝜇) (
𝜇(1−𝜇)

𝜎2 − 1) 

To obtain the beta posterior distribution (α’, β’) or (α + s, β + n - s), where s is the sum of vigorous seeds, 

the mean and variance are given by: 

𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝛼 + 𝑠

(𝛼 + 𝑠 + 𝛽 + 𝑛 − 𝑠)
,                      𝑣𝑎𝑟𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

(𝛼 + 𝑠)(𝛽 + 𝑛 − 𝑠)

(𝛼 + 𝛽 + 𝑛)2(𝛼 + 𝛽 + 𝑛 + 1)
. 

In the case of the multinomial distribution, the conjugate prior distribution is the multivariate 

generalization of the beta distribution, known as the Dirichlet distribution (Yi et al., 2020). 

The Dirichlet distribution is applied to each set of probabilities k, where the probability vectors pk follow 

a Dirichlet distribution with parameters αₖ 

𝑃(𝑝𝑘|𝛼𝑘) ∝ ∏ 𝑝𝑘
𝛼𝑘−1𝑘

𝑘=1        (4) 

Similarly, the prior construction procedure begins with the provision of the elicited values of the mean 

(proportion) and variance (variation) for each type of damage given by: 

𝜇𝑝𝑟𝑖𝑜𝑟 =
𝛼𝑘

∑ 𝛼𝑘

, 

𝑣𝑎𝑟𝑝𝑟𝑖𝑜𝑟 =
𝛼𝑘(𝛼0 − 𝛼𝑘)

𝛼0
2(𝛼0 + 1)

, 

where α₀ = α₁ + ⋯ + αₖ, so that the higher the value of α is, the smaller the variance. 

Santos et al. (2021), Batista et al. (2022), and Ribeiro et al. (2024) also evaluated the vigor of soybean seeds. 

However, in this study, we chose to use the mean and variance of the proportion of vigorous seeds presented 

in the paper by Costa et al. (2005), Schuab et al. (2007), Lopes et al. (2011) and data for the 2016/2017 soybean 

harvest in Lorini (2018) as values for construction of the priors, as they have the same number of categories 

worked on in this article. 

Through the Bayes theorem, the equations P(nₖ | pₖ) and P(pₖ | αₖ) produce a posterior Dirichlet distribution 

for pₖ with parameters αₖ + nₖ, with (Boukabour & Masmoudi, 2021): 

𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝛼𝑘 + 𝑛𝑘

∑ (𝛼𝑘 + 𝑛𝑘)𝑘

, 

𝑣𝑎𝑟𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑝𝑘(1 − 𝑝𝑘)

[1 + ∑ (𝛼𝑘 + 𝑝𝑘)𝑘 ]
. 

To estimate the proportion parameter considering the sample size as a random variable in the sequential 

estimation, elements of a sample are extracted one at a time, and after each seed is observed, a stopping 

criterion is used, and the decision is made, or the observation of samples continues. 

To obtain the stopping criterion in the binomial distribution, the quadratic loss function L = (p − p̂)² + C(n) 

is considered, where C(n) > 0 is the cost of taking a sample of size n to estimate p. The expected posterior 
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variance is calculated, which allows estimation of the amount r(πⁿ, n) that represents the lowest Bayes risk 

that can be achieved since Xn was observed (Hwang, 2020). 

To decide whether to stop sampling, the risk values are compared to each seed evaluated, and a new 

observation is performed until r₀(πⁿ, n) ≤ r¹(πⁿ, n), when the estimate of the viability proportion parameter in 

the tested lot is then calculated from the mean of the posterior obtained so far. 

Thus, it is necessary to calculate, at each seed evaluation, the immediate risk given by the posterior 

variance plus the cost of n observations and the expected risk given by the expected posterior variance and 

the increase in the cost of another observation (Brighenti et al., 2011); thus: 

𝑟𝑜(𝜋𝑛 , 𝑛) =
(𝛼+𝑠)(𝛽+𝑛−𝑠)

(𝛼+𝛽+𝑛)2(𝛼+𝛽+𝑛+1)
+ 𝐶(𝑛),                                 𝑟1(𝜋𝑛, 𝑛) = 𝐸[𝑣𝑎𝑟𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟] + 𝐶(𝑛 + 1). 

Then, the expected risk is given by: 

𝑟1(𝜋𝑛, 𝑛) = (
𝛼+𝛽+𝑛

𝛼+𝛽+𝑛+1
)

(𝛼+𝑋)(𝛽+𝑛−𝑠)

(𝛼+𝛽+𝑛)2(𝛼+𝛽+𝑛+1)
+ 𝐶(𝑛 + 1)       (5) 

The procedure for constructing the priors, as well as obtaining the hyperparameter estimates, was 

developed in the software R (R Core Team, 2024). 

For a multinomial distribution with (k + 1) classes, according to Jones (1976), the probability of an 

observation in the i-th class, for i = 1, 2, ..., k, and in (k + 1) can be (1 − ∑ 𝑝𝑖
𝑘
𝑖=1 ). Suppose that the prior 

information about p = (p₁, p₂, ..., pₖ)ᵀ can be adequately represented by a member of the natural conjugate 

Dirichlet, a family of distributions with integer parameters m₀, n₀ᵢ, i = 1, 2, ..., k, with density proportional to: 

∏ 𝑝𝑖

𝑛0𝑖−1
(1 − ∑ 𝑝𝑖

𝑘
𝑖=1 )

𝑚0−∑ 𝑛0𝑖−1𝑛
𝑖=1          (6) 

with pᵢ ≥ 0 and ∑ 𝑝𝑖
𝑘
𝑖=1 ≤ 1. 

By the Bayes theorem, after m observations resulting in nᵢ in the i-th classes, the posterior density of p is 

given by a Dirichlet distribution with parameters m + m₀ and nᵢ + n₀ᵢ. 

The result of the sampling, because it is represented as a sample path, starts at the point (n₀, m₀), where 

n₀ = (n₀₁, n₀₂, ..., n₀ₖ), in the (k + 1)-dimensional whole space, and is interrupted when the stop limit—which 

has to be determined—is reached. If m₀ = k + 1 and n₀ᵢ = 1 (uniform prior for p) are taken as the origin, then 

any other appropriate prior with integer parameters gives sample paths starting at (n₀ − 1, m₀ − k − 1), where 

1 is the unit line vector. 

Consequently, a uniform prior is used to obtain stop limits. Suppose that the loss in the estimate of p by 

d = (d₁, d₂, ..., dₖ)ᵀ has the general quadratic form (p - d)ᵀ K(p - d), where K is a positive symmetric matrix of 

constant loss, and the Bayes estimator d* is the mean of the posterior distribution of (n, m) with elements dᵢ* 

= (nᵢ + 1)/(m + k) this is also the marginal posterior probability that the next observation falls within the i-th 

class. The risk of stopping is given by (Jones, 1976): 

S(n, m) = traço KΣ           (7) 

where  is the dispersion matrix of the posterior distribution with the elements: 𝑣𝑎𝑟 (𝑝𝑖) =
𝑑𝑖

∗(1−𝑑𝑖
∗)

𝑚+𝑘+2
, 

𝑐𝑜𝑣 (𝑝𝑖 , 𝑝𝑗) = −
𝑑𝑖

∗𝑑𝑗
∗

𝑚+𝑘+2
. 

consequently, 

𝑆(𝑛, 𝑚) =
{∑ 𝐾𝑖𝑖𝑑𝑖

∗−𝑘
𝑖=1  ∑ 𝐾𝑖𝑗𝑑𝑖

∗𝑑𝑗
∗𝑘

𝑖𝑗=1 }

𝑚+𝑘+2
          (8) 

For more details on the quadratic loss function see Tan (2020). To obtain the stopping criterion in the 

multinomial distribution, one point (n, m) is considered, where B(n, m) is the risk of an additional observation 

at a cost c to continue thereafter (risk of continuing) and D(n, m) is the minimum risk. Then, the dynamic 

programming equations giving the partition into stopping and continuation points are: 

D (n, m) = min [S(n, m), B(n, m)]          (9) 

𝐵 (𝑛, 𝑚) = 𝑐 + ∑ [𝐷(𝑛 + 𝑒𝑖 , 𝑚 + 1)𝑑𝑖
∗] + 𝐷(𝑛, 𝑚 + 1)(1 − ∑ 𝑑𝑖

∗𝑘
𝑖=1 )𝑘

𝑖=1      (10) 

ei is the vector line with 1 to the i-th position and zeros everywhere else. 

Since S(n,m) → 0, B(n,m) → c and m → ∞, there is a large value of m = N* such that all points (n, N*) are 

stopping points for ∑ 𝑛𝑖 ≤ 𝑁∗.𝑘
𝑖=1  The dynamic programming equations above can now be successively used 
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for m ≤ N* to find the smallest integer m satisfying: 

B(n, m) > S(n, m), D(n, m + 1) = S(n, m + 1) 

for all n, and this is the maximum sample size. 

The two conditions imply that: 

𝐵 (𝑛, 𝑚) = 𝑐 + [
m+k+1

m+k+2
] 𝑆(𝑛, 𝑚)          (11) 

For more details on obtaining the stopping criterion, see Lima et al. (2024a). 

Results and discussion 

In the frequentist estimation of vigor optimization using the binomial distribution with classification of 

vigorous and nonvigorous seeds (Table 1), vigorous seeds are those that do not present any type of damage, 

and nonvigorous seeds are those that have some damage that may have affected the embryo or not. 

Table 1. Percentages of vigorous and nonvigorous seeds. 

Lot 1 2 3 4 5 6 7 8 9 10 11 12 Mean (%) Standard deviation (%) CV (%) 

Vigorous 81 54 64 62 80 78 84 75 83 60 84 76 73.42 10.54 14.36 

Nonvigorous 19 46 36 38 20 22 16 25 17 40 16 24 26.58 10.54 39.67 

 

Thus, the mean vigor of the lots is 73.42% with a standard deviation of 10.54%. To assess the relevance of 

the two classifications, the chi-square test was performed, which shows a test statistic of 62.66 with a p-value 

< 0.001. This shows that there are differences between the percentages of vigorous and nonvigorous seeds of 

the lots. 

To estimate the proportion of vigorous seeds of the lots with the Bayesian approach, a beta prior was used 

(α, β), knowing that after observing the sample, the posterior distribution is beta (α + s, β + n - s), where s is 

the sum of vigorous seeds. 

The two priors used were based on the following information: prior 1 using a mean of 71% vigorous seeds 

and a coefficient of variation (CV) of 7.22% presented by Schuab et al. (2007) when studying the germination 

test under water stress to evaluate the vigor of soybean seeds; and prior 2 of 83% vigorous seeds with a CV of 

8.65% proposed by Lopes et al. (2011) when studying the effects of mechanical and physiological damage on 

soybean seed harvesting and processing. From the cited references, the hyperparameters and percentages of 

the means and variances of the priors were elicited using the method of moments are shown in Table 2. 

Table 2. Values of hyperparameters, means (%) and variances (%) of priors. 

Prior 
Hyperparameters 

Mean (%) Variance (%) 
  

Schuab et al. (2007) 0.7044 0.2877 71.00 10.34 

Lopes et al. (2011) 0.8277 0.1695 83.00 7.06 

 

Table 3 shows the results of different posterior distributions. Using a size n = 100 and different priors, 

similar results are obtained in the posterior, indicating consistency in the analysis. 

Table 3. Percentages of means and variances of the posteriors. 

Posterior Mean (%) Variance (%) 

Schuab et al. (2007) 73.40 0.19 

Lopes et al. (2011) 73.51 0.19 

 

The frequentist approach to damage estimation was performed with a multinomial distribution in three 

classes (Table 4) and five classes (Table 5). 

Of the 319 nonvigorous seeds obtained in the 12 lots, a mean of 77.08% and a standard deviation of 13.03 

show moisture damage, compared to a mean of 14.84% and a standard deviation of 11.80 for damage by stink 

bugs and a mean of 8.08% and standard deviation of 9.42 for mechanical damage. 
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Table 4. Percentages of seeds according to the three classifications. 

Lot p̂1: moisture damage p̂2: stink bugs damage p̂3: mechanical damage 

1 47.37 42.10 10.53 

2 78.26 13.04 8.70 

3 86.11 8.33 5.56 

4 92.11 5.26 2.63 

5 85.00 10.00 5.00 

6 72.73 27.27 0.00 

7 93.75 6.25 0.00 

8 72.00 20.00 8.00 

9 64.71 0.00 35.29 

10 85.00 12.50 2.50 

11 68.75 25.00 6.25 

12 79.17 8.33 12.50 

Mean (%) 77.08 14.84 8.08 

Standard deviation (%) 13.03 11.80 9.42 

Table 5. Percentages of seeds according to the five classifications. 

Lot p̂1: vigorous p̂2: moisture damage p̂3: stink bugs damage p̂4: mechanical damage 
p̂5: more than one type of 

damage 

1 81 7 8 2 2 

2 54 35 6 4 1 

3 64 29 3 2 2 

4 62 35 1 1 1 

5 80 14 2 1 3 

6 78 16 5 0 1 

7 84 15 1 0 0 

8 75 18 5 2 0 

9 83 11 0 6 0 

10 60 32 5 1 2 

11 84 11 4 1 0 

12 76 19 2 3 0 

Mean (%) 73.42 20.17 3.50 1.92 1.00 

Standard deviation (%) 10.54 9.94 2.39 1.73 1.04 

 

In the evaluation of vigor with the multinomial distribution in five classes, the moisture damage stands 

out, with a mean of 20.17%, compared to the presence of stink bugs, with a mean of 3.50%, mechanical 

damage, with a mean of 1.92%, and the presence of more than one type of damage, with 1.0% (Table 5). 

The results found in the two forms of classifications, with three or five classes, for moisture damage in the 

analyzed lots is in agreement with the data found in the literature (Souza et al., 2024). 

The mechanical damage in the analyzed lots is lower than that found in the literature due to the manual 

harvesting of the grains instead of the use of a harvester (Martins et al., 2016). 

The impact of stink bug damage on the analyzed lots is not considerable. Costa et al. (2005), when studying the 

main factors responsible for the reduction in soybean seed quality, found that an incidence of stink bug damage 

up to 5% does not affect seed vigor and that only after 6% is there a significant decrease in the vigor rate. 

For the Bayesian approach with the three types of damage, moisture, stink bug, and mechanical, 

considering the multinomial distribution, a conjugate Dirichlet prior was used (α₁, α₂, α₃), knowing that after 

observing the sample, the posterior distribution is a Dirichlet (+ n₁, ..., αₖ + nₖ), where nₖ is the frequency of 

each αₖ. 

For the prior, the parameters applied were obtained by Costa et al. (2005) when studying the physical, 

physiological, and chemical aspects of soybean seeds produced in six regions of Brazil, where 11.17% of seeds 

had mechanical damage, 4.77% had stink bug damage, and 6.8% had moisture damage. Thus, the prior is the 

Dirichlet prior (0.2456; 0.1048; 0.1496), with the mean and variance values shown in Table 6. 

Table 6. Values of the prior of multinomial with three parameters. 

Type of damage k Mean (%) Variance (%) 

Mechanical 0.2456 49.12 16.66 

Stink bugs 0.1048 20.97 11.05 

Moisture 0.1496 29.91 13.98 
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In the analyzed lots, the frequency of mechanical damage is 23 seeds, that of stink bug damage is 42 seeds, and 

that of moisture damage is 242. These values were used to obtain the posterior, which is the Dirichlet posterior 

(23.2456; 42.1048; 242.1496). Table 7 shows the means and variances of the posterior for each parameter. 

Table 7. Values of the posterior of the multinomial with three parameters. 

Type of damage αk + yk Mean (%) Variance (%) 

Mechanical 23.2456 7.54 0.02 

Stink bugs 42.1048 13.67 11.80 

Moisture 242.1496 78.79 16.81 

 

To better explain the impact of the parameter αk for the prior and posterior, the simplex of dimension k-1 is 

presented in Figure 1, and the points indicate the occurrence of damage; it is possible to observe that the prior is 

uniform and that the posterior tends to have a higher occurrence of moisture damage (Inacio et al., 2022). 

 

Figure 1. Simplex of the Dirichlet prior with parameters (0.2456; 0.1048; 0.1496) and posterior with parameters (23.2456; 42.1048; 

242.1496). Source: Prepared by the author. 

The results found by the Bayesian estimation of the three types of damage are consistent with the values 

found in the experiment, which show means of 8.08% for mechanical damage, 14.84% for stink bug damage, 

and 77.08% for moisture damage. 

To estimate the proportion of seeds in the five classes shown in Table 8 with a multinomial distribution, 

data from the 2016/2017 soybean harvest were used Lorini (2018) to obtain the parameters. Therefore, the 

proportion for obtaining the prior for vigorous seeds was 82%, that for moisture damage was 3.1%, that for 

stink bug damage was 0.7%, that for mechanical damage was 4.9%, and that for the incidence of two or more 

types of damages was unspecified, so 0% was used. Thus, the conjugate prior is a Dirichlet prior (0.4520; 

0.0171; 0.0039; 0.0270; 0.0000), with the mean and variance values shown in Table 8. 

Table 8. Values of the prior of the multinomial with five parameters. 

p̂ α Mean (%) Variance (%) 

p̂1: vigorous 0.4520 90.41 5.78 

p̂2: moisture damage 0.0171 3.42 2.20 

p̂3: stink bugs damage 0.0039 0.77 0.51 

p̂4: mechanical damage 0.0270 5.40 3.41 

p̂5: more than one type of damage 0.0000 0.00 0.00 

 

To calculate the Dirichlet posterior, the frequencies of each parameter were used, with 881 vigorous seeds, 

242 with moisture damage, 42 with stink bug damage, 23 with mechanical damage, and 12 with two or more 

types of damage. Therefore, the posterior is a Dirichlet posterior (881.4520; 242.0171; 42.0039; 23.0270; 

12.0000), with means and variances shown in Table 9. 
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Table 9. Values of the posterior of the multinomial with five parameters. 

p̂ αk + yk Mean (%) Variance (%) 

p̂1: vigorous 881.4520 73.42 0.02 

p̂2: moisture damage 242.0171 20.16 16.09 

p̂3: stink bugs damage 42.0039 3.50 3.38 

p̂4: mechanical damage 23.0270 1.92 1.88 

p̂5: more than one type of damage 12.0000 1.00 0.99 

 

The results obtained in the multinomial Bayesian analysis with five classifications are also consistent with 

those of the experiment, which show means of 73.42% for vigorous seeds, 20.17% for those with moisture 

damage, 3.50% for those with stink bug damage, 1.92% for those with mechanical damage, and 1.00% for 

those with two or more types of damage. 

Bayesian sequential estimation was performed using a Delphi application developed by Brighenti et al. 

(2011) in the twelve lots. Table 10 shows the results of these reports with the individual results of the lots. 

Table 10. Percentage vigor of the seed lots estimated by the Bayesian sequential method, with their respective final sample sizes (Nseq). 

Lot 

Vigor 

60% 75% 

Nseq p̂seq (%) Nseq p̂seq (%) 

1 12 63.88 12 71.60* 

2 12 41.49* 13 37.61* 

3 12 63.88 12 63.83* 

4 12 63.88 12 63.83* 

5 12 63.88 12 63.83* 

6 8 91.06 8 92.61 

7 8 91.06 8 92.61 

8 12 63.88 12 63.83* 

9 11 77.10 11 77.63 

10 12 71.34 12 71.60* 

11 10 83.86 10 84.77 

12 11 77.10 11 77.63 

Mean (%) 11 71.03 11.08 71.78 

Standard deviation (%) 1.54 14.04 1.62 15.15 
*: Lots were rejected. 

For the binomial sequential Bayesian estimation of the proportion of vigorous seeds in soybean lots, this 

study utilized two different prior distributions for the purpose of comparing the criterion. The first prior 

distribution considered has a mean of 60%, corresponding to a lot with a low vigor level, with only 60% of 

vigorous seeds. The second prior distribution has a mean of 75%, corresponding to a lot with a higher vigor 

level, with 75% of vigorous seeds. Thus, based on these two prior distributions, the sequential Bayesian 

estimation of the proportion of vigorous seeds was performed. It was observed that with the first prior 

distribution, only lots with an estimated vigor above 60% were accepted, thus only rejecting lot 2. With the second 

prior distribution, only lots with estimated vigor greater than 75% were accepted, resulting in a stricter criterion 

that rejected lots 1, 2, 3, 4, 5, 8, and 10 (Table 10). Still in Table 10, it can be observed that the maximum sample 

size per lot was 12 seeds. The case presented here demonstrates the influence that the choice of the prior 

distribution can have on the results of parameter estimates. The priors used reflect soybean seed lots of low vigor, 

especially in the first case (60%). Consequently, the mean vigor estimates were 71.03% for the first prior and 

71.78% for the second prior, slightly lower compared to the results obtained by the frequentist approach (73.42%) 

and the Bayesian approach (73.40% and 73.51%), but still close, indicating the consistency of the analyses.  

To establish whether sampling should be continued, it is necessary for the risk values to be compared for 

each seed evaluated and for a new observation to be performed until the immediate risk (S(n,m)) is less than 

or equal to the expected risk (B(n,m)). 

However, to find the immediate and expected risk values, we must first find the values of the elements di
∗ 

of the posterior distribution of (n,m), given by 𝑑𝑖
∗  =

𝑛𝑖+1

𝑚 + 𝑘
, where ni is the cumulative values of defects, m is the 

observations, and k is the number of classes. Subsequently, the calculation of the immediate risk is obtained. 

The next step was to calculate the expected risk, for which it was necessary to know the cost of another 

observation. The cost adopted was that used in the Bayesian sequential sampling of 10-4 vigor. 
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The multinomial Bayesian sequential estimation was performed using a dynamic table in Microsoft Excel® 

in the twelve lots proposed for this study, using a prior with three classes presented by Costa et al. (2005) and 

the five classes of data from the 2016/2017 soybean harvest presented by Lorini (2018). 

As an example, we can cite the evaluation of the first seed of lot 4 with a cost of 10 ⁻³, because when 

using the cost of 10⁻⁴, sampling was not interrupted in any of the twelve lots. For the prior, the parameters 

of Costa et al. (2005) obtained in the study of the physical, physiological and chemical aspects of soybean 

seeds produced in six regions of Brazil, with 11.17% of seeds with mechanical damage, 4.77% with stink 

bug damage, and 6.8% with moisture damage, the immediate risk (S(n,m)) and the expected risk 

(B(0000000000,m)) for the multinomial with three parameters were calculated from the Dirichlet prior 

(0.1496; 0.1048; 0.2456) whose posterior is a Dirichlet posterior (1.1496; 0.1048; 0.2456). Considering 

the seeds included in class 1, we have S(0.1667) > B(0.1390), and sampling should continue. The risk 

calculations must be performed until the expected risk is greater than the immediate risk, thus ending 

the sampling and providing an estimation. 

The results found by the multinomial Bayesian sequential estimation, presented in Table 11, with three 

parameters, with the cost of one more observation of 10-3, are consistent with the values of the frequentist 

approach, which shows means of 8.08% in mechanical damage, 14.84% in stink bug damage, and 77.08% in 

moisture damage, and consequently, with the results also found with the Bayesian estimation. 

Table 11. Damage percentages of seed lots estimated by the multinomial Bayesian sequential method, with their respective final 

sample sizes (Nseq), according to three parameters.  

Lot Nseq 

Damage 

p̂1: moisture damage p̂2: stink bugs damage p̂3: mechanical damage 

N1 p̂1 seq (%) N2 p̂2 seq (%) N3 p̂3 seq (%) 

1* 19 9 47.37 8 42.10 2 10.53 

2 25 20 80.00 3 12.00 2 8.00 

3 25 22 88.00 2 8.00 1 4.00 

4 25 24 96.00 0 0.00 1 4.00 

5* 20 17 85.00 2 10.00 1 5.00 

6* 22 16 72.73 5 22.72 1 4.55 

7* 16 15 93.75 1 6.25 0 0.00 

8 25 18 72.00 5 20.00 2 8.00 

9* 17 11 64.71 0 0.00 6 35.29 

10 26 21 80.77 4 15.38 1 3.85 

11* 16 11 68.75 4 25.00 1 6.25 

12* 24 19 79.17 2 8.33 3 12.5 

Mean (%) 77.35 14.15 8.50 

Standard deviation (%) 10.20 9.08 5.47 
*: Sampling was not interrupted. 

Note that for lots 1, 5, 6, 7, 9, 11, and 12, it was not possible to perform the multinomial sequential analysis 

because the numbers of samples were small. Thus, the minimum number of samples to interrupt the sampling 

of the lots was 25 seeds. 

Table 12 presents the results for the multinomial with five classes, with the cost of one more observation 

of 10-4, whose values are in agreement with those found in the experiment, with means of 73.42% for vigorous 

seeds, 20.17% for those with moisture damage, 3.50% for those with stink bug damage, 1.92% for seeds with 

mechanical damage, and 1% for seeds with two or more types of damage. 

In addition, the maximum number of samples per lot is 94 seeds to stop sampling and thus to make a 

decision. This indicates how the multinomial Bayesian sequential method considering seed damage reduces 

the sampling time required to make a decision about a lot compared to the traditional method of 100 seeds. 

It is important to highlight that the major limitation of the sequential Bayesian method lies in the 

existence of complex calculations during the decision-making process, specifically in determining the 

stopping criterion that establishes the optimal moment to stop and estimate the parameters of interest. This 

is due to the recurrence relationship between the observations, which determines the final sample size. Thus, 

the procedure may require computational support to assist in the execution of the method. However, for data 

from the binomial distribution, the Delphi application developed by Brighenti et al. (2011) can be used, and 

for the multinomial distribution, a dynamic table in Microsoft Excel®. Both are easy to implement and friendly 

to producers. 
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Table 12. Damage percentages of seed lots estimated by the multinomial Bayesian sequential method, with their respective final 

sample sizes (Nseq), according to five parameters. 

:Lot Nseq 

Damage 

p̂1: vigorous p̂2: moisture damage 
p̂3: stink bugs 

damage 

p̂4: mechanical 

damage 

p̂5: more than one type of 

damage 

N1 p̂1 seq (%) N2 p̂2 seq (%) N3 p̂3 seq (%) N4 p̂4 seq (%) N5 p̂5 seq (%) 

1 94 77 81.91 7 7.45 6 6.38 2 2.13 2 2.13 

2 94 49 52.13 35 37.23 6 6.38 3 3.19 1 1.06 

3 93 57 60.64 29 31.18 3 3.23 2 2.15 1 1.08 

4 93 58 61.70 32 34.41 1 1.08 1 1.08 0 0.00 

5 93 74 79.72 14 15.05 2 2.15 0 0.00 2 2.15 

6 93 71 75.53 16 17.20 5 5.38 0 0.00 0 0.00 

7 94 79 84.04 14 14.89 1 1.06 0 0.00 0 0.00 

8 94 71 75.53 16 17.02 5 5.32 2 2.13 0 0.00 

9 94 78 82.98 10 10.64 0 0.00 6 6.38 0 0.00 

10 94 57 60.64 30 31.91 5 5.32 1 1.06 1 1.06 

11 94 78 82.98 11 11.70 4 4.26 1 1.06 0 0.00 

12 94 73 77.66 18 19.15 1 1.06 2 2.13 0 0.00 

Mean (%) 73.27 20.69 3.49 1.88 0.67 

Standard deviation (%) 9.40 8.69 2.04 1.24 0.73 

 

Comparing the four approaches - frequentist, Bayesian, sequential analysis and Bayesian sequential analysis - 

used to analyze the twelve lots, there is potential in their use, and the choice of the prior distribution is an 

important step. In the frequentist and Bayesian approaches, there is agreement between the results because 

the prior distribution elicited in articles is consistent with the sample of lots used. However, when the 

Bayesian method is added to the sequential analysis, a decrease in the sample size for decision-making about 

the lot is observed, resulting in a reduction in the sampling time and cost; however, the prior distribution has 

a strong influence that is not compatible with the frequentist results. Thus, the importance of the choice of 

the prior is reinforced. The fact that it is possible to incorporate information from producers or even scientific 

articles with regional data may reduce the sampling time and cost; however, such choice must have a 

consistent basis. 

Furthermore, it can be observed that Bayesian sequential analysis, when used, has been achieving good 

results, Brighenti et al. (2019) used this approach applied to binomial distribution to estimate the proportion 

of viable coffee seeds. Lima et al. (2024b), used the multinomial model to estimate the allelic and genotypic 

proportions. Lima et al. (2024a) also used multinomial distribution, estimating different types of damage to 

corn seeds from the X-ray test. All of these studies achieved a reduction in sample size and consequently a 

reduction in costs. Thus, it is noted that Bayesian sequential analysis can be used in various areas of science 

to estimate parameters with the aim of reducing costs. 

Conclusion 

In the decision-making during the tetrazolium test, for the modeling of vigor, the use of a binomial 

distribution is adequate, and in the case of the analysis of damage types, in which there are several categories, 

the use of a multinomial distribution is promising. It can be concluded that in the Bayesian sequential process, 

both in the estimation of vigor (use of the binomial distribution) and damage in seeds (use of the multinomial 

distribution), there was a significant reduction in the required sample size. This is an advantage, as it reduces 

time and cost in tetrazolium testing. The estimates of interest obtained by the sequential Bayesian method 

were consistent when compared with the traditional method. 
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